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Neuronal ceroid lipofuscinoses (NCLs) comprise 13 hereditary

neurodegenerative pathologies of very low frequency that a�ect individuals

of all ages around the world. All NCLs share a set of symptoms that are

similar to other diseases. The exhaustive collection of data from diverse

sources (clinical, genetic, neurology, ophthalmology, etc.) would allow being

able in the future to define this group with greater precision for a more

e�cient diagnostic and therapeutic approach. Despite the large amount of

information worldwide, a detailed study of the characteristics of the NCLs in

South America and the Caribbean region (SA&C) has not yet been done. Here,

we aim to present and analyse the multidisciplinary evidence from all the

SA&C with qualitative weighting and biostatistical evaluation of the casuistry.

Seventy-one publications from seven countries were reviewed, and data

from 261 individuals (including 44 individuals from the Cordoba cohort) were

collected. Each NCL disease, as well as phenotypical and genetic data were

described and discussed in the whole group. The CLN2, CLN6, and CLN3

disorders are the most frequent in the region. Eighty-seven percent of the

individuals were 10 years old or less at the onset of symptoms. Seizures were

the most common symptom, both at onset (51%) and throughout the disease

course, followed by language (16%),motor (15%), and visual impairments (11%).

Although symptoms were similar in all NCLs, some chronological di�erences

could be observed. Sixty DNA variants were described, ranging from single

nucleotide variants to large chromosomal deletions. The diagnostic odyssey

was probably substantially decreased after medical education activities
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promoted by the pharmaceutical industry and parent organizations in some

SA&C countries. There is a statistical deviation in the data probably due to the

approval of the enzyme replacement therapy for CLN2 disease, which has led

to a greater interest among the medical community for the early description

of this pathology. As a general conclusion, it became clear in this work that

the combined bibliographical/retrospective evaluation approach allowed a

general overview of themultidisciplinary components and the epidemiological

tendencies of NCLs in the SA&C region.

KEYWORDS

neuronal ceroid lipofuscinoses (NCL), South America-Caribbean, epidemiology,

genotype, phenotype

Introduction

Neuronal ceroid lipofuscinoses (NCLs) are rare inherited

neurodegenerative disorders of all ages, clinically characterized

by progressive loss of speech, vision, cognitive and motor

skills, with refractory seizures and early death. Taken together,

they are the most common cause of neurodegeneration in

childhood (1), although adulthood phenotype has also been

described (2). Morphologically, NCLs are characterized by the

accumulation of undegraded lipoprotein lipofuscin-likematerial

within lysosomes (1), which includes them in the group of

lysosomal storage disorders. To date, thirteen NCL diseases have

been described, named according to the affected gene (CLN1-

CLN14 diseases, CLN9 disease was suggested and later removed)

(3). All the proteins encoded by these genes were defined;

however, the specific role of some of them, and how they lead

to the lysosomal pathology, remain to be fully elucidated.

Individuals affected by an NCL have been described and

studied throughout the world, especially in the Northern

Hemisphere where most of the “classical” (CLN1, CLN2, CLN3,

CLN4, and CLN10 diseases), as well as the “variant” NCLs

(CLN5, CLN6, CLN7, CLN8, CLN11, CLN12, CLN13, and

CLN14 diseases), were identified for the first time. For example,

CLN5 and CLN8 were first described in Finland (4, 5), CLN6

among the Romany population, and in a big Costa Rican family

(6–9), and CLN7 was found in a cohort of Turkish children (10).

The information of these individuals was subsequently collected

in massive repositories to support the growing number of cases,

either specific for NCLs (such as the NCL Resource https://

www.ucl.ac.uk/ncl-disease/, supported by the University College

London and curated by Dr Sara Mole; and the DEM-CHILD

registry, led by Dr Angela Schulz), or for diverse disorders (such

as Orphanet https://www.orpha.net/consor/cgi-bin/index.php,

and LOVD https://www.lovd.nl). This information is then used,

for example, for delineating the natural history of a particular

NCL disease, the mutation spectrum, the population level, etc.

