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Abstract. Let H be a separable Hilbert space, and let D(B(H)ah) be the anti-
Hermitian bounded diagonal operators in some fixed orthonormal basis and K(H) the
compact operators. We study the group of unitary operators

Uk,d = {u ∈ U(H) : ∃D ∈ D(B(H)ah), u− eD ∈ K(H)}

in order to obtain a concrete description of short curves in unitary Fredholm orbits
Ob = {eKbe−K : K ∈ K(H)ah} of a compact self-adjoint operator b with spectral
multiplicity one. We consider the rectifiable distance on Ob defined as the infimum of
curve lengths measured with the Finsler metric defined by means of the quotient space
K(H)ah/D(K(H)ah). Then for every c ∈ Ob and x ∈ Tc(Ob) there exists a minimal lifting
Z0 ∈ B(H)ah (in the quotient norm, not necessarily compact) such that γ(t) = etZ0ce−tZ0

is a short curve on Ob in a certain interval.

1. Introduction. Let B(H) be the algebra of bounded operators on
a separable Hilbert space H, and K(H) and U(H) the compact and uni-
tary operators respectively. If an orthonormal basis is fixed we can consider
matricial representations of each A ∈ B(H) and the set of diagonal opera-
tors, which we denote by D(B(H)). The subset of anti-Hermitian diagonal
operators is denoted by D(B(H)ah).

Consider the following subset of the unitary group U(H):

(1.1) Uk,d = {u ∈ U(H) : ∃D ∈ D(B(H)ah), u− eD ∈ K(H)}.

We will prove that Uk,d is a subgroup of U(H). Moreover, Uk,d is closed and
pathwise connected in the topology of U(H) given by the operator norm.
Therefore Uk,d is a Lie subgroup in the sense of [9] and [10].
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We have not found any reference to the subgroup Uk,d in the literature,
and so we include a detailed study of it. In Theorem 3.18 we prove that
Uk,d is a Lie subgroup of U(H). The Lie algebra of Uk,d turns out to be
K(H)ah +D(B(H)ah), which is not complemented in B(H)ah, and therefore
a stronger notion of Lie subgroup cannot be used (see Proposition 3.16).

This subgroup admits a generalization to UJ ,A for certain ideals J and
subalgebras A of B(H)h (see Remark 3.19).

Our particular interest in Uk,d relies on the geometric study of the orbits

OVb = {ubu∗ : u ∈ V}
where b a self-adjoint operator and V ⊂ B(H). If the spectrum of b is finite,
Ob is a complemented submanifold of b + K(H) (see [1]). If we consider a
compact diagonal self-adjoint operator b with spectral multiplicity one then
the orbit Ob can be given a smooth structure (see [6, Lemma 1]).

The subgroup Uk,d has the following properties.

• If Uk = {u ∈ U(H) : u− 1 ∈ K(H)}, then the following orbits coincide:

Ob = OUkb = {ubu∗ : u ∈ Uk} = OUk,db = {ubu∗ : u ∈ Uk,d}.

• The natural Finsler metrics defined in T1(O
Uk,d
b ) and T1(OUkb ) by means of

the quotient norm coincide if b is a compact self-adjoint diagonal operator
and we consider the identifications of the tangent spaces with the quotients

T1(OUkb ) ∼= Tc(Ob) ∼= T1(Uk)/T1(Ib) = K(H)ah/D(K(H)ah),

T1(O
Uk,d
b ) ∼= T1(Uk,d)/T1(Ib)

∼= (K(H)ah +D(B(H)ah))/D(B(H)ah)

∼= K(H)ah/D(B(H)ah)

with c ∈ Ob (see Remark 4.5 for details).

These properties allow the construction of minimum length curves of Ob
considering the rectifiable distance defined in the Preliminaries (see (2.6)).

Next we describe minimal vectors of the tangent space and their relation
to short curves in these homogeneous spaces. We say that a self-adjoint
operator Z ∈ B(H) is minimal for a subalgebra A ⊂ B(H) if

(1.2) ‖Z‖ = inf
D∈A
‖Z +D‖,

for ‖ · ‖ the usual operator norm in B(H). Given a fixed Z we say that
D0 ∈ A is minimal for Z if ‖Z +D0‖ = infD∈A ‖Z +D‖, that is, Z +D0 is
minimal for A. These minimal operators Z allow the concrete description of
short curves γ(t) = eitZAe−itZ in the unitary orbit OA of a fixed self-adjoint
operator A ∈ B(H)h, when considered with a certain natural Finsler metric
(see (2.4), [8], [1] and [6] for details and different examples).
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If we fix an orthonormal basis in H we can consider matricial represen-
tations and diagonal operators in B(H). In [6] we studied the orbit OA of
a diagonal compact self-adjoint operator b ∈ B(H) under the action of the
Fredholm unitary subgroup Uk = {eK : K ∈ K(H)ah} where K(H)ah de-
notes the compact anti-Hermitian operators. We used a particular element
Zr ∈ K(H)ah with the property that there does not exist a compact diagonal
D0 such that the quotient norm ‖Zr +D0‖ = infD∈D(K(H)) ‖Zr +D‖ is at-
tained. This example prompted an interesting geometric question, since the
existence of such a minimal compact diagonal D0 would allow the explicit
description of a short path with initial velocity [Zr, b] (see [8, 5]).

Using the fact that lim(Zr)jj converges to a non-zero constant as j →∞,
we showed in [6] that the curve parametrized by

β(t) = etZrbe−tZr

with |t| ≤ π/(2‖Zr‖) is still a geodesic, even though Zr is not a minimal
operator. Moreover, β can be approximated uniformly by minimal length
curves of finite matrices βn (with minimal initial velocity vectors) satisfying
βn(0) = β(0) = b and β′n(0) = β′(0).

Nevertheless, in the same paper, we showed examples of compact op-
erators Zo whose unique minimal diagonals had several limits. In these
cases the techniques used with Zr were not enough to prove either that
γ(t) = etZobe−tZo was a short curve or that γ could be approximated by
curves of matrices.

In the present work we describe short curves that include those cases.
In order to do so we consider the unitary subgroup Uk,d. The action of this
group on a diagonal self-adjoint operator b produces the same orbit as Uk
but permits a concrete description of geodesics using minimal operators of
its Lie algebra K(H)ah +D(B(H)ah) (see Theorem 4.2 and Corollary 4.6).

2. Preliminaries. Let (H, 〈 , 〉) be a separable Hilbert space. As usual,
B(H), U(H) and K(H) denote the sets of bounded, unitary and compact
operators on H. We denote by ‖ · ‖ the usual operator norm in B(H). It
should be clear from the context whether ‖ · ‖ refers to the operator norm
or the norm on the Hilbert space, ‖h‖ = 〈h, h〉1/2 for h ∈ H.

Given A ⊂ B(H), we use the superscript ah (respectively h) to denote
the subset of anti-Hermitian (respectively Hermitian) elements of A.

Consider the Fredholm subgroup of U(H) defined as

Uk = {u ∈ U(H) : u− 1 ∈ K(H)} = {u ∈ U(H) : ∃K ∈ K(H)ah, u = eK}
(see [1] and Proposition 3.1).

