
ZEROS OF RANDOM FUNCTIONS GENERATED WITH

DE BRANGES KERNELS

JORGE ANTEZANA, JORDI MARZO, AND JAN-FREDRIK OLSEN

Abstract. We study the point process given by the set of real zeros of
random series generated with orthonormal bases of reproducing kernels
of de Branges spaces. We �nd an explicit formula for the intensity
function in terms of the phase of the Hermite-Biehler function generating
the de Branges space. We prove that the intensity of the point process
completely characterizes the underlying de Branges space.

1. Introduction

1.1. de Branges spaces. Let E(z) be a function of the Hermite-Biehler
class, i.e., E(z) is entire and satis�es the inequality |E(z)| > |E∗(z)| for
Im z > 0, where E∗(z) = E(z̄). Given such a function, the de Branges space
H(E) is de�ned by

H(E) =

{
f entire :

f

E
,
f

E∗
∈ H2(C+)

}
,

with norm given by

‖f‖2H(E) =

∫ +∞

−∞

∣∣∣∣ f(x)

E(x)

∣∣∣∣2 dx.

Here, we use H2(C+) to denote the Hardy space of the upper half-plane.
The de Branges spaces generalise the classical Paley-Wiener space, ob-

tained by letting E(z) = e−iz, and are used in the study of di�erential
equations. The standard reference for de Branges spaces is the book [4] by
de Branges.

We consider Hermite-Biehler functions without real zeros. This excludes
the existence of points x ∈ R such that f(x) = 0 for all f ∈ H(E).

Recall that a function Kw is the reproducing kernel for a space H(E) for
the point w ∈ C, if, for all f ∈ H(E),

f(w) = 〈f,Kw〉H(E) =

∫ +∞

−∞
f(x)Kw(x)

dx

|E(x)|2
.
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This function exists since point evaluations are bounded functionals. More-
over,

Kw(z) = K(z, w) =
i

2π

E(z)E(w)− E∗(z)E∗(w)

z − w
, z 6= w.

As it is usual, we let kw = Kw/‖Kw‖H(E) denote the normalized reproducing
kernels.

Since the metric structure of H(E) is de�ned on the real line, for x ∈ R,
it is useful to introduce the polar decomposition E(x) = |E(x)|e−iφ(x). The
so called phase function φ is a strictly increasing C∞(R) function (see [4,
Problem 48]). With this notation, we have

‖Kx‖2 = K(x, x) =
1

π
φ′(x)|E(x)|2, (1)

whence, for x, y ∈ R, with x 6= y,

ky(x) =
K(x, y)

K(y, y)1/2
=
|E(x)|√
πφ′(y)

sin(φ(x)− φ(y))

x− y
. (2)

(In the case of the Paley-Wiener space, this is exactly a translate of the
cardinal sine function.)

Observe that ky(x) = 〈ky,Kx〉 = 0 whenever x, y ∈ R are such that
φ(x)−φ(y) = kπ for k ∈ Z. This means that if {ωn} is the sequence of points
such that φ(ωn) = α+ πn, for some α ∈ [0, π), then the family of functions
{kωn} forms an orthonormal system in H(E). In fact, by the following result
of de Branges ([4, p. 55]), a sequence of points {ωn} almost always yields an
orthogonal basis of reproducing kernels if and only if φ(ωn+1)− φ(ωn) = πn
for all n.

Theorem 1.1. Suppose that H(E) is a de Branges space and that ωn are the
points de�ned above. Then, for all α ∈ [0, π), except at most one, the sys-
tem {kωn} is an orthonormal basis for H(E). Moreover, these are the only
orthonormal bases of reproducing kernels, and the exceptional α is charac-
terized by the condition that eiαzE(z)− e−iαzE∗(z) ∈ H(E).

