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Wide Sense Stationary Processes Forming Frames
Juan Miguel Medina, Member, IEEE, and Bruno Cernuschi-Frías, Senior Member, IEEE

Abstract—In this paper, we study the question of the representa-
tion of random variables by means of frames or Riesz basis gener-
ated by stationary sequences. This concerns the representation of
continuous time wide sense stationary random processes by means
of discrete samples.

Index Terms—Basis, frames, sampling, stationary random
processes.

I. INTRODUCTION

L ET be a wide sense stationary (w.s.s.)
-dimensional random process, indexed in a “time” set

. Many statistical problems such as linear prediction, interpo-
lation or extrapolation, or computing conditional expectations
for gaussian processes [20], [7], [11], [19] are reduced to the
problem of obtaining the best approximation of a random Vari-
able in terms of an element of a closed
subspace of . Some authors e.g., [17] made clear the re-
lationship between some of these subjects and the theory of
shift-invariant subspaces. A similar problem is that of recon-
structing a continuous time random process/signal from dis-
crete time samples. Analogous results to the classic Shannon
sampling theorem, or its generalizations, can be given for sta-
tionary or related processes [14], [13], [20], and it may be inter-
esting to give conditions for stable sampling and reconstruction
of random signals. This could be useful in some applications
such as sparse representations and compressive sampling. So
it is natural to ask under what conditions can, in some rea-
sonable sense, be represented in the form of an unconditionally
convergent series

In the context of stationary processes, it is natural to formu-
late conditions on the spectral density, or spectral measure of
the process. To treat some of these approximation problems
Rozanov [20] introduced the concept of Conditional basis.
Giving sufficient conditions [20], [21] on the spectral density,
this can be strengthened to an unconditional basis or Riesz
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Basis, that makes the series unconditionally convergent. In
these derivations much care is given to minimality, i.e., no
element of this system belongs to the closed linear span
of the remaining elements. Minimal 1-dimensional processes
were first introduced by Kolmogorov, and their structure
can be characterized in terms of the spectral measure of the
process [20], [22], [23]. Many interpolation or extrapolation
problems are easier to handle when the processes involved are
minimal. In the context of sampling, sufficient conditions on
the spectral density are also used in e.g., [26] to construct a
Wavelet Karhunen–Loéve like expansion for a w.s.s. process.
The random variables obtained in this case are uncorrelated,
i.e., they are orthogonal. Wavelet type expansions of random
signals, and some of their properties, are also studied in [5]
and [9]. However, in some applications mainly related to signal
analysis, redundancy could be useful. As for example a natural
way to achieve this is by means of frames. The main results are
given in Section III. First, in Theorem 3.1 we give necessary
and sufficient conditions in terms of the spectral measure for
a stationary sequence to form a frame. This result on stability
generalizes the results of Rozanov [20, Ch. 2, Secs. 7 and
11]. Second, the problem of reconstructing a random signal
from its samples can be viewed as a problem of completeness
of the sequence of samples in the closed linear span of the
whole random process [14], [13]. So, we study conditions
for the stability of these sequences of samples. We relate the
previous result on frames to the case of a sequence obtained
from sampling a continuous parameter process. The conditions
are obtained in terms of the periodized spectral density of the
process (e.g., Theorem 3.2). Finally, in Theorem 3.4 we give
conditions for a sequence of samples to be a frame of the closed
linear span of the whole process.
As we will see the study of conditions for stationary se-

quences to form frames is similar, in some way, to the problem
of the characterization of frames for shift invariant subspaces
(SIS) of ([4], [3], [2], [6]). Theorem 3.1 is an analogue
to the results of Section III of [2] or Section II of [3]. In [3],
the SIS are generated by more than one generator, then the
conditions are given in terms of the Gramian matrix or the dual
Gramian matrix. In our context, the spectral density matrix of a
stationary process will play a similar role. Finally, we note that
the study of conditions for frames and Riesz basis is very useful
for the theory of sampling of signals, since these conditions are
related to stability. For example in [16], several conditions for
stable sampling in an union of shift invariant subspaces, are
studied using Riesz basis. The theory of sampling in an union
of subspaces gives an appropriate framework for problems
related to sparse representations [16], spectrum-blind sampling
of multiband signals, and compressive sampling, among other
applications. In Section V, as an application, we shall see briefly
that it is possible to propose a similar theory for stationary
random signals.
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MEDINA AND CERNUSCHI-FRÍAS: WIDE SENSE STATIONARY PROCESSES FORMING FRAMES 4637