U(H) is a Banach–Lie group and its Lie algebra T1(U(H)) equals B(H)ah.
We consider the usual analytical exponential map exp : B(H)ah → U(H),
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given for any X ∈ B(H)ah by exp(X) =
∑∞

n=0(1/n!)Xn = eX . Then B(H)ah

can be made into a contractive Lie algebra (i.e., ‖[X,Y ]‖c ≤ ‖X‖c‖Y ‖c for
all X,Y ∈ B(H)ah) by defining ‖·‖c := 2‖·‖. Then, by [4, Proposition 1.29],

‖log(eXeY )‖c ≤ − log(2− e‖X‖c+‖Y ‖c)

if ‖X‖c + ‖Y ‖c < log 2. Consequently, it can be proved that if

(2.1) ‖X‖+ ‖Y ‖ < (log 2)/2

then the Baker–Campbell–Hausdorff (B-C-H) series expansion converges ab-
solutely for all X,Y ∈ B(H)ah. This B-C-H series can be defined as

log(eXeY ) =

∞∑
n=1

cn(T ),

where each cn is a polynomial map of B(H)ah × B(H)ah into B(H)ah of
degree n. For instance, the first terms are:

c1(X,Y ) = X + Y,

c2(X,Y ) = 1
2 [X,Y ],

c3(X,Y ) = 1
12 [X, [X,Y ]] + 1

12 [Y, [Y,X]].

Also, each cn with n > 1 is a sum of commutators. Therefore, the above
series can be rewritten as follows

(2.2) log(eXeY ) = X + Y +

∞∑
n=2

cn(T ).

For the complete general expression and other properties of the B-C-H series
for Lie algebras see [4] or [12].

Definition 2.1. Given X ∈ B(H)ah we will say that X is sufficiently
close to 0 if ‖X‖ < (log 2)/4.

We see that the B-C-H series (2.2) converges for every X,Y ∈ B(H)ah

sufficiently close to 0, since this condition implies (2.1).

We define the unitary Fredholm orbit of a fixed self-adjoint A ∈ B(H) as

(2.3) OA = {uAu∗ : u ∈ Uk} ⊂ A+K(H).

With the action πb : Uk → OA, πb(u) = Lu · b = ubu∗, the orbit OA becomes
a homogeneous space in some cases. If A has finite spectrum then OA is
a submanifold of A + K(H) (see [1, Theorem 4.4]), and if A is a compact
operator with spectral multiplicity one then OA has a smooth structure (see
[6, Lemma 1]).

Let [·, ·] be the commutator operator in B(H), that is, [T, S] = TS−ST
for any T, S ∈ B(H).
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For each b ∈ OA, the isotropy group Ib is

Ib = {u ∈ Uk : ubu∗ = b} = {eK ∈ Uk : K ∈ K(H)ah, [K, b] = 0}
= {b}′ ∩ K(H)ah,

where {b}′ is the set of all operators T in B(H) that commute with b (i.e.,
[T, b] = 0).

For each b ∈ OA, the tangent space Tb(OA) equals {Y b − bY : Y ∈
K(H)ah} and can be identified as follows:

Tb(OA) ∼= T1(Uk)/T1(Ib) ∼= K(H)ah/({b}′ ∩ K(H)ah).

In this context we consider the following Finsler metric defined for x ∈
Tb(OA):

‖x‖b = inf{‖Y ‖ : Y ∈ K(H)ah, [Y, b] = x}(2.4)

= inf
C∈({b}′∩K(H)ah)

‖Y0 + C‖.

where Y0 + C is any element of the class [Y0] = {Y ∈ K(H)ah : [Y, b] = x}.
Note that this norm is invariant under the action of Uk.

An element Z ∈ B(H)ah such that [Z, b] = x and ‖Z‖ = ‖x‖b is called a
minimal lifting for x. This operator Z may not be compact and/or unique
(see [5]). Consider piecewise smooth curves β : [r, s]→ OA. We define

L(β) =

s�

r

‖β′(t)‖β(t) dt,(2.5)

dist(c1, c2) = inf{L(β) : β is smooth, β(r) = c1, β(s) = c2},(2.6)

called the rectifiable length of β and the distance between c1, c2 ∈ OA,
respectively. In this context, we define short curves to be those piecewise
smooth curves γ : [r, s] → OA such that L(γ|[t1,t2]) ≤ dist(γ(t1), γ(t2)) for
every subinterval [t1, t2] ⊂ [r, s].

If A is any C∗-subalgebra of B(H) and {ek}∞k=1 is a fixed orthonormal
basis of H, we denote by D(A) the set of diagonal operators with respect to
this basis, that is,

D(A) = {T ∈ A : 〈Tei, ej〉 = 0 for all i 6= j}.
Given Z ∈ A, if there exists D1 ∈ D(A) such that

‖Z +D1‖ ≤ ‖Z +D‖
for all D ∈ D(A), we say that D1 is a best approximant of Z in D(A). The
operator Z +D1 satisfies

‖Z +D1‖ = dist(Z,D(A)),

and Z + D1 is a minimal operator in the class [Z] of the quotient space
A/D(A); we also say that D1 is minimal for Z.
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These minimal operators play an important role in the concrete descrip-
tion of minimal length curves on OA (see [8] and [1]).

If Z is anti-Hermitian then

dist(Z,D(A)) = dist(Z,D(Aah)),

since ‖Im(X)‖ ≤ ‖X‖ for every X ∈ A.
Let T ∈ B(H) and consider for the fixed basis of H the coefficients Tij =

〈Tei, ej〉 for each i, j ∈ N. This defines an infinite matrix (Tij)i,j∈N whose
jth column and ith row are the vectors in `2 given by cj(T ) = (T1j , T2j , . . .)
and fj(T ) = (Ti1, Ti2, . . .), respectively.

We use σ(T ) and R(T ) to denote the spectrum and range of T ∈ B(H)h,
respectively.

We define Φ : B(H) → D(B(H)), Φ(X) = Diag(X), as the map that
builds a diagonal operator with the same diagonal as X (i.e., Φ(X)ii =
Diag(X)ii = Xii and 0 elsewhere). For a given bounded sequence {dn}n∈N ⊂
C we denote by Diag({dn}n∈N) the diagonal (infinite) matrix with {dn}n∈N
on its diagonal and 0 elsewhere.

3. The unitary subgroup Uk,d. Recall the unitary Fredholm group

Uk = {u ∈ U(H) : u− 1 ∈ K(H)}
(see [1] and [6]) and define the following subsets of U(H):

Uk,d = {u ∈ U(H) : ∃D ∈ D(B(H)ah), u− eD ∈ K(H)},
Ud = {u ∈ U(H) : ∃D ∈ D(B(H)ah), u = eD} = U(H) ∩ D(B(H)),(3.1)

Uk+d = {u ∈ U(H) : ∃K ∈ K(H)ah ∃D ∈ D(B(H)ah), u = eK+D}.
Also denote

OFb = {ubu∗ : u ∈ F},
where F is any of the sets of unitary operators defined in (3.1). The main
purpose of this section is to study these unitary sets and their relations.

The following proposition has been proved in [6] using arguments of [1,
Lemma 2.1].