Later, these results can finally be used as controls or reference

points to compare future cases (11–13), and for epidemiological

purposes (12).

There is a relative imbalance between the Northern and

Southern Hemisphere countries of NCL cases registered in

public databases. This might be due to differences in the number

of referral centers and research facilities, the development of

a robust and efficient national health system, the possibility

and time to get a precise diagnosis (“diagnostic odyssey”), the

knowledge of the diseases and the registries by the treating

physicians, among others. The knowledge of a disease can

in turn be increased by some other factors, such as available

therapies, the degree of medical education, advocacy activities

of family organizations, and other socio-economic factors.

Thus, the South American and the Caribbean (hereinafter,

SA&C) populations, for example, appear underrepresented in

the databases. In the present review, we seek to carry out

a multidisciplinary and epidemiological update of the NCL

information in SA&C, collecting published information from

different medical specialities (neurology, pediatrics, radiology,

medical genetics, morphology, enzymology, electrophysiology,

etc.) to build a baseline for regional medical use, avoid

the registration of repeated cases and find out the regional

specificities. Ultimately, we expect to feed regional and

international databases and overcome the diagnostic odyssey,

misdiagnosis, and underdiagnosis of various countries in this

ethnically heterogeneous region (14).

Analysis methodology

A comprehensive bibliographic search was made in

the four principal databases of scientific articles (PubMed

https://pubmed.ncbi.nlm.nih.gov/, ScienceDirect https://www.

sciencedirect.com/, Google Scholar https://scholar.google.

com/, and SciELO https://www.scielo.org/), using as keywords

“Neuronal ceroid lipofuscinosis,” the HGNC approved symbol

for each NCL gene (e.g., PPT1), its most common alias (e.g.,
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CLN1, INCL), and the name of each SA&C country. All articles

matching the keywords and including at least one author with

a SA&C affiliation were collected. From the first compilation,

only those articles with references to affected individuals (such

as clinical, biochemical, genetic, morphological studies, etc.)

were retrieved and subsequently analyzed. The individuals

corresponding to the Cordoba cohort (15), whether or not

published, who have a precise diagnosis and complete clinical

data, were also included. In these cases, each individual or

caregiver signed an informed consent approved by the local

ethical board [Inter-institutional Committee of Ethics in Health

Research (CIEIS—Polo Hospitalario)] authorizing not only

the extraction, manipulation, and analysis of their samples for

diagnostic purposes but also the dissemination of clinical data

ensuring the total anonymity of the individuals. Those subjects

with precise references to previous reports were tracked to

avoid or reduce the number of duplications. All the information

available (clinical, biochemical, genetic, morphological) was

collected and analyzed using an Excel datasheet.

Bibliographical evidence

Seventy-one articles published between 1995 and 2022 were

collected from the four main literature databases (PubMed,

Google Scholar, ScienceDirect, and SciELO), including

original articles, reviews, case reports, short communications,

and published conference abstracts (a complete list of this

bibliography can be found in Supplementary Table 1). It should

be noted that an attempt has been made to collect all the

information published in public and massive bibliographic

portals. Articles published in regional or local journals,

conference presentations, or other non-print materials may

have been omitted. It is important to highlight the importance of

freely sharing clinical cases of rare diseases in public databases

for a better understanding of these diseases. The number

of publications has had “ups and downs” throughout the

period considered with a significant increase in the last decade

(Figure 1A). The first publication was by Taratuto et al. (16), in

which they presented a group of late infantile NCL (LINCL) and

juvenile NCL (JNCL) cases in Argentina. In 2005, a symposium

book published by the National University Cordoba (Cordoba,

Argentina), and edited by members of the recently formed

NCL Program (established at the Children’s Hospital of the

Province of Cordoba in 2003), conducted an update of the NCL

information derived mainly from research groups in SA&C.

Individuals from different SA&C countries coursing with any

NCL disease were described there, causing the publications peak

observed in Figure 1A.

Authors from seven countries (Argentina, Brazil, Chile,

Colombia, Mexico, Paraguay, and Venezuela) have collaborated

in the publications reviewed (Figure 1B). Moreover, 77% of the

articles were led by authors from SA&C. Individuals affected by

an NCL were described in Argentina, Brazil, Chile, Colombia,

Costa Rica, Mexico, Paraguay, Peru, and Venezuela (Figure 1C).