II. AUXILIARY RESULTS

A. Some Generalities

Let us review some facts about wide sense stationary
processes. This brief review is mainly borrowed from
([20], Chapter I). Let be a probability space, let

be a wide sense sta-

tionary random process, where or . By this we
mean a family of random variables in (i.e.,
with finite variance) stationary correlated in the index , i.e.,:

, for all , . We will also
assume that for all , . In the following, if

or if .
1) Harmonic Analysis of Stationary Processes: Every sta-

tionary multidimensional process admits a

spectral representation:

in the form of an stochastic integral [12] with respect to a
random spectral measure . Moreover for
each or , can be written as the result of the action of
the (unitary) time shift operator on

(1)
where the ’s are orthogonal projection operators over

.
Set , , . This ma-

trix of complex measures is positive definite and we call it the
spectral measure of the process . On the other hand the (cross)
spectral measures are also related by the following Fourier
transform pairing

(2)

We study some properties of the Hilbert space which is
the closed linear span of in . Some properties
are more easily characterized over an isometrically isomorphic
space, defined as follows.

Definition 1: is defined as

where is a positive semi definite matrix of complex
measures defined by for each ,

and is the matrix of Radon–Nykodym
derivatives .
First note that always , so this assures the

existence of the . In our case will be the spectral
measure of the process. Unless is of full rank for
almost all , there may exist measurable such that
over a set of positive measure with .

Moreover if we do not distinguish between two vector func-
tions , such that , then

we can treat as a Hilbert space. More precisely
is a Hilbert space

with the norm . The isomorphism be-

tween and is given by an integral respect to the
random measure . That is, for every there exists

such that . In the case that all

the elements , where is Lebesgue measure, then
we call the Radon–Nykodym derivatives with respect to
spectral densities, and we say that has a spectral density

(matrix) of elements . Then, the integrals involving
introduced before can be written as and so on. The

same discussion made for and also holds for this case.
Finally, it is clear that a corresponding concept of stationarity

can be considered for any process , with and
and the index set a group. The results, for w.s.s.

processes, involving Fourier transforms are also extended to the
case when is a LCA group [19, Ch. 1].
2) Frames and Hilbert Spaces: Let us review some of the

basic results about frames and Hilbert spaces which will be used
here.

Theorem 2.1 ([6], Chapter 5): If is a Riesz basis of its
span then it is a frame.
We recall the following definition.

Definition 2: Let be a sequence in a Hilbert space ,
we say that is minimal if for each .
There is an interesting relationship between, minimal sequences
and frames.

Theorem 2.2 ([6], Chapter 5): Let be a frame in a
Hilbert space , then the following are equivalent.
i) is a Riesz basis of .
ii) If for then for all .

iii) is minimal.
There exists a useful spectral characterization of minimal se-
quences for stationary sequences. This result also admits an ex-
tension to processes indexed over LCA groups [23]:

Theorem 2.3 ([20, Ch. 2, Sec 11] and [23]): Let
be a w.s.s. process with spectral density

, if

(3)

is minimal.

Remark: In [20], it is claimed, that condition 3 is necessary
and sufficient, however the proof of the necessity part contains
an error, see [23]. Theorem 2.3 is an immediate consequence of
[23, Corollary 4.9].
Given a frame in , we can define the associated frame

operator defined for every by: ,

which is a bounded invertible operator. Frames provide stable
representations by means of series expansions. However to do
this it is necessary to calculate the dual frame explicitly. Given
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a frame in a Hilbert space with norm often it is more con-
venient and more efficient to employ an iterative reconstruction
method.
Algorithm: ([8], Chapter 5) Given a relaxation parameter

, set . Let and define
recursively: . Then , with

a geometric rate of convergence, that is .
3) Some Facts About Periodic Functions and Sampling: We

will see that some properties of uniform sampling can be derived
from the properties of periodic functions and measures. For this
purpose it is useful to consider the quotient space . We will
denote the canonical projection , the map which
assigns to every its equivalence class . In our deriva-
tions it is useful to make the following convention: to iden-
tify with its unique representative in the interval .
That is to consider as the following map: ,

.