1.2. de Branges GAFs. Let {ψn} be a sequence of functions de�ned and
analytic in a region Λ ⊂ C symmetric with respect to the real line. If the
ψn are real valued on R and symmetric on Λ (that is, ψn(z) = ψn(z̄)),∑

n |ψn(z)|2 converges uniformly on compact subsets of Λ, and an are real
i.i.d. standard normal random variables, then the function

Ψ(z) =
∑
n

anψn(z) (3)

is called a symmetric Gaussian Analytic Function (symmetric GAF) (see [6,
De�nition 1.1]).

A symmetric GAF is a holomorphic function with probability one (see [7,
Lemma 2.2.3] for a proof in the closely related case of complex GAFs).

In this paper, we consider random functions constructed using orthonor-
mal bases of reproducing kernels.
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De�nition 1.2. Let H(E) be a de Branges space with an orthonormal
basis of reproducing kernels {kωn}. For real i.i.d. standard normal random
variables an, a de Branges GAF is the random function

F (x) =
∑
n

ankωn(x). (4)

It is easy to see that a de Branges GAF is a symmetric GAF.

The main feature connecting the de Branges GAF F (x) with the de
Branges space H(E) is that, by de�nition, the covariance kernel of the
gaussian process (F (x))x∈R coincides with the reproducing kernel of the de
Branges space H(E), i.e.,

E[F (x)F (y)] = K(x, y),

where E denotes the expectation. Recall that the covariance kernel, as
(F (x))x∈R has mean zero, completely de�nes the behavior of the process.
In particular, this means that the choice of basis is irrelevant.

1.3. The intensity function ρ. Let ZR(Ψ) denote the set of real zeros of
a symmetric GAF de�ned as in (3). We de�ne the intensity function of the
process by the relation

E[#(ZR(Ψ) ∩ I)] =

∫
I
ρ(x)dx,

where I is any open interval in R.
We remark that we should perhaps call the function ρ(x) de�ned on R

in this way the real intensity function of the symmetric GAF to separate it
from the more usual de�nition, where the intervals I ⊂ R are replaced by
open sets D ⊂ C, and ZR(Ψ) is replaced by the set of complex zeros ZC(Ψ).
By our logic, we should call the resulting intensities de�ned on C complex
intensity functions. We denote them by ρC(z).

In the setting of symmetric GAFs, N. Feldheim [6] proved that in the sense
of distributions

ρC(z) =
1

π
∆ log

(
K(z, z) +

√
K(z, z)2 − |K(z, z̄)|2

)
. (5)

As in the case of zeroes of random polynomials with real coe�cients, it is to
be expected that symmetric GAFs have a positive proportion of their zeroes
on the real line. Indeed, it follows from (5) that the complex intensity func-
tion gives rise to a singular part on the real line that is absolutely continuous
with respect to one-dimensional Lebesgue measure. When computing this
density, one obtains the Edelman-Kostlan formula

ρ(x) =
1

π

√
∂2

∂t∂s
logK(t, s)

∣∣∣
t=s=x

, (6)

(cf. [5, Theorem 3.1] and [9]).
In Theorem 2.1 below, we give a formula for the intensity function for de

Branges GAFs using the formula (6) as a starting point. Our main results,
Theorems 2.2 and 2.3, are analogous to rigidity results due to Sodin in the
setting of complex GAFs. They say that if the point processes associated
to the zeroes of two de Branges GAFs have the same intensity functions,
then the corresponding de Branges GAFs have the same distribution. In
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particular, this means that the distribution of the real zeroes determine the
distribution of the complex zeroes. This is not true for symmetric GAFs
in general as there are several di�erent stationary processes which all have
constant intensity.

1.4. Structure of the paper and notation. The main results are in sec-
tion 2, and their proofs are in sections 3 and 4. Throughout this article we
use the notation f(x) . g(x) to indicate that f(x)/g(x) is bounded above
by some positive constant. We write f(x) ' g(x) if both f(x) . g(x) and
g(x) . f(x) hold.