Argentina (n = 38 articles) and Brazil (n = 17 articles) were the

most represented countries, considering both the publications

and the individuals described, reflecting the awareness of rare

disease studies in the reference centers of these countries in

the region.

The SA&C cohort

Phenotypic, genetic, and demographic
distribution of cases

Two hundred sixty-one subjects affected by CLN1, CLN2,

CLN3, CLN5, CLN6, CLN7, CLN8, CLN11, or CLN12 diseases

were described in the literature and incorporated in this

review, including some non-published cases of the Cordoba

cohort (a complete list of these individuals and their associated

medical information is presented in Supplementary Tables 2, 3).

In older publications (16–23) the individuals were recorded

according to clinical and/or morphological data [presence

of intracellular bodies observed by transmission electron

microscopy (TEM)], resulting in clinical definitions (e.g.,

Santavuori-Haltia disease or Jansky-Bielschowsky disease, later

redefined as CLN1 and CLN2 diseases, respectively; infantile

NCL [INCL], LINCL, JNCL). As genetic testing increased, these

clinical definitions were correlated with genetic variants. Thus,

individuals with an INCL phenotype were mostly diagnosed

with CLN1, LINCL cases mostly with CLN2, and JNCL cases

mostly with CLN3 disease. However, the genotype/phenotype

correlation is not bidirectional (3). The current nomenclature

and classification of NCLs was agreed by an international panel

of experts in the clinical, genetic, biological, and morphological

fields, and formally established in 2012 (24). It establishes

the diagnostic definition of a case taking into account 7

axes (gene, genetic variant, biochemical phenotype, clinical

phenotype, ultrastructural phenotype, functionality and other

characteristics), which allows a precise definition in light of the

heterogeneity of this group of pathologies. Because molecular

confirmation was not performed in these old cases, the precise

genetic variants affecting these children were not defined, so they

were classified in this review as separated entities (NCL, INCL,

LINCL, and JNCL in Supplementary Tables 2 , 3).

Ninety-one individuals (35%) of the SA&C cohort are

female, 77 are male (29%), and 93 (36%) were not identified.

As expected, these values do not differ substantially from the

estimated percentages of both genders in SA&C (males: 49.4%,

females: 50.6%: Countrymeters https://countrymeters.info/es/

South_America,revisedJune26,2022 ; Supplementary Table 3).

In addition, 87% of the affected individuals were 10 years old or

less at the onset of symptoms (Figure 2). Only those individuals

affected by CLN11 or CLN12 disorders were older than 10 years
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FIGURE 1

The SA&C publications. Graphs showing (A) the publications per year and (B) per country, and (C) the number of individuals described per SA&C
country. All types of publications in public databases were collected. The country mentioned in a�liations was taken, even if the author from

SA&C was not leading the article. An increasing number of publications (mainly on CLN2) was observed in the last few years. Argentina and

Brazil are the most represented regarding the number of publications and individuals described, probably due to the increasing number of

professionals and centers specialized in these pathologies.

old at the onset of symptoms. However, one individual affected

by CLN12 disease was reported as having developmental delay

since birth, although associated with perinatal hypoxia (25).

CLN2 disease is the most represented NCL in the region

(n = 91), followed by CLN6 (n = 25) and CLN3 (n =

17). Likewise, LINCL (n = 77) and JNCL (n = 25) were

the most abundant phenotypes. Unlike CLN2 cases, which

were described along the subcontinent, other variants were

observed as local concentrations. For example, an important

cluster of CLN6 disease was described in Costa Rica (8, 26),

two CLN8 cases in Argentina (27, 28), one CLN11 case in

Brazil (29), and one and seven CLN12 cases in Brazil and

Chile, respectively (Supplementary Table 2) (25, 30, 31). The

CLN11 and CLN12 cases were not directly linked to an NCL.