Let be a Borel measurable set, then, the class of Borel
subsets of will be denoted by . If is a complex mea-
sure, we recall that the induced measure is the measure de-
fined for every Borel set by the formula

. Let be a Borel measurable 1-periodic function,
i.e., for every (we will not distinguish
between two functions which are equal at almost every -a.e.).
Then, if we denote the restriction of to the interval

, i.e.,
for every .
Given a continuous time process , with

random measure over , if we consider the sequence of
samples as a discrete stationary sequence, then we
have two possible spectral representations for every :

where is a random measure over . From this, by a den-
sity argument this is also true for 1-periodic functions, in par-
ticular if :

Then, taking expected values in both sides of the equality, if we
denote the cross spectral measure of the discrete sequence
of samples, we have , where is
the cross spectral measure of the original process. On the other
hand, as we have seen before, given a continuous time process

, is isomorphic to , and this induces
an isomorphism between the closed subspace
and the closed subspace of :

. Additionally, taking in account the previous discus-
sion about periodic functions, both subspaces are isometrically
isomorphic to the Hilbert space

This suggests that some properties may be characterized in
terms of induced measures. We begin with the following result.

Proposition 2.1: Let be a complex measure (Borel) over
If and denote the singular and absolutely contin-
uous parts of respectively (with respect to Lebesgue mea-
sure). Then:
a) For every Borel set in :
and . The measures and

denote the singular and absolutely continuous parts
of respectively. That is, the singular part of the induced
measure by is the induced measure by through the
singular part of , the samewith the absolutely continuous
part.

b) If is the Radon–Nykodym (R–N) derivative
of respect to Lebesgue measure, then is

the R-N derivative of .
Notation: Given a complex measure , the total variation of
is .
Proof: a) It is sufficient to find , such that

, and .
We have, that there exists , such that ,

and . We claim that
and .

To prove this fact, first note that: if is a complex measure,
is any (measurable) partition of and any

measurable subset of , then is a parti-
tion of . So we have

Then if we take the supremum over all possible partitions of
, in the left-hand side of the chain of inequalities we get

In particular, . On the other hand,
, but

then . From this we have

On the other hand, let , , then
, hence

Since the Lebesgue measure is invariant under translations, then
, and

so that .
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Now, we prove that . Take such
that . Again, by the translation invariance property of
the Lebesgue measure: , so

for every , since over . Then

(4)

Finally, we have

(5)

The equations given above, together with the uniqueness of the
Lebesgue decomposition of a measure, show that 5 must be the
Lebesgue decomposition of . The result of part a) follows
from this.
Part b) Immediate.

The following is proved in Appendix:

Lemma 2.1: Let be a w.s.s. stationary
in the variable , if is the matrix of spectral densities
and if is the orthogonal projection matrix over

for each , then a) The Moore–Penrose pseudo-in-
verse and are measurable. b) If
for all in a set of positive Lebesgue measure, then there
exists a column of and a measurable set , such
that and for all . c)
If admits the following representation for some

: then for all such that

a.e.: , in particular

can be written as .

Remark: The same holds in (continuous parameter case)
or for the derivative of the matrix measure with respect to .

III. MAIN RESULTS

Now, we can give a necessary and sufficient condition for a
stationary sequence to form a frame in terms of its spectral mea-
sure. In e.g., [20, Ch. II, Sec. 7], it is proved that if a stationary
sequence has an spectral density (matrix) which has all its eigen-
values inside an interval a.e. then it is a Riesz basis of its
span. This stability condition entails many consequences [24].
For example: the linear predictor, for any time lag, and the inno-
vation process are expressible as the sum of mean-convergent
infinite series.
The following theorem generalizes the result of [20] in two

ways. First, we obtain a similar condition, on the spectral
density, for frames. And second, it is proved that Rozanov’s
sufficient condition of the spectral measure being absolutely
continuous is also necessary. The original result of [20], [21] is
contained in one of the implications of part b) of Theorem 3.1,
however in our case, the result will be derived from the first

result for frames. On the other hand, this theorem resembles
Theorem 3.4 and [2, Prop. 3.2], or [3, Th. 2.5] for shift invariant
subspaces of .