Acknowledgements. It is a pleasure to thank Joaquim Ortega-Cerdà for
fruitful discussions on the subject matter of this paper and Àlex Haro for
enlightening discussions about the system of ODEs appearing in the last
section. We would also like to express our gratitude to the careful referee
for all his/her numerous comments and suggestions on how to improve the
presentation.

2. The main results

2.1. A formula for the intensity function. In the following theorem, we
give a formula for the intensity function of de Branges GAFs in terms of the
Schwarzian derivative of the phase function φ, i.e.,

S[φ] =
(φ′′
φ′

)′
− 1

2

(φ′′
φ′

)2
.

Theorem 2.1. Let H(E) be a de Branges space with phase function φ. Then
the intensity function of the corresponding de Branges GAF satis�es

ρ(x) =
1

π

√
φ′(x)2

3
+
S[φ](x)

6
. (7)

The Schwarzian derivative can be seen as an in�nitesimal version of the
cross-ratio (see [2]). It is invariant under Moebius transformations and it
measures, in some sense, how far a map is from being a Moebius map.
Geometrically, it is connected with curvature, see the survey paper [8].

2.2. A rigidity result for de Branges GAFs. An interesting feature in
the related setting of complex GAFs is that the distribution of the zero set
depends only on the complex intensity function, as was shown by Sodin in
[9] (see also [7, Section 2.5.]).

In our case, as we are working in a (symmetric) real context, Sodin result
doesn't apply. However, as we show in the following theorem, the intensity
of the real zeros, although does not allow to recover the underlying space,
still determines the distribution of zeroes of the de Branges GAFs.

Theorem 2.2. Let F,G be two de Branges GAFs and let ρF (x), ρG(x) be
the respective intensity functions. If, for all x ∈ R,

ρF (x) = ρG(x),

then there exists a non-random analytic function S, which does not vanish
anywhere, such that SF and G have the same distribution. In particular,
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the random point processes given by the zeros of F and G have the same
distribution.

This result follows as a consequence of the following theorem, which shows
that the intensity function not only determines the de Branges GAF, but also
the underlying de Branges space up to a very special isometric isomorphism.

Theorem 2.3. Let E1, E2 be Hermite-Biehler functions, K1(z, w) andK2(z, w)
be the corresponding reproducing kernels of the de Branges spaces H(E1), H(E2)
and ρE1 , ρE2 be the respective intensity functions. If for all x ∈ R

ρE1(x) = ρE2(x),

then there exists an entire function S without zeros, such that

K2(z, w) = S(z)K1(z, w)S(w),

and the map f 7→ Sf is an isometry from H(E1) to H(E2),

Observe that it follows from this result that a de Branges GAF is not
stationary unless the kernel is essentially the reproducing kernel of a Paley-
Wiener space, (see [7, Corollary 2.5.4.]).

3. Proof of Theorem 2.1

As we mentioned in the introduction, the �rst intensity of the real zeros
can be computed using the Edelman-Kostlan formula [5, Theorem 3.1]:

ρ(x) =
1

π

√
∂2

∂t∂s
logK(s, t)

∣∣∣
s=t=x

.

As the covariance kernel for the Gaussian process is the reproducing kernel
for a space of analytic functions, following Bergman [3, p. 35, formula (27)],
this quantity is related with an extremal problem

∂2

∂t∂s
logK(t, s)

∣∣∣∣
s=t=x

= K(x, x)
inf{‖h‖2H(E) : h(x) = 1}2

inf{‖h‖2H(E) : h(x) = 0, h′(x) = 1}
,

where it is implicit that both in�mums are taken only over h ∈ H(E). This
can be reformulated as

∂2

∂t∂s
logK(t, s)

∣∣∣∣
s=t=x

=
sup{|h′(x)|2 : ‖h‖H(E) = 0, h(x) = 1}

K(x, x)
. (8)

Using (8), we can compute ρ(x) by solving this (deterministic) extremal
problem in H(E). To this end, we prove the following technical lemma.