Proposition 3.1. Uk = {eK : K ∈ K(H)ah, ‖K‖ ≤ π}.
Remark 3.2. Let S0 ∈ K(H)ah and D0 ∈ D(B(H)ah). Then the expo-

nential series
∑∞

n=0
1
n!(S0 +D0)

n converges absolutely and

∞∑
n=0

1

n!
(S0 +D0)

n

=
∞∑
n=0

1

n!

(
Sn0 +

(
n

1

)
Sn−10 D0 + · · ·+

(
n

n− 1

)
S0D

n−1
0 +Dn

0

)
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=

∞∑
n=0

1

n!
S0

(
Sn−10 +

(
n

1

)
Sn−20 D0 + · · ·+

(
n

n− 1

)
Dn−1

0

)
+

1

n!
Dn

0

= S0

∞∑
n=1

1

n!

(
Sn−10 +

(
n

1

)
Sn−20 D0 + · · ·+

(
n

n− 1

)
Dn−1

0

)
︸ ︷︷ ︸

||

Ψ(S0, D0)

+
∞∑
n=0

1

n!
Dn

0

= S0Ψ(S0, D0) + eD0

with S0Ψ(S0, D0) ∈ K(H).

Proposition 3.3. Uk,d is a unitary subgroup of U(H) and

UkUd = {u∈U(H) : ∃K∈K(H)ah, ‖K‖ ≤ π, ∃D∈D(B(H)ah), u = eKeD}.
Moreover

Uk,d = UkUd = UdUk.
Proof. Let u ∈ Uk,d. Then there existsD ∈ D(B(H)ah) such that u−eD ∈

K(H). Hence ue−D− 1 ∈ K(H), so there is K ∈ K(H)ah with ‖K‖ ≤ π such
that ue−D = eK , and therefore u ∈ UkUd.

Conversely, if there exist K ′ ∈ K(H)ah and D′ ∈ D(B(H)ah) such that
u = eK

′
eD
′ ∈ U(H), then ue−D

′
= eK

′ ∈ Uk, so ue−D
′ − 1 ∈ K(H), and thus

(ue−D
′ − 1)eD = u− eD′ ∈ K(H).

These calculations prove that Uk,d = UkUd.
Similar computations (with left multiplication by e−D) lead to Uk,d =

UdUk.
Now we will prove that Uk,d is a group. Let u, v ∈ Uk,d.

• There exists D ∈ D(B(H)ah) such that u− eD ∈ K(H). Then u∗ − e−D ∈
K(H), so u∗ ∈ Uk,d.
• Since Uk,d = UkUd we can write u = eK1eD1 and v = eK2eD2 withK1,K2 ∈
K(H)ah and D1, D2 ∈ D(B(H)ah). Then by Remark 3.2,

uv = eD1+D2 +K1Ψ(K1, D1) + eD2K2Φ(K2, D2)
+K1Ψ(K1, D1)K2Φ(K2, D2).

Therefore uv − eD1+D2 ∈ K(H), which implies that uv ∈ Uk,d.
Thus, Uk,d is a unitary subgroup of U(H).

Proposition 3.4. Let Uk,d, Ud and Uk+d be as defined in (3.1). Then:

(1) Ud ( Uk,d.
(2) Uk ( Uk,d.
(3) Uk+d ⊆ Uk,d.
(4) If u ∈ Uk,d then u = K ′ +D′ with some K ′ ∈ K(H) and D ∈ D(U(H)).
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(5) For every K ∈ K(H)ah and D ∈ D(B(H)ah) there exists K ′ ∈ K(H)ah

such that eKeD = eDeK
′
.

(6) Uk ( Uk+d.
(7) Uk = {u ∈ U(H) : ∃D ∈ D(K(H)ah), u− eD ∈ K(H)}.

Proof. (1) This is apparent.

(2) u ∈ Uk ⇔ u− 1 ∈ K(H)⇔ u− e0 ∈ K(H).

(3) Let eK+D ∈ Uk+d with K ∈ K(H)ah and D ∈ D(B(H)ah). Then

eK+D = 1 + (K +D) +
1

2!
(K +D)2 + · · · = eD +KΨ(K,D),

so eK+D − eD ∈ K(H), and hence eK+D ∈ Uk,d.
(4) u ∈ Uk,d ⇒ u − eD ∈ K(H) with D ∈ D(B(H)ah) ⇒ ∃K ′ ∈ K(H),

u = K ′ + eD.

(5) If K ∈ K(H)ah and D ∈ D(B(H)ah) then Proposition 3.1 implies
that eK − 1 ∈ K(H), which gives (eK − 1)eD = eKeD − eD ∈ K(H) and
e−DeKeD − 1 ∈ K(H). Then e−DeKeD ∈ Uk and there exists K ′ ∈ K(H)ah

such that e−DeKeD = eK
′
. The result follows easily.

(6) This is apparent.

(7) If u ∈ Uk then u − 1 = u − e0 ∈ K(H) with 0 ∈ D(K(H)ah), and
so u ∈ {u ∈ U(H) : ∃D ∈ D(K(H)ah), u − eD ∈ K(H)}. Conversely, let
u ∈ U(H) and D ∈ D(K(H)ah) be such that u− eD ∈ K(H). Then

u− 1 = u− eD + eD − 1 ∈ K(H),

since eD ∈ Uk, which completes the proof.

Proposition 3.5. Let K1,K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah).
Then the following statements are equivalent:

(a) eK1eD1 = eK2eD2.
(b) There exists d ∈ D(K(H)ah) such that

eK2 = eK1e−d and eD2 = edeD1 = ed+D1 .

Proof. (b)⇒(a) is apparent after computing eK2eD2 .

Let us consider (a)⇒(b).

If eK1eD1 = eK2eD2 then eD1−D2 = e−K1eK2 . Since e−K1 , eK2 are in
Uk which is a group, there exists K1,2 ∈ K(H)ah such that ‖K1,2‖ ≤ π
and e−K1eK2 = eK1,2 (see Proposition 3.1). Moreover, there exists D1,2 ∈
D(B(H)ah) with ‖D1,2‖ ≤ π such that eD1−D2 = eD1,2 . Therefore

eK1,2 = e−K1eK2 = eD1−D2 = eD1,2

with K1,2 ∈ K(H)ah and D1,2 ∈ D(B(H)ah). Using [7, Theorem 3.1] we
conclude that |K1,2| = |D1,2|, which implies that K1,2 and D1,2 are both
diagonal and compact operators. If we choose −d = D1,2 ∈ D(K(H)ah),
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then

eK2 = eK1eD1−D2 = eK1eD1,2 = eK1e−d,

eD2 = eD2−D1eD1 = e−D1,2eD1 = edeD1 ,

which proves the proposition.

Proposition 3.6. Let u ∈ U(H). Then the following statements are
equivalent:

(a) u ∈ Uk,d.
(b) u−Diag(u) ∈ K(H) and |ujj | → 1 as j →∞.