Instead, they were mostly referred to as frontotemporal lobar

degeneration (caused by variants in the GRN/CLN11 gene) or a

Parkinson-like neurodegenerative syndrome caused by variants

in the ATP13A2/CLN12 gene. These genetic forms (as well as

CLN13 and CLN14) were officially included in the NCL group

in 2012, after confirming the presence of lipofuscin-like bodies

in the cells of affected individuals (24). However, it is still

very common to find them in the literature with the names of

their clinical forms, referring to their association with NCLs as

an annexe.
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FIGURE 2

Diagnostic odyssey in the SA&C cohort. Bar graph showing the age of onset (mean ± SEM, blue bars) and time to diagnosis (mean ± SEM,

orange bars) in the SA&C population analyzed. The age of onset could be recorded for 240 individuals, while the age at diagnosis could only be

defined for 89 individuals. The table below the graph indicates de number of individuals included in each analyzed group.

The diagnostic odyssey

The time from the onset of the symptoms to the precise

diagnosis did not vary significantly among the confirmed

disorders (CLN1-CLN12; Figure 2). The average time to a

precise diagnosis was 5.2 ± 1.0 years (mean ± SEM, ranging

from 0 to 13 years). Some individuals were diagnosed in a short

time because of either a genetic examination or having affected

siblings. On the other hand, a prolonged time to diagnosis could

be attributed to poor knowledge of these kinds of disorders,

particularly before the availability of reliable genetic tests. In

some cases (such as in CLN12), the diagnosis was made post-

mortem (25).

Clinical features

It is widely known that all NCLs share several clinical

symptoms, such as seizures, psychomotor decline, and visual

failure, which are also present in many other disorders (32).

However, the chronological order in which they appear is

usually considered at the time of differential diagnosis. The

age of onset of different symptoms (seizures, ataxia, motor

and cognitive deterioration, behavioral changes, and language

and visual failure) was collected and analyzed for the entire

SA&C cohort (Figure 3). The most common symptom at

onset were seizures (51% of individuals) followed by language

disorder (16%), motor impairment (15%), and visual failure

(11%; Supplementary Figure 1). It should be noted that many

times seizures are the symptom that leads to the first medical

consultation, but not the first of the disorder. For example,

some cognitive decline could be evident from an early age

but attributed to other factors and dismissed. Seizures were

also the most common symptom among all NCLs (12/13

groups), followed by pyramidal signs (11/13), cognitive decline

(11/13), and language difficulties (10/13). The CLN6 and

CLN7 disorders show a very rapid progression of symptoms,

with very little variability between cases. Something similar

occurs in CLN2 disease, although a greater variability in

the onset of swallowing difficulties, behavioral changes and

ocular abnormalities has been observed. It should be noted

that in this review no discrimination has been made between

those known as “classical” and “atypical” phenotypes. Thus, it

should be considered that among the CLN2 cases there are

“protracted” forms, with a slower symptomatic progression.

On the other hand, we have observed a greater chronological

dispersion of the symptoms in CLN3 cases (as in JNCL,

although we cannot guarantee that they are all from the same

genotype). Myoclonus has been observed at later ages in the

CLN5, CLN7, CLN8, and CLN12 diseases. Vision loss occurs

earlier in the CLN3 and CLN7 disorders. Language difficulties

were described as appearing earlier in the CLN2 and CLN6

diseases. Finally, considering the ages of onset of symptoms, the

reported cases of CLN1 in the SA&C region could be attributed
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FIGURE 3

Disease evolution of all NCL variants in the SA&C cohort. Graphs showing the age of onset (mean ± SEM) of some symptoms for each NCL

genotype and phenotype in the SA&C cohort. Values were obtained directly from clinical records or publications or estimated from the

information available in the bibliography. The set of symptoms collected was adapted from Lourenço et al. (11). The number of individuals

analyzed for each NCL variant is shown next to the graph titles. Values of the X-axis are expressed in years.

more to a “protracted” than to a “classic” infantile phenotype

(Figure 3).