Lemma 3.1. Let H(E) be a de Branges space with phase function φ. If
{kωn} is an orthonormal basis of reproducing kernels for H(E), then∑

n 6=k

φ′(ωk)

(ωk − ωn)2φ′(ωn)
=
φ′(ωk)

2

3
+
S[φ](ωk)

6
. (9)

Proof. Fix n, and let x ∈ R \ {ωn}. Combining the well-known formula∑
|kωn(x)|2 = K(x, x)
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with (1) and (2), we obtain∑
n

1

φ′(ωn)(x− ωn)2
=

φ′(x)

sin2(α− φ(x))
,

whence∑
n6=k

φ′(ωk)

φ′(ωn)(x− ωn)2
=

φ′(ωk)φ
′(x)

sin2(φ(ωk)− φ(x))
− 1

(x− ωk)2

=

(
φ′(ωk)φ

′(x)

sin2(φ(ωk)− φ(x))
− φ′(ωk)φ

′(x)

(φ(ωk)− φ(x))2

)
+

(
φ′(ωk)φ

′(x)

(φ(ωk)− φ(x))2
− 1

(x− ωk)2

)
.

The �rst summand converges to φ′(ωk)2/3 as x→ ωk since

lim
x→0

(
1

sin2(x)
− 1

x2

)
=

1

3
.

To deal with the second summand, we use the known formula

lim
x,y→t

φ′(x)φ′(x)

(φ(x)− φ(y))2
− 1

(x− y)2
=

1

6
S[φ](t).

�

It follows from Theorem1.1 that for almost every x ∈ R, there exists a
sequence {ωn} ⊂ R such that {kωn} is an orthonormal basis for H(E) and
x = ωk for some k ∈ Z. Hence, for such an x, we �x the corresponding
sequence {ωn} and use the notation x = ωk.

Our �rst step is to rewrite the variational formulation of the Bergman
metric in the following way:

ρ(ωk)
2 =

sup{|h′(ωk)|2 : ‖h‖H(E) = 1, h(ωk) = 0}
π2K(ωk, ωk)

=
1

πφ′(ωk)
sup

{∣∣∣∣h′(ωk)E(ωk)

∣∣∣∣2 : ‖h‖H(E) = 1, h(ωk) = 0

}

=
1

πφ′(ωk)
sup

{∣∣∣∣( hE
)′

(ωk)

∣∣∣∣2 : ‖h‖H(E) = 1, h(ωk) = 0

}
. (10)

Let h ∈ H(E) satisfy ‖h‖H(E) = 1 and h(ωk) = 0. Since the functions

kωn(u) =
|E(x)| sin

(
φ(u)− φ(ωn)

)√
πφ′(ωn)(u− ωn)

,

form an orthonormal basis for H(E), there exists a sequence {cn} ∈ `2(Z)
such that

h(u)

E(u)
=
∑
n6=k

cn
kωn(u)

E(u)
=
∑
n6=k

cn
sin
(
φ(u)− φ(ωn)

)√
πφ′(ωn)(u− ωn)e−iφ(u)

=
1

2
√
π

∑
n6=k

cn

(
ieiα(−1)n

) (1− e2i(φ(u)−α))√
φ′(ωn)(u− ωn)

.
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Here, we used that φ(ωk) = α + πk. As we may assume that the sequence
cn is �nite, we can di�erentiate term-by-term to get(

h

E

)′
(u) =

1√
π

∑
n6=k

c̃n

(
φ′(u)e2i(φ(u)−α)√
φ′(ωn)(u− ωn)

)
−
∑
n 6=k

cn

(
kωn(u)

E(u)(u− ωn)

)
,

where c̃n = cn(eiα(−1)n). We now choose u = ωk. Since kωn(ωk) = 0 for
every n 6= k, it holds that(

h

E

)′
(ωk) =

1√
π

∑
n6=k

c̃n

(
φ′(ωk)√

φ′(ωn)(ωk − ωn)

)
.