Theorem 3.1: Let be stationary in the vari-
able . Then a) is a frame of its span (in )
with constants , the (cross) spectral measures
verify the following conditions: i) and ii) the spectral
densities matrix verifies
for almost all .
b) is a Riesz basis with constants , i)
and ii) the spectral densities matrix verifies

for almost all .
Proof: Part a) If we suppose that is a frame, then,

given

(6)

On the other hand we know that admits the following rep-

resentation: , where

and the spectral random measures verify

, and . Recall

that the latter can be written as

(7)

then

Hence, (7) gives the Fourier coefficients of a function belonging
to (thus in ). In particular, if we take

, the vector which is zero in all its coordinates
but for the th. coordinate, we get that are
the Fourier coefficients of an integrable function. Then by the
uniqueness theorem of the Fourier transform of measures, we

have that and then . From

this: , so by the Radon–Nykodym theorem there exist
derivativeS(spectral densities) . So if

is the matrix of spectral densities, we have that

Then
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and from Parseval’s identity we have

Hence we can write

(8)

Now, given we can take , and then if
we replace in (8) , by Lebesgue’s differentiation
theorem, we have that there exists a measurable set
such that and

(9)

Take a countable dense subset of , and define ,

then clearly and given any inequality (9)
holds for every . On the other hand, for each ,

is continuous, so given
the inequality must hold for every . But since is self
adjoint, then , so
, a.e. Now, if is an eigenvector associated to

, and , then
as we have seen, (9) holds for every and , thus,

.
It is easy to see that assuming (9), from (9) and (6) one

can reverse the argument.
Part b) If is a Riesz basis then it is a frame

(Theorem 2.1). From part a) we have that and
a.e.. Let us check that a.e.,

if this is not the case, by Lemma 2.1 we can take a column
over a set of positive measure,

moreover we can suppose over some of positive
measure. If then there exists ,

such that , and on the other hand .

Now we can define as ,

clearly . If we show that

we are done, since from Theorem 2.2

then can’t be a frame. Let us define for ,
, , and finally

. The result will

follow if we show that . This is true since

is measurable and a.e. and

on the other hand converges in
and a.e. from which we have

Under these conditions, again from part a), we know that
is a frame. On the other hand a.e. implies that

a.e.. Moreover . Then if we call
to the eigenvalues of taking in account their

multiplicity, we have that

This proves the result, since by Theorem 2.3 this implies that
is minimal, and then a Riesz basis, by Theorem 2.2.

1) Sampling: Given a continuous time stationary process we
can give conditions for samples taken at an uniform rate to form
a frame. This is related to reconstructing a continuous parameter
process from its samples. Recall in Section II we noted that the
spectral measure of a sampled process is , where is
the spectral measure of the original continuous time process. Let
us prove the following result.

Lemma 3.1: Given the spectral measures over :
.

Proof: In general, if is a map
between measurable spaces we have that given a (positive)
measure defined over then , where
is the induced measure by . Since given then

and on the other hand given
then . In our case,
taking , and as in def. 1, we have that

, but by prop. 2.1 then
which is equivalent to the result, since

and .

Theorem 3.2: Let be a continuous time
stationary process, and let then the following
are equivalent.
a) is a frame of its span .
b) , where are the spectral measures of ,
and there exists such that the matrix of
periodized spectral densities verifies

a.e .
Proof: This is immediate from the previous Lemma 3.1

and Theorem 3.1.

Let us study under which conditions, given a w.s.s.
process , there exists another stationary
procesS(indexed by ) such that

. Let us introduce
some notation. If is a diagonal non negative matrix,
for we define as if and ,
or otherwise. If is a (symmetric) non
negative definite matrix, admits a diagonal decomposition

, from this, we define .

Lemma 3.2: Let be a w.s.s. process. con-
tains a stationary sequence which is a frame of the closed linear
span of , the spectral measures
verify, for all : .