Proof. (a)⇒(b). If u ∈ Uk,d then there exists D ∈ D(B(H)ah) such that
u − eD ∈ K(H). Then Diag(u − eD)jj = ujj − eDjj → 0 as j → ∞, and

therefore Diag(u)− eD ∈ K(H) and |ujj | → 1 as j →∞. Then since

u− eD = u−Diag(u) + Diag(u)− eD︸ ︷︷ ︸
∈K(H)

∈ K(H),

we deduce that u−Diag(u) ∈ K(H).
(b)⇐(a) If ujj → 1 as j → ∞ then there exists D ∈ D(B(H)ah) such

that ujj − eDjj → 0 as j →∞ (for example take eDjj = (1/|ujj |)ujj when j is

sufficiently large). Then Diag(u)− eD ∈ K(H). Hence

u−Diag(u)︸ ︷︷ ︸
∈K(H)

+ Diag(u)− eD︸ ︷︷ ︸
∈K(H)

= u− eD ∈ K(H),

and therefore u ∈ Uk,d.
Remark 3.7. The previous proposition allows us to prove easily that

Uk,d ( U(H) since the block diagonal symmetry

u =


s 0 0 . . .

0 s 0 . . .

0 0 s
...

...
. . .

 with s =

(
0 1

1 0

)

clearly does not satisfy condition (b) of Proposition 3.6, but u ∈ U(H).

The following proposition is a consequence of the results of [7].

Proposition 3.8. Let K,K ′ ∈ K(H)ah satisfy ‖K‖, ‖K ′‖ ≤ π and let
D ∈ D(B(H)ah) be such that eDeK = eK

′
eD. Then ‖K‖ = ‖K ′‖ and

(a) if ‖K‖ = ‖K ′‖ = π, then

(1) |K| = e−D|K ′|eD,
(2) v ∈ H is an eigenvector of K with eigenvalue λ ∈ iR, |λ| < π ⇔

eDv is an eigenvector of K ′ with eigenvalue λ ∈ iR, |λ| < π,
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(3) if EX is the spectral measure of the operator X, then

K − e−DK ′eD = 2πi
(
EK(R + iπ)− Ee−DK′eD(R + iπ)

)
,

(b) if ‖K‖ = ‖K ′‖ < π then K = e−DK ′eD.

Proof. Observe first that since eDeK = eK
′
eD, we have

(3.2) eK = e−DeK
′
eD = ee

−DK′eD ,

and therefore |K| = |e−DK ′eD| = e−D|K ′|eD (see [7, Theorem 3.1(i)]),
which implies ‖K‖ = ‖K ′‖.

(a)(1) This is a direct consequence of (3.2), the fact that σ(K) and
σ(e−DK ′eD) are contained in S = {z ∈ C : −π ≤ Im(z) ≤ π}, and [7,
Theorem 3.1(i)].

(a)(2) Consider λ ∈ σ(K) ⊂ iR, |λ| < π and v ∈ H such that Kv = λv.

Then eKv = eλv and (3.2) imply that eλ is an eigenvalue of ee
−DK′eD with

eigenvector v. Then λ ∈ σ(e−DK ′eD) (because |λ| < 1) with eigenvector v.
Therefore λ ∈ σ(K ′) with eigenvector eDv. The other implication follows
similarly.

(a)(3) This statement follows from σ(K), σ(e−DK ′eD) ⊂ S and [7, Re-
mark 2.4 and Theorem 4.1].

(b) If ‖K‖ = ‖K ′‖ < π then (3.2) and [7, Corollary 4.2(iii)] imply directly
that K = e−DK ′eD.

Corollary 3.9. Let K,K ′ ∈ K(H)ah with ‖K‖, ‖K ′‖ ≤ π, and let
D ∈ D(B(H)ah). Then

(a) if ‖K‖ = ‖K ′‖ = π, then

eDeK = eK
′
eD ⇔ K − e−DK ′eD = 2πi

(
EK(R+ iπ)−Ee−DK′eD(R+ iπ)

)
,

(b) if ‖K‖, ‖K ′‖ < π, then

eDeK = eK
′
eD ⇔ K = e−DK ′eD.

Proof. (a) If eDeK = eK
′
eD then

K − e−DK ′eD = 2πi
(
EK(R + iπ)− Ee−DK′eD(R + iπ)

)
follows from Proposition 3.8(a)(3).

The converse is proved using the fact that

K − 2πiEK(R + iπ) = e−DK ′eD − Ee−DK′eD(R + iπ)

implies that

eK−2πiEK(R+iπ) = ee
−DK′eD−2πiE

e−DK′eD (R+iπ),

and since K commutes with EK , and e−DK ′eD with Ee−DK′eD , we obtain

eKe−2πiEK(R+iπ) = ee
−DK′eDe−2πiEe−DK′eD (R+iπ).
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Since e−2πiEK(R+iπ) = e−2πiEe−DK′eD (R+iπ) = 1, we have

eK = ee
−DK′eD = e−DeK

′
eD,

which ends the proof.
(b) This is apparent by using Proposition 3.8(b) and the fact that ee

−DK′eD

= e−DeK
′
eD.

Thompson [11] proved that for any X,Y ∈Mn(C)ah there exist unitaries
U, V such that

(3.3) eXeY = eU
∗XU+V ∗Y V .

Subsequently, Antezana et al. [3] proved a generalization of (3.3) for compact
operators: given K1,K2 ∈ K(H)ah, there exist unitaries Un, Vn, for n ∈ N,
such that

eK1eK2 = lim
n→∞

eU
∗
nK1Un+V ∗nK2Vn

with convergence in the usual operator norm. The following proposition adds
a new simple case where this equality holds.

Proposition 3.10. Let K ∈ K(H)ah and D ∈ D(B(H)ah) and suppose
that there exists λ ∈ iR such that limn→∞Dnn = λ. Then there exist uni-
taries Un, Vn, for n ∈ N, such that

eKeD = lim
n→∞

eU
∗
nKUn+V ∗nDVn .

Proof. Observe that D−λI ∈ D(K(H)ah). Then by [3, Theorem 3.1 and
Remark 3.3] there exist unitaries Un, Vn, for n ∈ N, such that

eKeDe−λI = eKeD−λI = lim
n→∞

eU
∗
nKUn+V ∗n (D−λI)Vn

= lim
n→∞

eU
∗
nKUn+V ∗nDVne−λI .

Therefore, eKeD = limn→∞ e
U∗nKUn+V ∗nDVn .

Proposition 3.11. Let K1,K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah) be
such that K1 + D1 and K2 + D2 are sufficiently close to 0 (see Definition
2.1). Then there exists K ∈ K(H)ah such that

eK1+D1eK2+D2 = eK+D1+D2 .

Proof. Using the B-C-H formula (2.2), we have

X = log(eK1+D1eK2+D2) = K1 +D1 +K2 +D2 +
∑
n≥2

cn(K1 +D1,K2 +D2).

Also, observe that cn(K1 + D1,K2 + D2) ∈ K(H)ah for every n, since
K(H) is a two-sided closed ideal and [D1, D2] = 0. Therefore, X = K + D
with K ∈ K(H)ah and D ∈ D(B(H)ah) and

(3.4) eK1+D1eK2+D2 = eK+D ∈ Uk+d.
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In particular D = D1 + D2, since each cn is a sum of commutators and
Diag([A,B]) = 0 for every A,B ∈ B(H)ah.

Corollary 3.12. Let K1,K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah).