Therefore, the supremum in (10) can be rewritten as

ρ(ωk)
2 =

φ′(ωk)

π2
sup


∣∣∣∣∣∣
∑
n 6=k

dn√
φ′(ωn)(ωk − ωn)

∣∣∣∣∣∣
2

: dk = 0,
∑
n∈Z
|dn|2 = 1

 .

(11)

As this is the dual-formulation of an `2-norm, it follows immediately that

ρ(ωk)
2 =

φ′(ωk)

π2

∑
n6=k

1

φ′(ωn)(ωk − ωn)2
.

Since x = ωk, by Lemma 3.1, we get Theorem 2.1.

Remark 3.2. Formula (7) for ρ can be obtained also by using (5) and
computing its singular part (6) or by using, the so called, Rice formula (see
[1, Chap. 11]):

ρ(x) = E
[
|F ′Θ(x)| : FΘ(x) = 0

]
=

∫
R
|t| pFΘ(x),F ′Θ(x)(0, t)dt, (12)

where FΘ(x) =
F (x)

E(x)
, and the function pFΘ(x),F ′Θ(x) is the joint probability

density of the two dimensional normal vector (FΘ(x), F ′Θ(x)) with covariance
matrix (

E
[
FΘ(x)2

]
E [FΘ(x)F ′Θ(x)]

E [FΘ(x)F ′Θ(x)] E
[
F ′Θ(x)2

] )
.

4. Proof of theorems 2.2 and 2.3

We begin with a lemma on the Schwarzian derivative. It is one of four
lemmas from which Theorem 2.3 follows.

Lemma 4.1. Suppose that φ1, φ2 ∈ C∞(R) are strictly monotone, and that
for all x ∈ R,

S[φ1](x) + 2φ′1(x)2 = S[φ2](x) + 2φ′2(x)2.

If we put ψ = φ2 ◦ φ−11 , then it holds that

1 = ψ′(t)2 +
1

2
S[ψ](t). (13)
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Proof. The Chain Rule for the Schwarzian derivative is

S[f ◦ g] = (S[f ] ◦ g)(g′)2 + S[g],

whence

S[φ1](φ
−1
1 (t)) = − S[φ−11 ](t)

(φ−11 )′(t)2
.

Combined with the usual chain rule, this yields

2φ′1
(
φ−11 (t)

)2
+ S[φ1]

(
φ−11 (t)

)
=

2

(φ−11 )′(t)2
− S[φ−11 ](t)

(φ−11 )′(t)2
.

Applying the hypothesis to the left-hand side above, with x = φ−11 (t), and
rearranging the terms, this becomes

2 = 2φ′2
(
φ−11 (t)

)2
(φ−11 )′(t)2 + S[φ2]

(
φ−11 (t)

)
(φ−11 )′(t)2 + S[φ−11 ](t).

Now, using both chain rules on the right-hand side, we get

2 = 2(φ2 ◦ φ−11 )′(t)2 + S[φ2 ◦ φ−11 ](t),

whence the result follows. �

Let ψ be as in the previous lemma. If we de�ne

u(t) = ψ′(t) and v(t) =
1

2

ψ′′(t)

ψ′(t)
,

then these new functions satisfy the autonomous system{
u′ = 2uv,
v′ = 1− u2 + v2.

(14)

Hence, in order to study the solutions of the di�erential equation (13), we
�rst study some properties of the solutions of this system. To this end, we
consider a two smooth functions u(t) and v(t), de�ned in some common
domain, that satisfy (14) and the initial condition

(u(t0), v(t0)) = (x0, y0) with x0 > 0.

Multiplying both sides of the second equation of (14) by 2uv, and then
applying the �rst equation of (14), we obtain

2uvv′ = u′ − u2u′ + u′v2.