MEDINA AND CERNUSCHI-FRÍAS: WIDE SENSE STATIONARY PROCESSES FORMING FRAMES 4641

Proof: We denote . If contains a
stationary sequence, say , which is a frame of its span, then by
the previous results, Theorem 3.1, the (matrix) spectral measure
associated to must be absolutely continuous, so there exists
a spectral density matrix , defined over . On the other
hand if is obtainable by a linear transformation from , say
a measurable matrix function , then the spectral
measures of are given by [20]

so , but since then by the claim 3.1:
.

The spectral density matrix of , exists since
is diagonalizable in a measurable form, i.e., there

exists a measurable [18] orthogonal matrix and a diagonal
matrix of eigenvalues such that . Take
the process obtained from by the linear invertible trans-
formation1 [20] induced by . Then

, where is
a diagonal matrix which takes the values 0 or 1 in the diagonal.
From this we have that this linear operation is well defined
since each column of is in . On the other hand
by the result [20] which relates a linear transformation and the
spectral measure: a.e., then, by
Theorem 3.1, is a frame of .

In previous works, e.g.,[20], [26], a common condition for
the existence of orthogonal or minimal stationary sequences, is
that the eigenvalues of the spectral density be not null a.e. In
Theorem 3.1, we proved that the spectral density matrix of a sta-
tionary sequence which is a Riesz basis must have all its eigen-
values inside a positive bounded interval . However there
are some limitations on the supports of the spectral densities.
Lemma 3.3: Let be a w.s.s. sequence, with

absolutely continuous spectral measure, and let
be another w.s.s. sequence such that , then
has an absolutely continuous spectral measure, and if and

are the spectral densities of and respectively, then

Proof: From 3.2 there exists a stationary
sequence which is a frame of . Let us call and the
random spectral measures of and respectively. Then as we
have seen in Lemma 3.2:

On the other hand, as , admits the following
representation:

for some . Then

a.e. . But [20] a.e. (in particular
has an absolutely continuous spectral measure), then

1Note that the operation is always defined over the closed linear span of the
process.

a.e. From this

. Interchanging the roles
of and we get .

We have seen that the closed linear span of a stationary se-
quence always contains a stationary sequence which is a frame.
An arbitrary stationary sequence may not contain any stationary
Riesz basis. Moreover, from Lemmas 3.3, 3.2, and Theorem 3.1,
it is immediate that a necessary and sufficient condition for a
1-D stationary sequence to contain a (stationary) Riesz basis of
its span, is to have a spectral measure equivalent to .
2) Fundamental Frame: We give conditions for a sequence

of samples to be a fundamental frame, i.e., to be a frame and to
be complete with respect to the closed linear span of the contin-
uous time process, i.e.

(10)

This is related to reconstructing a signal from its samples, since
the sampling problem can be formulated in terms of finding con-
ditions for which (10) holds [14], [13]. The following Theorem
3.3 was proved by Lloyd [14], and it is an analogue result of the
result of [1] for functions.

Theorem 3.3 [14]: Let be a w.s.s. process with
spectral measure . The following are equivalent.
i) , (in ).
ii)

.
iii) There exists such that and

, .
The following is an extension of Theorem 3.3.

Lemma 3.4: Let be w.s.s. process and let
be the discrete time “sampled” process. Then

a) for each eigenvalue of there
exists , such that a.e. on and

for every .
b) Let be such that the spectral measures , then

for each eigenvalue of there
exists , such that a.e. on and

for every .

Remark: Recall that .
Proof: a) Since is non-negative definite and self ad-

joint, there exists a measurable [18] orthogonal matrix and a
diagonal matrix of eigenvalues such that . Let
us introduce the process defined by the linear
operation on [20, Ch. 1, Sec. 8]

(11)

This operation is well defined since , the th column of , is
in :
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and if we denote the spectral measures of the process , then
by the result [20] which relates a linear transformation and the
spectral measure:

(12)

The linear operation induced by over in (11) is invert-
ible, since exists for almost all , then .
Equation (11) also implies that for each , the are
obtainable from the , for every and recipro-
cally, since exists. If we introduce another process of
samples from : , from the latter discus-
sion we have that .
But (12) means that for , or equivalently

for , so that we have the orthogonal

sum . Hence it will suffice to study

when , for each . This holds
if and only if (by Theorem 3.3) there exists such
that and for integer .
But from (12) is equivalent to the condition on the
eigenvalue a.e. on .
b) Is an immediate consequence of a).