(1) If K1 +D1 and K2 +D2 are sufficiently close to 0 (see Definition 2.1),
then

eK1+D1eK2+D2 = eK̃+D1+D2

with

K̃ = K1 +K2 +
∑
n≥2

cn(K1 +D1,K2 +D2) ∈ K(H)ah

and Diag(K̃) = Diag(K1 +K2).
(2) If K1 and D1 are sufficiently close to 0, there exist K ′,K ′′ ∈ K(H)ah

such that

(3.5) eK1eD1 = eD1eK
′

= eK
′′+D1 .

Proof. These equalities are due to Proposition 3.4(3), Proposition 3.11
and equalities used in its proof.

Theorem 3.13. Uk,d is pathwise connected and closed in U(H).

Proof. Every u = eKeD ∈ Uk,d (with K ∈ K(H)ah and D ∈ D(B(H)ah))
is connected to 1 by the curve γ(t) = etKetD for t ∈ [0, 1].

To prove the closedness of Uk,d, let {un}n∈N ⊂ Uk,d, un = eKneDn for
n ∈ N, with Kn ∈ K(H)ah and Dn ∈ D(B(H)ah) be a sequence such that
limn→∞ un = u0 in the operator norm. We will prove that u0 ∈ Uk,d.

Since u0−un = u0−eDn +eDn−un → 0 as n→∞, and eDn−un ∈ K(H)
for all n ∈ N, we see that dist({u0 − eDn}n∈N,K(H)) = 0.

Observe that

(3.6) dist
(
{Diag(u0)− eDn}n∈N,K(H)

)
= dist

(
{Diag(u0)−Diag(un) + Diag(un)− eDn}n∈N,K(H)

)
≤ inf

K∈K(H)

(
‖Diag(u0)−Diag(un)‖+ ‖Diag(un)− eDn −K‖

)
for any n ∈ N.

Note that un − eDn ∈ K(H), which implies that Diag(un − eDn) =
Diag(un)− eDn ∈ D(K(H)). Since un → u0, we have Diag(un)→ Diag(u0).
Then the first summand in (3.6) can be arbitrarily small for large n and the
infimum of the second term is zero because Diag(un)− eDn ∈ K(H). Thus

(3.7) dist
(
{Diag(u0)− eDn}n∈N,K(H)

)
= 0

= dist
(
{Diag(u0)− eDn}n∈N,D(K(H))

)
.
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Moreover, since un − eDn ∈ K(H), for every K ∈ K(H) we have

dist(u0 −Diag(u0),K(H)) = inf
K∈K(H)

‖u0 −Diag(u0)−K‖(3.8)

≤ ‖u0 −Diag(u0)− un + eDn −K‖
≤ ‖u0 − un‖+ ‖eDn −Diag(u0)−K‖.

Here both summands can be arbitrarily small, since un → u0 and the dis-
tance from {Diag(u0)−eDn}n∈N to K(H) is null as seen above in (3.7). Thus
dist(u0 −Diag(u0),K(H)) = 0, and therefore

(3.9) u0 −Diag(u0) ∈ K(H).

If there exists δ > 0 such that for a subsequence {eDnk}k∈N we have
|(Diag(u0) − eDnk )jj | ≥ δ for all k ∈ N and infinitely many j ∈ N, then we
obtain a contradiction to (3.7). Therefore, given δ > 0, only finitely many
n ∈ N satisfy |(Diag(u0) − eDn)jj | ≥ δ for infinitely many j ∈ N. Thus, if
k ∈ N and we choose δ = 1/k, there exists nk ∈ N such that if n ≥ nk then
|(Diag(u0) − eDn)jj | ≥ 1/k only for finitely many j ∈ N. Observe that the
subsequence nk could be chosen to be strictly increasing. For each k ∈ N,
let jk ∈ N be such that |(Diag(u0) − eDnk )jj | < 1/k for all j ≥ jk. We can
choose jk to be strictly increasing in k and j1 > 1. Therefore, for each k ∈ N,
there exist nk, jk ∈ N such that

(3.10) |(Diag(u0)− eDnk )jj | < 1/k for all j ≥ jk.
Then define the following unitary diagonal matrix eD:

(3.11) (eD)jj =


1 if 1 ≤ j < j1,

(eDn1 )jj if j1 ≤ j < j2,

(eDn2 )jj if j2 ≤ j < j3,

· · ·
D can be chosen as the anti-Hermitian diagonal matrix formed with the
corresponding parts of 0, Dn1 , Dn2 , . . . .

If we define j0 = 1 and take any j ∈ N, then (3.10) and (3.11) imply that

|(Diag(u0)− eD)jj | = |(Diag(u0)− eDnk )jj | < 1/k if jk ≤ j < jk+1.

Then (Diag(u0)−eD)jj → 0 as j →∞, and therefore Diag(u0)−eD ∈ K(H)
since it is a diagonal matrix.

Using u0−Diag(u0) ∈ K(H) (see (3.9)) we conclude that (u0−Diag(u0))+
(Diag(u0)−eD) = u0−eD ∈ K(H), which implies that u0 ∈ Uk,d, and there-
fore Uk,d is closed.

Lemma 3.14. There exists ε0 > 0 such that if u ∈ Uk,d and ‖u− 1‖ < ε0
then u ∈ Uk+d. Moreover, there exist K ∈ K(H)ah and D ∈ D(B(H)ah) such
that
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(a) u = eK+D with K,D ∈ exp−1(B(1, 3ε0)),
(b) K,D are sufficiently close to 0,
(c) K +D ∈ exp−1(B(1, ε0)) ∩ B(H)ah.

Proof. Fix δ0 > 0 that fulfills two conditions: first, if V ∈ B(0, δ0) ∩
B(H)ah then V is sufficiently close to 0, and secondly, exp : B(0, δ0) ∩
B(H)ah → exp(B(0, δ0)) ∩ U(H) is a diffeomorphism under the usual oper-
ator norm. The last requirement can be fulfilled after applying the inverse
map theorem for Banach spaces.

Choose ε0 = ε > 0 such that

(3.12) B(1, ε) ⊂ B(1, 3ε) ⊂ exp(B(0, δ0)).

If u ∈ Uk,d∩B(1, ε), then there existK1 ∈ K(H)ah andD1 ∈ D(B(H)ah) such
that u = eK1eD1 . Observe that the j, j entry of the diagonal of u = eK1eD1

is eK1
jj e

D1
jj .

Now ‖u − 1‖ < ε implies that |eK1
jj e

D1
jj − 1| < ε for all j ∈ N. Suppose

that |eD1
jj − 1| ≥ 2ε for infinitely many j ∈ N. Then, using |eD1

jj | = 1 we

obtain |e−D1
jj − 1| = |eD1

jj (e−D1
jj − 1)| = |1 − eD1

jj | ≥ 2ε, and |eK1
jj − e

−D1
jj | =

|(eK1
jj − e

−D1
jj )eD1

jj | = |e
K1
jj e

D1
jj − 1| < ε for infinitely many j ∈ N. Therefore,

there must exist infinitely many j ∈ N such that

(3.13) |eK1
jj − e

−D1
jj | < ε and |e−D1

jj − 1| ≥ ε
(see Figure 1).