So, by adding 2u2u′ to both sides of the equality we get

(2vv′ + 2uu′)u = u′(u2 + v2 + 1). (15)

If we de�ne, on the right half-plane {(x, y) ∈ R2 : x > 0}, the function

H(x, y) =
(x2 + y2 + 1)

x
,

the identity (15) shows that

d

dt
H(u(t), v(t))) = 0.

Therefore, for every t the vector (u(t), v(t)) belongs to the same level set of
the function H. A simple computation shows that H(x, y) ≥ 1 and for every
c ≥ 1, the level set H(x, y) = c is the circle

(x− c)2 + y2 = c2 − 1.
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Now, as the system is regular, classical results on existence and uniqueness
of solutions for systems of ODEs, and the compactness of the circles imply
that any solution of (14) with initial data in the right half plane can be
extended to a periodic solution that stays within the same level set of H
(and in particular, stays in the right half-plane).

From now on, when we consider a solutions of (14), we will assume that
it is already extended by periodicity to the whole real line. For our problem,
we need to know more information about the period of the solutions.

Lemma 4.2. Suppose that (u(t), v(t)) is a solution of the system (14) with
initial data in the right half plane. Then

u(t+ π) = u(t) and v(t+ π) = v(t).

Proof. If (u(t0), v(t0)) = (1, 0), then (14) implies that the functions u, v are
constant whence the lemma is trivially true. We may therefore assume that
the solution (u(t), v(t)) belongs to the circle

(x− c)2 + y2 = c2 − 1. (16)

for some c > 1 and every t ∈ R. We prove the result, under this assumption,
for u(t).

Let T denote the period of u, and let

x− = c−
√
c2 − 1 and x+ = c+

√
c2 − 1,

be the points where the circle (16) intersects the x-axis. If u(t̃) = x−, then,
by the symmetries of (14), from time t̃ to time t̃+T/2 the function u(t) goes
from x− to x+. Moreover, we can also assume that it moves through the
upper part of the circle. That is, except for t = t̃ and t = t̃+ T/2, we have

u′(t) = 2u(t)
√

(c2 − 1)− (u(t)− c)2 > 0.

So, by the inverse change of variable x = u(t), we get that

T

2
=

∫ t̃+T/2

t̃
dt =

∫ x+

x−

dx

2x
√

(c2 − 1)− (x− c)2

=

∫ 1/x+

1/x−

−dz
2
√

(c2 − 1)− (z − c)2

= −1

2

[
arcsin

(
z − c√
c2 − 1

)]1/x+
1/x−

=
π

2
,

where, in the second identity, we used the change of variables z = 1/x. �

Lemma 4.3. Suppose that (u(t), v(t)) is a solution of the system (14) such
that v(0) = 0 and u(t) > 0 for some (every) t > 0, and let

U(s) =

∫ s

0
u(t) dt.

Then, for all k ∈ Z, we have

U
(
k
π

2

)
= k

π

2
.



10 JORGE ANTEZANA, JORDI MARZO, AND JAN-FREDRIK OLSEN

Proof. If u(0) = 1, then u(t) = 1 for every t and the assertion is trivially
true. So, as in the previous lemma, we assume that the solution (u(t), v(t))
belongs to the circle

(x− c)2 + y2 = c2 − 1.

for some c > 1. Using, the change of variable x = u(t) as above, followed by
the change of variables s = (x− c)/

√
c2 − 1, we get

U
(π

2

)
=

1

2

∫ x+

x−

dx√
(c2 − 1)− (x− c)2

=
1

2

∫ 1

−1

ds√
1− s2

=
π

2
.

�

Proof of Theorem 2.3. Let φ1(x) and φ2(x) be the phase functions corre-
sponding to the Hermite-Biehler functions E1(z), E2(z). As ρE1(x) = ρE2(x),
we get by Lemma 4.1 that the function (φ2 ◦ φ−11 )(t) solves equation (13).