Now, we can characterize fundamental frames of uniform
samples, in other words, given a w.s.s.
process and the discrete time ’sampled’
process, we want to give conditions when is a fundamental
frame for in terms of the spectral measure of the process.
For this purpose, in an analogue way to definition 1 for each

we introduce the following sequence space:

In a similar manner to that of definition 1, can be identi-
fied with a Hilbert space with norm

. We give a condition in terms of and an alternative
condition combining the preceding results.

Theorem 3.4: Let be a w.s.s. process, with
spectral measure , and let be the discrete
time ’sampled’ process. Then:
a) is a frame with constants , for

and for almost all :

.
b) is a frame with constants , for The
following conditions hold simultaneously: i)
and there exists such that the matrix of
periodized spectral densities verifies

a.e . ii) For each eigenvalue of there exists
, such that a.e. on and
for every .

Proof: (Part a) First note that by Theorem 3.2,
and then there exists the spectral density matrix. Recall

(6), if then there exists such that

. Then for such and we have

on the other hand

Calling the sequence , then by a similar argument
to that of the proof of Theorem 3.1 we can rewrite condition (6)
as

(13)

Let us call the set of all sequences in such that be-
longs to if but for finitely many ’s. is a countable
set which is dense in for every . Given ,
and set . In

this case (13) becomes

Then for each , there exists , such that

and , for all

. Then taking , we have and

that for all it is

(14)
We want to prove that (14) holds for every . For such

let us define , then

. First we shall see that given :

, for . De-

noting the th row of , we have:
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. Applying again the

Cauchy–Schwartz inequality, we get

If we denote the Froebenius/euclidean norm, denoting
and recalling the definition of we

can rewrite the last equation as

But by Theorem 3.1,

a.e. in . Equivalently this holds for all
with , so we can take . Then,
the result follows, since for and :

and

.

It is easy to reverse the proof using the condition of the
hypothesis and (13).
(Part b.) It follows from combining Theorem 3.2 and Lemma

3.4.

In particular we have that if is a fundamental frame, then for
almost all must be isomorphic to a finite dimensional
space and that

, since if we take

for infinitely many ’s there

exists in , and setting if
we can define the sequence/set of vectors

as . Then is linearly independent and then
.

IV. CANONICAL DUAL FRAME AND A.S. CONVERGENCE

A. Canonical Dual Frame

In the case of shift invariant subspaces of some useful
formulations for the dual frame are obtained in terms of the
Fourier transforms of the generators. In the following we con-

sider a similar problem for the frame formed by the stationary
sequence: . In this case is possible to give condi-
tions in terms of the spectral density. Recall that for each
or , can be written as the result of the action of the (uni-
tary) time shift operator on [20]. In our case, the frame
operator is given by

Recall that has a bounded inverse and on the other hand each
admits the following representation:

Taking into account (1) and if we suppose that commutes with
we have

so, in this case the canonical dual frame is a new stationary
sequence given by , , and it would
suffice to show that . We need the following
lemma to solve this problem.

Lemma 4.1: Let be a stationary sequence
which is a frame of its span . Then, for all the
following holds: and .

Proposition 4.1: Let be a stationary se-
quence which is a frame of its span . Then the canonical
dual frame is given by

(15)

Proof: Let us define .

Where is measurable by Lemma 2.1. If we show
that we are done, since is invert-

ible. Define and

, and recall that

. By Lemma 2.1 we have that

almost

surely. On the other hand:
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So in and a.e. But

where again, is measurable and

a.e. which proves the result.

1) On the Expansion Coefficients: Observing (15) we expect
that the coefficients of the expansion may be rewritten in terms
of ordinary Fourier transforms. Let us discuss the case for funda-
mental frames and when . In this case, given a stationary
process , we know that for some

, where is the spectral density. On the other
hand, (15) becomes , where

, then
. Note that we can take such that outside , and

moreover since .
Then , provided that is a fundamental
frame, admits the following representation:

Let us discuss the case when another dual frame is used. First
we need an auxiliary lemma.

Lemma 4.2: Let , and let , be their Fourier
transforms, then

When one side of the above equation is finite, then
a.e.