All NCLs are characterized by the presence of lipofuscin-

like intralysosomal bodies in all cells. These accumulations are

observed by TEM in the form of defined patterns: granular

osmiophilic deposits (GROD), curvilinear (CB), fingerprint

(FP), or rectilinear bodies (RB), and can occur either alone or

mixed (1). For a long time, the examination of tissue biopsies by

TEM served as the method for the diagnosis of NCLs, leaving the

genetic study for the definition of the particular disease.With the
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advent of new generation sequencing technologies, the genetic

study is usually suggested within the main tests for diagnosis,

reserving the morphological study only for challenging cases.

More than half of the individuals in the SA&C cohort were

analyzed by TEM (n = 159, 59%). The CB pattern was the most

abundant among the individuals (n= 92, 35%), occurring more

frequently in the LINCL (n = 59) and CLN2 groups (n = 20).

On the other hand, the RB pattern has not been observed in the

analyzed population (Supplementary Figure 2).

The genetic background of the SA&C
cohort

Sixty DNA variants have been described in 119 individuals

of the SA&C population (Table 1; Supplementary Figure 3).

One individual was reported to have a heterozygous variant

in the CLN6 gene without specifying it (39), and another

with a positive linkage analysis pointing to chromosome

15, suggesting a variant in the CLN6 gene (7). Seventy-

seven percent have been variations in the coding sequence

of the protein involved, mostly causing missense changes

(42%). The intronic changes found (n = 13) correspond to

splicing regions, having been their pathogenicity confirmed

for the most frequent variant in the TPP1/CLN2 gene,

I7 c.887-10A>G, p.Pro295_Gly296insGluAsnPro (40) and

the variant I13 c.1306+5G>A, p.Gly398_Leu435del in

the ATP13A2/CLN12 gene (25). Five deletions have been

described, spanning few nucleotides [e.g., E9 c.1107_1108delTG,

p.Gly370Lysfs∗32 in the TPP1/CLN2 gene (Cordoba cohort)],

large intragenic deletions (such as the most frequent variant

of CLN3 disease, 1.02 kb deletion, c.462_677del) (36, 41),

or large chromosomal deletions (such as the deletion in the

8p23 region including the CLN8 gene) (28). The pathogenicity

of the variants has only been defined in 37% of cases. It

should be noted that the pathogenicity of the variants found

in the patients described is frequently not defined, or it is

only bioinformatically. Experimental validation should be

particularly necessary for changes whose effect on the protein is

less obvious, such as missense changes or deep intronic variants

in splicing regions. Although, on the other hand, the American

College of Medical Genetics (ACMG) has proposed guidelines

for the interpretation of variants that are currently widely

used (42).

When a rare genetic disorder with autosomal recessive

inheritance is diagnosed, consanguinity between the parents is

usually suspected. The consanguinity could only be confirmed

in 10% (n = 25) of the population analyzed. However, it

could not be defined in more than half of the individuals

(57%), suggesting that a higher percentage might be observed

(Supplementary Table 3).

Over time, the increase in the number of sequencing

performed and their inclusion in the databases lead to an update

of the consensus sequences. For example, the update of the

human genome sequence toward version GRCh38.p14 (latest

to date) was released on February 3, 2022. Although these

updates do not usually cause major changes in the nomenclature

of the variants described, it would be advisable to include

in the publications the data of the version of the database

used to identify and validate the variant (for example, the

transcript identifier).

Enzymatic tests in the SA&C region

Enzyme activity assays for PPT1 and TPP1 (also for CTSD,

although its application is less common) are widely used as

a rapid screening method for the CLN1 and CLN2 (and

CLN10) diseases, respectively (43–45). However, other NCLs

(such as CLN5, CLN6, CLN7, and CLN8) can also show reduced

enzymatic values (and not only PPT1 and TPP1 but also

all the lysosomal enzymes), thus providing data to guide the

diagnosis (27, 46–49). For example, the proteins CLN6 and

CLN8, present in the membrane of the endoplasmic reticulum,

make up the EGRESS complex responsible for transporting

soluble lysosomal enzymes to the Golgi apparatus. It has been

shown that the deficiency of any of these proteins causes a

decrease in the amount of soluble enzymes that reach the

lysosome, thus generating a generalized lysosomal deficiency

(46, 49). In the SA&C cohort, only 20% of individuals had

PPT1 or TPP1 enzyme activity studied in any of the tissues

used [leukocyte pellet, dried blood spot (DBS), or saliva;