Fig. 1

Hence

|eK1
jj − 1| = |eK1

jj − e
−D1
jj + e−D1

jj − 1| ≥
∣∣|eK1

jj − e
−D1
jj | − |e

−D1
jj − 1|

∣∣
= |e−D1

jj − 1| − |eK1
jj − e

−D1
jj | ≥ 2ε− ε = ε.

for infinitely many j ∈ N, where we have used (3.13) in the last equality and
inequality. This is a contradiction because eK1 ∈ Uk and so eK1 − 1 ∈ K(H),
which implies that the diagonal of eK1 tends to 1. Thus |eD1

jj − 1| ≥ 2ε only
for finitely many j ∈ N. Choosing appropriately a compact anti-Hermitian
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diagonal d we can construct D2 = D1 + d ∈ D(B(H)ah) and K2 ∈ K(H)ah

such that u = eK1eD1 = eK2eD2 and |eD2
jj − 1| ≤ 2ε for all j ∈ N (see

Proposition 3.5). Then ‖eD2 − 1‖ < 2ε and ‖eD2 − 1‖ = ‖e−D2(eD2 − 1)‖ =
‖1− e−D21‖ = ‖e−D2 − 1‖ < 2ε. Moreover, since eD2 is unitary,

‖eK2 − 1‖ ≤ ‖eK2 − e−D2‖+ ‖e−D2 − 1‖(3.14)

= ‖(eK2 − e−D2)eD2‖+ ‖e−D2 − 1‖
= ‖eK2eD2 − 1‖+ ‖e−D2 − 1‖
= ‖u− 1‖+ ‖e−D2 − 1‖ < ε+ 2ε = 3ε.

We have shown that ‖eD2 − 1‖ < 2ε and ‖eK2 − 1‖ < 3ε, which implies
that eD2 , eK2 ∈ exp(B(0, δ0)) (see the definition of ε in (3.12). Therefore,
since exp : B(0, δ0) ∩ B(H)ah → exp(B(0, δ0)) ∩ U(H) is a diffeomorphism,
there exist unique D,K ∈ exp−1(B(0, 3ε)) ∩ B(H)ah ⊂ B(0, δ0) ∩ B(H)ah

such that eD = eD2 and eK = eK2 . Standard calculations show that D must
be diagonal and K compact. Hence D ∈ exp−1(B(0, 3ε)) ∩ D(B(H)ah) and
K ∈ exp−1(B(0, 3ε)) ∩ K(H)ah. Moreover, since D,K ∈ B(0, δ0), they are
sufficiently close to 0. Then using (3.5) we get

u = eKeD = eK+D ∈ Uk+d
with K ∈ K(H)ah and D ∈ D(B(H)ah), K,D ∈ exp−1(B(0, 3ε)) and K,D
sufficiently close to 0 as required in (a) and (b).

Since eK+D = u ∈ Uk,d, and K and D are sufficiently close to 0, we have
‖K+D‖ < π. Hence, as exp : exp−1(B(1, ε))→ B(1, ε) is a diffeomorphism,
there exists V ∈ exp−1(B(1, ε)) such that eV = u = eK+D. Then [7, Corol-
lary 4.2] implies that V = K +D, and therefore K +D ∈ exp−1(B(1, ε)) as
required in (c).

Proposition 3.15. There exists an open neighborhood V ⊂ B(H)ah of 0
such that

exp
(
V ∩ (K(H)ah +D(B(H)ah))

)
= exp(V) ∩ Uk,d.

Proof. Take V = exp−1(B(1, ε0))∩B(H)ah, where ε0 is as in Lemma 3.14.
Then, as seen in that lemma, for every u ∈ Uk,d such that u = eK1eD1 ∈
B(1, ε0) with K1 ∈ K(H)ah and D1 ∈ D(B(H)ah), there exist K ∈ K(H)ah∩
exp−1(B(1, 3ε0)) and D ∈ D(B(H)ah) ∩ exp−1(B(1, 3ε0)) such that

(3.15) u = eK+D with K +D ∈ exp−1(B(1, ε0)) ∩ B(H)ah.

Suppose first that V ∈ V and eV ∈ exp(V) ∩ Uk,d. Then, as in (3.15),
there exist K ∈ K(H)ah and D ∈ D(B(H)ah) such that eV = eK+D. Since
the exponential is a diffeomorphism when restricted to V, it follows that
V = K +D. Therefore

exp(V) ∩ Uk,d ⊂ exp
(
V ∩ (K(H)ah +D(B(H)ah))

)
.
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Now suppose that V ∈ V and

eV = eK+D ∈ exp
(
V ∩ (K(H)ah +D(B(H)ah))

)
with K ∈ K(H)ah and D ∈ D(B(H)ah). Then clearly eV ∈ exp(V), and using
Proposition 3.4(3) we find that also eV = eK+D ∈ Uk,d. This proves that
exp(V∩(K(H)ah+D(B(H)ah))) ⊂ exp(V)∩Uk,d, which concludes the proof.

Proposition 3.16. {X ∈ B(H)ah : etX ∈ Uk,d, ∀t ∈ R} = K(H)ah +
D(B(H)ah).

Proof. Proposition 3.4(3) directly implies that et(K+D) = etK+tD ∈ Uk,d
for all t ∈ R, and therefore K(H)ah +D(B(H)ah) ⊂ L(Uk,d).

Suppose now that X 6= 0 (0 is a trivial case) and let X ∈ L(Uk,d). Then
etX ∈ Uk,d for all t ∈ R. In particular etX ∈ Uk,d for small |t|, for example for
t0 = δ0/(2‖X‖) < δ0/‖X‖ where δ0 > 0 is as in the proof of Lemma 3.14.
Then ‖t0X‖ = |t0| ‖X‖ < δ0 and u = et0X ∈ Uk,d. Therefore by Lemma
3.14, there exist K ∈ K(H)ah and D ∈ D(B(H)ah) such that

et0X = eK+D.

The constant δ0 of the proof of Lemma 3.14 is chosen such that exp :
B(0, δ0)∩B(H)ah → exp(B(0, δ0))∩U(H) is a diffeomorphism. Then t0X =
K +D and therefore X = (1/t0)(K +D) = (1/t0)K + (1/t0)D ∈ K(H)ah +
D(B(H)ah) as required.

Remark 3.17. Following [9, V.2.3] and [10, p. 428] we call H a Lie
subgroup of a Banach–Lie group G if H is a closed subgroup of G which is
itself a Lie group relative to the induced topology.

The previous results allow us to state the following.

Theorem 3.18. Uk,d is a Lie subgroup of U(H) and its Lie algebra is
L(Uk,d) = K(H)ah +D(B(H)ah).

Proof. According to the definition of Lie subgroup in Remark 3.17, The-
orem 3.13 and Proposition 3.15 imply that Uk,d is a Lie subgroup of U(H).

The equality L(Uk,d) = K(H)ah + D(B(H)ah) follows from [9, Corollary
V.2.2] and Proposition 3.16.

Although there exist stronger notions of Lie subgroup, they cannot be
used for Uk,d since its Lie algebra K(H)ah+D(B(H)ah) is not complemented
in B(H)ah (the Lie algebra of U(H)).

Remark 3.19 (Generalization of the Uk,d group). The proofs of some of
the basic properties we use in the study of Uk,d require that the exponential
exp : K(H)ah → Uk be surjective. This is why the following generalization
involves ideals J with this property.