Proof: In the Appendix.
In the general case, let be the dual frame.

If is such that ,
supposing that and are as in the previous discus-
sion, then .
First, we have that . And, again as in
the previous case , . We also have that

, since .

Now by Lemma 4.2 and .
Then, is well defined and then (in )
but so is well defined a.e. and then

. Finally, from this

B. Almost Sure Convergence

The representations given above converge in norm. Let us
discuss briefly the problem of almost sure convergence for these
representations. Not note that point-wise convergence strongly

depends on the summation method. First let us examine what
happens in this context of the frame algorithm described before
in Section II. Here, given , we can write
and define , with and defined
as before, then . But given by
Chevyshev’s inequality:

then , and then by the first Borel–Can-

telli Lemma a.s. The Menchoff–Rademacher the-

orem [15] gives a sufficient condition for the a.s. convergence
of orthogonal expansions, a similar result holds for sequences
which form a frame. This result could be obtained in a similar
manner to [10] adapting the classical proof [15] of the original
theorem. We include in the Appendix a sketch of a shorter argu-
ment, similar to that of [25] involving absolutely summing op-
erators. To prove such a result one would like to bound the max-

imal operator . Note that

this also can be written in terms of norms of sequences, and
combining props. 33 and 21 from [25] it is possible to summa-
rize these results in the following.

Lemma 4.3: Let be such that

, if we define as and

given a random vector we have
.

This lemma contains all we need to prove the following.

Proposition 4.2: be a stationary sequence
which is a frame of its span . If then

converges almost surely as

.
Proof: See the Appendix.

V. APPLICATION: SAMPLING IN AN UNION OF SUBSPACES

Here we describe briefly the problem of sampling a random
signal from an union of subspaces. Using the previous results
we can give similar conditions to the work of Lu and Do for
deterministic signals in [16].

is a sampling operator characterized by a
stationary sequence generated by and let
be an union of subspaces:

We can give conditions in terms of the spectral densities for
which this sampling operator is invertible and stable. Recall that
every admits the following representation

where . Let be such

that . If we suppose that is a Riesz
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basis, by Theorem 3.1, the spectral density matrix exists.
So we can write,

Define

So, if we can write

(16)

Under suitable conditions
is closed. If

. Provided

that forms a Riesz basis for and if , ,
are the (finite) generators of , , and
respectively, then we have

If , can be expressed as the following fre-
quency domain relationship between the sampling data and the
signal:

Then, as in [16] one can prove the following results. We omit
the proofs, since from the previous discussion is clear that the
proofs of these results are very similar to their counter-
parts. The first result provides an easy way to compute min-
imum sampling requirement , interpreted as the minimum
number of channels in a multi channel sampling.

Proposition 5.1: If is an invertible
sampling operator for then

.

The following gives a condition for stable sampling.
Proposition 5.2: Let be a set of sampling

functions (random variables) and be a set of generators of
Riesz basis for . Then provides a stable
sampling operator for if and only if

APPENDIX
PROOFS OF SOME AUXILIARY RESULTS

1) Proof of Lemma 2.1:
a) In [18] it is proved that every non negative self adjoint ma-
trix is diagonalizable in a measurable form ,
then and are measurable.

b) From the previous is measurable.
Now if and if

, then

. From this, there exists a column

for every in some measurable , with .

Part c) For such , put , then

since a.e. so a.s.

2) Proof of Lemma 4.1: Given ,

. Recall

that is unitary so and then

. Making a change of vari-

ables we have

Finally, .

3) Proof of Lemma 4.2: Note that is well de-
fined for all and is a bounded function as a consequence of
the Cauchy Schwartz inequality. Let be a sequence
in the Schwartz space such that in as

, then by Cauchy–Schwartz:
so that uniformly.

Taking we have that
then by the dominated convergence

theorem:

(17)

But we also have that

(18)

and again by the Cauchy–Schwartz inequality:

(19)

Combining (17), (18) and (19) we have that

On the other hand
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4) Proof of Proposition 4.2: The result follows if we bound
the expected value of the square of the maximal function

then

Now, from Lemma 4.3, for each :

Since the sequence is Besselian

. From this:

. Then using the

Cauchy–Schwartz inequality:
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