Supplementary Figure 4]. The most common assay has been

the measurement of TPP1 activity in leukocyte pellets (20%)

followed by the TPP1 activity assay in DBS (19%). There is

a bias in these values toward the analysis of CLN2 disease in

these samples. First, enzymatic analysis in leukocyte pellet is

considered the “gold standard” for the diagnosis of both CLN1

and CLN2 diseases; therefore, it tends to be more frequently

reported in publications (if these tests are performed in several

tissues). On the other hand, DBS analysis is the most widespread

worldwide, due to the practicality of sending samples over

long distances with a minimum of deterioration. PPT1 and

TPP1 activity assays in saliva were first described by Kohan

et al. in 2005 (43). Despite being minimally invasive and with

quantitative robustness like that obtained with the leukocyte

pellet (50), its use has not reached the extent of other samples.

Lastly, enzyme assays are not always the first option for NCL

screening. When performing a genetic test and observing DNA

variants in genes other than PPT1/CLN1 or TPP1/CLN2 (or

CTSD/CLN10), enzymatic assays are not performed, and quite

sensibly. In addition, results “within the reference interval” (i.e.,

within the range of control values) may be usually disregarded

for final publication.
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TABLE 1 List of DNA variants described in the SA&C cohort.

Gene Variant Total alleles Allelic frequency Publications

CLN1 E5 c.451C>T, p.Arg151* (P) 1 0.0019 Cordoba cohort

I3 c.363-3T>G, p.? (U) 1 0.0019 Cordoba cohort

CLN2 E11 c.1424C>T, p.Ser475Leu (PP) 4 0.0077 Cordoba cohort, (11)

E4 c.311T>A, p.Leu104* (P) 3 0.0057 Cordoba cohort

I2 c.89+5G>C, p.? (U) 2 0.0038 Cordoba cohort

E8 c.1048C>T, p.Arg350Trp (PP) 8 0.0153 Cordoba cohort, (11)

I7 c.887-10A>G, p.Pro295_Gly296insGluAsnPro (P) 20 0.0383 Cordoba cohort, (11, 33)

E7 c.827A>T, p.Asp276Val (P) 21 0.0402 Cordoba cohort, (11)

I1 c.17+3G>T, p.? (U) 1 0.0019 Cordoba cohort

E6 c.622C>T, p.Arg208* (P) 11 0.0211 Cordoba cohort, (11, 33)

E8 c.1016G>A, p.Arg339Gln (PP) 2 0.0038 Cordoba cohort

E3 c.196C>T, p.Gln66* (P) 5 0.0096 Cordoba cohort, (11)

E11 c.1340G>A, p.Arg447His (PP) 6 0.0115 Cordoba cohort, (11, 34)

E7 c.225G>A, p.Gln75Gln (P) 1 0.0019 (35)

E11 c.1266G>C, p.Gln422His (PP) 1 0.0019 (11)

E12 c.1438G>A, p.Val480Met (U) 6 0.0115 (11, 33)

I8 c.1076-2A>T, p.? (PP) 10 0.0192 (11, 33)

E11 c.1358C>T, p.Ala453Val (PP) 1 0.0019 Cordoba cohort

E11 c.1358C>A, p.Ala453Asp (PP) 2 0.0038 Cordoba cohort

E13 c.1603G>C, p.Gly535Arg (PP) 4 0.0077 Cordoba cohort, (11)

E9 c.1107_1108delTG, p.Gly370Lysfs*32 (PP) 1 0.0019 Cordoba cohort

I5 c.509-1G>C, p.? (PP) 1 0.0019 Cordoba cohort

I12 c.1552-1G>A, p.? (PP) 2 0.0038 (11, 34)

E6 c.503_504insTGGA, p.Phe169Glyfs*20 (P) 1 0.0019 (35)

E12 c.1439T>G, p.Val480Gly (PP) 1 0.0019 (11)