If J ⊂ B(H) is either of the two-sided closed ideals of p-Schatten oper-
ators (for p ∈ [0,∞)) or K(H), and A is any C∗-subalgebra of B(H), then



Unitary subgroups and compact self-adjoint operators 171

the following subsets of U(H) can be defined, by analogy with (3.1):

UJ = {u ∈ U(H) : u− 1 ∈ J },
UJ ,A = {u ∈ U(H) : ∃A ∈ Aah, u− eA ∈ J },
UA = {u ∈ U(H) : ∃A ∈ Aah, u = eA},

UJ+A = {u ∈ U(H) : ∃J ∈ J ah ∃A ∈ Aah, u = eJ+A}.
The groups UJ , where J is any p-Schatten ideal of B(H), were studied in [2].

It can be proved that the above sets have the following properties:

(1) UJ = {eJ ∈ U(H) : J ∈ J ah, ‖J‖ ≤ π}.
(2) UJ ,A is a group, equals

UJ ,A = {u ∈ U(H) : ∃J ∈ J ah, ‖J‖ ≤ π, ∃A ∈ Aah, u = eJeA},
and UJ ,A = UJUA = UAUJ .

(3) UA ( UJ ,A.
(4) UJ ( UJ ,A.
(5) UJ+A ⊆ UJ ,A.
(6) If u ∈ UJ ,A then u = J ′ +A′ with some J ′ ∈ J and A′ ∈ UA.
(7) For every J ∈ J ah and A ∈ Aah there exists J ′ ∈ J ah such that

eJeA = eAeJ
′
.

(8) UJ ( UJ+A.
(9) If Aah ∩ J 6= ∅, then

UJ = {u ∈ U(H) : ∃A ∈ Aah ∩ J , u− eA ∈ J }.
(10) For every J ∈ J ah and A ∈ Aah sufficiently close to 0, there exist

J ′′ ∈ J ah and A′ ∈ Aah such that

eJeA = eJ
′′+A′ .

(11) For every J1, J2 ∈ J ah and A1, A2 ∈ Aah the following statements are
equivalent:

• eJ1eA1 = eJ2eA2 .
• There exists a ∈ Aah ∩J such that eJ2 = eJ1e−a and eA2 = eaeA1 =
ea+A1 .

Property (1) has been proved for p-Schatten ideals in [2, Remark 3.1], and
for K(H) see Proposition 3.1. Properties (2)–(9) and (11) may be proved
in much the same way as Propositions 3.3–3.5. Property (10) involves the
B-C-H series expansion log(eJeA) for the Lie algebra B(H)ah (see the Pre-
liminaries).

4. Minimal length curves in the orbit of a compact self-adjoint
operator. Consider the unitary Fredholm orbit of a compact operator

b = Diag({λi}i∈N) ∈ D(K(H)h)
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with λi 6= λj for each i 6= j, and the orbit

Ob = {ubu∗ : u ∈ Uk}.
The isotropy subgroup of c = eK0be−K0 ∈ Ob with K0 ∈ K(H)ah for the
action Lu · c = ucu∗, with u ∈ Uk, is Ic = {eK0ede−K0 : d ∈ D(K(H)ah)} =

{eeK0de−K0 : d ∈ D(K(H)ah)}. Tc(Ob) can be identified with the quotient
space K(H)ah/D(K(H)ah) for every c ∈ Ob. The projection to the quotient
K(H)ah/D(K(H)ah) defines a Finsler metric as

‖x‖eK0ede−K0 = ‖[Y ]‖ = inf
D∈D(K(H)ah)

‖Y + eK0De−K0‖

for each class [Y ] = {Y + eK0De−K0 : D ∈ D(K(H)ah)} and x = Y c− cY ∈
Tc(Ob). This metric is invariant under the action of LeK for eK ∈ Uk (see [6]).
Assuming that 0 ∈ [r, s], this invariance implies that the curve γ : [r, s]→ Ob
such that γ(0)=b and γ̇(0)=x has the same length as β = LeK ·γ : [r, s]→Ob
and satisfies β(0) = LeK · b, β̇(0) = LeK · γ̇(0) = LeK · x, for eK ∈ Uk.

Proposition 4.1. Let b = Diag({λi}i∈N) ∈ D(K(H)) with λi 6= λj for
each i 6= j and Z0 = S0 +D0 with S0 ∈ K(H)ah and D0 ∈ D(B(H)ah). Then
eZ0be−Z0 ∈ Ob.

Proof. Observe that D0 is not necessarily compact. Using Remark 3.2
we can rewrite the exponential eZ0 = eS0+D0 as

eZ0 = eD0 + S0Ψ(S0, D0).

Then (eD0 +S0Ψ(S0, D0))e
−D0 is unitary and S0Ψ(S0, D0)e

−D0 = eD0−D0−
1 + S0Ψ(S0, D0)e

−D0 ∈ K(H) since S0 ∈ K(H). Moreover

(eD0 + S0Ψ(S0, D0))e
−D0 − 1 ∈ K(H),

which implies that eS0+D0e−D0 − 1 ∈ K(H). Therefore, by [6, Proposition 3]
there exists K ∈ K(H)ah such that

eS0+D0e−D0 = eK , and therefore eS0+D0 = eKeD0 .

Then

eZ0be−Z0 = eS0+D0be−S0−D0 = eKeD0be−D0e−K = eKbe−K ∈ Ob.
Theorem 4.2. Let Z0=S0+D0 with S0 ∈ K(H)ah and D0 ∈ D(B(H)ah)

and let b = Diag({λi}i∈N) ∈ D(K(H)) with λi 6= λj for each i 6= j, and
γ(t) = etZ0be−tZ0 for all t ∈ R. Then

(a) γ(t) ∈ Ob for all t ∈ R, and
(b) if Z0 is minimal for D(B(H)ah) (see (1.2) and the Preliminaries) then

γ : [−π/(2‖Z0‖), π/(2‖Z0‖)] → Ob is a minimal length curve on Ob
relative to the distance (2.6).

Proof. (a) follows directly from Proposition 4.1. Note that (a) holds even
though Z0 may not be compact.
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In order to prove (b) consider Pb = {ubu∗ : u ∈ U(H)}; then by [8,
Theorem II], since Z0 is minimal, the curve γ has minimal length over all
the smooth curves in Pb that join γ(0) = b and γ(t) with |t| ≤ π/(2‖Z0‖).
Since clearly Ob ⊆ Pb, for each t0 ∈ [−π/(2‖Z0‖), π/(2‖Z0‖)] the curve γ is
minimal in Ob, that is,

L(γ) = dist(b, γ(t0)),

where dist is the rectifiable distance defined in (2.6).

Remark 4.3. Recall that for every S0 there always exists a minimal
Z0 ∈ B(H)ah as in Theorem 4.2 although it may not be compact (see [8], [5]).

Proposition 4.4. If b = Diag({λi}i∈N) ∈ D(K(H)) with λi 6= λj for

each i 6= j, then Ob = OUk,db and OUk+d

b ⊆ Ob.
Proof. Since b is diagonal and eKeDbe−De−K = eKbe−K , it follows that

Ob = OUk,db . The inclusion OUk+d

b ⊆ Ob is trivial because b is diagonal and
Uk,d ⊃ Uk+d (see Proposition 3.4(3)).