Let α ∈ R be such that (φ2 ◦ φ−11 )′′(α) = 0. Indeed, such an α exists
because (ψ′, ψ′′/ψ′) for ψ = φ2◦φ−11 coincides in its domain with a solution of
the system (14), and its domain is an interval of length at least π by Theorem
1.1. Moreover, as the system is autonomous, we can shift (ψ′, ψ′′/ψ′) by α,
and it will still coincide in its (shifted) domain with a solution (u(t), v(t)) of
(14). Since v(0) = 0, it then follows by Lemma 4.3 that for those k ∈ Z for
which the computation makes sense, we get

(φ2 ◦ φ−11 )

(
πk

2
+ α

)
− (φ2 ◦ φ−11 )(α) =

πk

2
.

So, letting vk = φ−11 (πk2 + α) and β = φ2 ◦ φ−11 (α), we get

φ2(vk) = β − α+ φ1(vk)

Therefore, we have that on the points t ∈ R such that φ1(t) = α (mod π
2 ) it

holds that

φ2(t) = β − α+ φ1(t)

Reversing the roles of φ1 and φ2 above, we get that the same holds on the
points t ∈ R such that φ2(t) = β (mod π

2 ). Here, we need to use the fact that
if α is an in�ection point of a function ϕ, then ϕ(α) is an in�ection point of
ϕ−1.

The proof of Theorem 2.3 is now a consequence of the following modi-
�cation of a result of de Branges [4, Theorem 24], which is well-known to
specialists.

�

Lemma 4.4. Let E1 and E2 be two Hermite-Biehler functions without real
zeros, with phase functions φ1 and φ2, respectively. Suppose that there exist
α, β ∈ R so that

φ2(t) = β − α+ φ1(t)

for all t ∈ R such that φ1(t) = α (mod π
2 ) or φ2(t) = β (mod π

2 ). Then,
there exists a non vanishing real entire function S such that F 7→ SF is an
isometric isomorphism from H(E1) onto H(E2).
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Proof. De�ne the Hermite Biehler functions Ẽ1 and Ẽ2 by

Ẽ1(z) = eiαE1(z) , and Ẽ2(z) = eiβE2(z).

If φ̃1, and φ̃2 denote their corresponding phase functions, then

φ̃1(t) = φ̃2(t),

whenever t is such that φ̃1(t) = 0 (mod π
2 ) or φ̃2(t) = 0 (mod π

2 ). Therefore,
by Theorem 24 in [4], there exists an entire function S, real valued on R,
such that

F 7→ SF

is an isometric map between the spaces H(Ẽ1) and H(Ẽ2). Since H(E1) =

H(Ẽ1) and H(E2) = H(Ẽ2), in the sense of Hilbert spaces, it follows that S
induces an isometry between the original spaces H(E1) and H(E2). A priori,
this function may have real zeros. However, since neither E1 nor E2 have
real zeros, the function S never vanishes. Indeed, the function S satis�es the
identity

K2(z, w) = S(z)K1(z, w)S(w),

and Kj(x, x) = 1
πφ
′
j(x)|Ej(x)|2 for j = 1, 2 and x ∈ R. From this it follows

that, for every x ∈ R,

|S(x)|2 =
K2(x, x)

K1(x, x)
=
φ′2(x)|E2(x)|2

φ′1(x)|E1(x)|2
6= 0.

�

Now we can easily deduce Theorem 2.2 from Theorem 2.3.

Proof of Theorem 2.2. Let F be a de Branges GAF de�ned by the reproduc-
ing kernel K1(z, w) of the space H(E1) and let G be the de Branges GAF
de�ned by the reproducing kernel K2(z, w) of the space H(E2). It follows
from Theorem 2.3 that SF and G have the same covariance kernel and there-
fore, as they are gaussian processes, SF and G have the same distribution,
but S does not vanish, so we get the result. �
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