E11 c.1343C>A, p.Ala448Asp (PP) 1 0.0019 (11)

E6 c.616C>T, p.Arg206Cys (P) 2 0.0038 (33)

E5 c.471C>A, p.Tyr157* (PP) 1 0.0019 (33)

CLN3 E14 c.1195G>T, p.Glu399* (PP) 1 0.0019 Cordoba cohort

1.02 kb deletion (c.462_677del) 10 0.0192 Cordoba cohort, (36)

E6 c.400T>C, p.Cys134Arg (PP) 1 0.0019 Cordoba cohort

E13 c.1000C>T, p.Arg334Cys (PP) 1 0.0019 Cordoba cohort

CLN5 E1 c.291_292insC, p.Ser98Leufs*13 (PP) 2 0.0038 Cordoba cohort

E2 c.335G>A, p.Arg112His (P) 4 0.0077 (37)

CLN6 I4 c.486+8C>T, p.? (U) 1 0.0019 Cordoba cohort

E4 c.307C>T, p.Arg103Trp (PP) 1 0.0019 Cordoba cohort

E4 c.461_463delTCA, p.Ile153del (P) 1 0.0019 Cordoba cohort

E6 c.662A>C, p.Tyr221Ser (PP) 2 0.0038 (8)

E3 c.214G>T, p.Glu72* (P) 23 0.0441 (8, 26)

E6 c.552_552delC, p.Phe185Serfs*21 (PP) 2 0.0038 (38)

E5 c.510_512delCTA, p.Tyr171del (PP) 2 0.0038 (8)

E7 c.755G>A, p.Arg252His (PP) 1 0.0019 Cordoba cohort

E6 c.555_556insC, p.Phe186Leufs*16 (PP) 1 0.0019 Cordoba cohort

E3 c.250T>A, p.Tyr84Asn (PP) 1 0.0019 Cordoba cohort

E4 c.368G>A, p.Gly123Asp (P) 7 0.0134 (8)

E7 c.722T>C, p.Met241Thr (P) 7 0.0134 (8)

E3 c.244G>C, p.Gly82Arg (PP) 2 0.0038 (38)

I2 c.198+104T>C (U) 16 0.0307 (26)

(Continued)
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TABLE 1 Continued

Gene Variant Total alleles Allelic frequency Publications

CLN7 I2 c.63-4delC, p.? (U) 2 0.0038 Cordoba cohort

E3 c.103C>T, p.Arg35* (P) 5 0.0096 Cordoba cohort

E12 c.1444C>T, p.Arg482* (P) 1 0.0019 Cordoba cohort

I9 c.863+1G>A, p.? (PP) 1 0.0019 Cordoba cohort

CLN8 E2 c.1A>G, p.? (PP) 1 0.0019 Cordoba cohort

Deletion of 378.6 kb in 8p23 region 2 0.0038 (28)

E3 c.792C>G, p.Asn264Lys (P) 1 0.0019 Cordoba cohort

CLN11 E8 c.767_768insCC, p.Gln257Profs*27 (P) 2 0.0038 (29)

CLN12 E15 c.1510G>C, p.Gly504Arg (PP) 2 0.0038 (30)

I22 c.2529+1G>A, p.? (P) 2 0.0038 (31)

E26 c.3057_3057delC, p.Tyr1020Thrfs*3 (P) 7 0.0134 (25, 31)

I13 c.1306+5G>A, p.Gly398_Leu435del (P) 5 0.0096 (25)

The allelic frequency was calculated based on all the individuals in the SA&C cohort. P, pathogenic; PP, probably pathogenic; U, uncertain significance.

Neuroimaging and electrophysiology
studies

Certain features common to all NCLs were noted in the

results of neurophysiological and imaging studies. Magnetic

resonance images and computed tomography studies showed,

to a greater or lesser extent, some degree of cerebral and/or

cerebellar atrophy, with signal hyperintensity in periventricular

regions also being very common. Electroencephalography

studies generally showed slowing of basal rhythms, with focal

or generalized epileptic paroxysms, with generalized polyspike

or spike-wave phenomena. Electroretinogram and visual evoked

potentials studies were performed mostly in those cases showing

some degree of visual loss, observing optic nerve atrophy,

retinitis pigmentosa, pale pupils, and thinning of retinal

capillaries, among others. Supplementary Table 3 shows detailed

information on the results of the studies performed on all

patients in the SA&C cohort.