Remark 4.5. Under the assumptions of Proposition 4.4, if c ∈ Ob the
following identifications can be made:

Tc(Ob) ∼= T1(Uk)/T1(Ib) = K(H)ah/D(K(H)ah)

and

Tc(O
Uk,d
b ) ∼= T1(Uk,d)/T1(Ib)

∼=
(
K(H)ah +D(B(H)ah)

)
/D(B(H)ah).

Moreover the norm on each quotient coincides on every class since for K ∈
K(H)ah we have ‖[K]‖ = infd∈D(K(H)ah) ‖K + d‖ = infD∈D(B(H)ah) ‖K +D‖
(see for example [5, Proposition 5]). Therefore the Finsler metrics defined
by the subgroups Uk and Uk,d coincide on Ob.

Let c = LeK0 · b = eK0be−K0 ∈ Ob (for K0 ∈ K(H)ah) and x ∈ Tc(Ob).
Then there always exists a vector zc = LeK0 ·Z0 with zcc−czc = xminimal for
{F ∈ B(H)ah : Fc−cF = 0} = {F ∈ B(H)ah : F = eK0De−K0 for some D ∈
D(B(H)ah)} such that Z0 is minimal for D(B(H)ah) as in Theorem 4.2(b)
and Remark 4.3. That is,

‖x‖c = ‖[zc]‖c = inf
F∈B(H)ah∩{c}′

‖zc + F‖

= inf
D∈D(B(H)ah)

‖eK0Z0e
−K0 + eK0De−K0‖

= inf
D∈D(B(H)ah)

‖Z0 +D‖ = ‖[Z0]‖.

This equality and the left invariance of the action LeK imply that the curve

β(t) = etzcce−tzc
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for t ∈ [−π/(2‖zc‖), π/(2‖zc‖)] satisfies β(0) = c, β̇(0) = x = zcc− czc and
L(β|[r,s]) = L(γ|[r,s]) for the curve γ mentioned in Theorem 4.2 and every
[r, s] ⊂ [−π/(2‖zc)‖, π/(2‖zc‖)]. The previous comments and results allow
us to prove the following.

Corollary 4.6. Let b = Diag({λi}i∈N) ∈ D(K(H)h) for each i 6= j,
c = eK0be−K0 ∈ Ob, with K0 ∈ K(H)ah, and x ∈ Tc(Ob). Then there exists
Z0 ∈ B(H)ah minimal for D(B(H)ah) such that β(t) = etzcce−tzc ∈ Ob
for all t ∈ R, zc = eK0Z0e

−K0 and x = LeK0 · (Z0b − bZ0). Moreover,
β : [−π/(2‖zc‖), π/(2‖zc‖)]→ Ob is a minimal length curve in Ob such that
β(0) = c, β̇(0) = x relative to the distance (2.6).

Proof. Given x ∈ Tc(Ob) we can choose Z0 ∈ K(H)ah such that Z0b −
bZ0 = Le−K0 · x ∈ Tb(Ob) and ‖Z0‖ = infD∈D(B(H)ah) ‖Z0 + D‖ as in

Theorem 4.2 and Remark 4.3. Z0 is minimal for D(B(H)ah) and there-
fore Theorem 4.2(b) applies and γ(t) = etZ0be−tZ0 is a short curve for
t ∈ [−π/(2‖Z0‖), π/(2‖Z0‖)]. Direct calculations show that

x = LeK0 · (Z0b− bZ0)

= (LeK0 · Z0)(LeK0 · b)− (LeK0 · b)(LeK0 · Z0).

If zc = LeK0 ·Z0 = eK0Z0e
−K0 it is apparent that if β(t) = etzcce−tzc for t ∈ R

and c = LeK0
·b, then β(0) = c and β̇(0) = zcc−czc = LeK0 · (Z0b−bZ0) = x.

Similar considerations to those in Proposition 4.1 using the fact that

β(t) = eK0etZ0e−K0eK0beK0e−K0e−tZ0e−K0 = LeK0 (etZ0be−tZ0)

= LeK0 (γ(t))

imply that β(t) ∈ Ob for all t ∈ R.

Standard arguments for homogeneous spaces (invariance of the Finsler
metric) imply that β is a curve of minimal length when defined on the
interval [−π/(2‖zc‖), π/(2‖zc‖)] = [−π/(2‖Z0‖), π/(2‖Z0‖)] as γ is.

Remark 4.7. Theorem 4.2, Remark 4.5 and Corollary 4.6 allow us to
describe short curves β in Ob with initial condition β(0) = c even for velocity
vectors x ∈ Tc(Ob) that do not have a minimal compact lifting Z0. Thus
Uk is an example of a group whose action on Ob has short curves that need
not be described with minimal vectors F in {F ∈ B(H)ah : Fc − cF = 0}.
Nevertheless there exists another group Uk,d acting on Ob such that its
b-orbit coincides with that of Uk, defines the same Finsler metric on it and
where every short curve can be described by means of a minimal lifting.

The previous geometric properties yield the following results relating
the quotient norm ‖[K]‖ = infD∈D(B(H)ah) ‖K + D‖ of two anti-Hermitian
compact operators.
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Proposition 4.8. Let K1,K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah) be
such that etK1eD1 = etK2eD2 for all t ∈ [0, 1]. Then

‖[K1]‖ = ‖[K2]‖.

Proof. Let b = Diag({λi}i∈N) ∈ D(K(H)h) with λi 6= λj for each i 6= j.
The equality etK1eD1 = etK2eD2 implies that

etK1be−tK1 = etK2be−tK2

for all t ∈ [0, 1]. If we consider α, β : [0, 1]→ Ob defined by

β(t) = etK1be−tK1 and α(t) = etK2be−tK2 ,

then L(β) = L(α), so
	1
0 ‖β

′(t)‖β(t) dt =
	1
0 ‖α

′(t)‖α(t) dt, and therefore ‖[K1]‖
= ‖[K2]‖.

Proposition 4.9. Let K ∈ K(H)ah and D ∈ D(B(H)ah) be such that
K + D is minimal and ‖K + D‖ < π/2. If K ′ ∈ K(H)ah is such that
eK+D = eK

′
eD then

‖[K]‖ ≤ ‖[K ′]‖.

Proof. Let b = Diag({λi}i∈N) ∈ D(B(H)h) with λi 6= λj for each i 6= j,
and consider α, β : [0, 1]→ Ob defined by

β(t) = et(K+D)be−t(K+D) and α(t) = etK
′
be−tK

′
.

Observe that since eK+D = eK
′
eD, we have β(0) = α(0) and β(1) = α(1).

But β has minimal length between all rectifiable unitary curves that join
b to β(1) = eK+Dbe−(K+D) = eK

′
be−K

′
= α(1) (see Corollary 4.6 and [8]).

Therefore L(β) ≤ L(α), so

1�

0

‖β′(t)‖β(t) dt = ‖Kb− bK‖b = ‖[K]‖ ≤
1�

0

‖α′(t)‖α(t) dt

= ‖K ′b− bK ′‖b = ‖[K ′]‖.
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