Concluding remarks

Neuronal ceroid lipofuscinoses are a heterogeneous group

of rare disorders sharing a handful of symptoms that, in turn,

are common in other neurodegenerative pathologies. However,

particular symptoms, as well as the sequential combination

of them, can be recognized in NCLs, helping in some way

to guide the diagnosis. To improve this, it is important to

collect and study the set and sequence of phenotypic features

of each precisely diagnosed NCL through its manifestation

in each individual. The study of the SA&C population of

affected individuals is in this sense a “black pearl” to delineate

the clinical assessment of new cases. Although many subjects

have been reported as coursing a “classical” natural history,

many others have broken the “classical” forms introducing

“atypical” symptoms or disease evolution to the spectrum of

NCL phenotypes. Such are the cases of CLN2 (the “atypical”

or “protracted” variant described in the Cordoba cohort) (51),

CLN6 (Costa Rica’s variant) (8, 26, 52, 53), and CLN8 diseases

(the congenital variant) (27). This heterogeneity may be due

to the ethnic and genetic diversity imprinted on the SA&C

population, as suggested by some authors (50).

This review brings with it a series of limitations: the

literature included was only that available in public databases;

many relevant clinical data have not been reported in the

publications, either due to omission, ignorance or were simply

out of the scope of the work; the criteria for defining a

non-obvious symptom may vary between different clinicians,

leading sometimes to a late description of its onset: despite

our efforts, some individuals were likely counted more than

once in our analysis due to inefficient identification in the

literature; and on the other hand, those cases that have not

been published have been left out of this work (except for

the cases of our research center). However, the complexity

and quantity of the information collected allow us to address

some points: (1) the multidisciplinary approach allowed us to

describe and compare the evolution of each NCL in the region

and to recognize some of the peculiarities of each genotype.

Despite the phenotypic similarities between NCLs with each

other and with other pathologies, there are certain variations

(mainly chronological) that may guide medical diagnosis.

Similarly, a multidisciplinary study (clinical, genetic, enzymatic,

radiological, ophthalmological, etc.) of each particular case is

always necessary; (2) Certain NCLs are more studied worldwide

than others, such as CLN2 and CLN3. In principle, this may

be since they are the most abundant NCLs, and therefore, the

most important for the prompt search for effective treatments.

However, the commercial availability of enzyme replacement
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therapy for CLN2 in 2017 has aroused medical interest in

the early diagnosis of this pathology, and scientific interest in

studying the results of its application. This led to an increase

in published articles on this pathology, both worldwide and

in SA&C; (3) The less prevalent phenotypes may still be

underdiagnosed in many countries. Medical and technological

advances promote awareness of some diseases, as happened

with therapy for CLN2. This can pose two future scenarios:

that the search for a “better known” disease leads to the

diagnosis of another “less known,” or that the “less known” are

underdiagnosed. Despite this, since NCLs are still little known to

many health professionals, underdiagnosis may be generalized

for all of them; (4) Knowledge about these rare diseases was

increased in countries such as Argentina, Brazil, and Chile as an

indicator of the impact of genomic technology, new therapeutic

interventions based on enzyme replacement technology and

gene therapy, medical education, and family advocacy; (5) The

diagnostic odyssey gradually decreased (mainly in the most

advanced countries of the region), probably as the diseases

became better known by the local medical community after

the appearance of new therapeutic solutions on the immediate

horizon, as well as the earlier implementation of specific (panels

of genes) or generalized genetic studies (genomic or exomic

studies); (6) Diagnosis through TEMhas been gradually replaced

by genetic studies. Currently, the wide availability of genetic

tests, as well as the minimal intervention on the patient (blood

sample vs. tissue biopsy) has promoted this transition. However,

since the accumulation of intralysosomal compounds is the

pathognomonic feature of NCLs, this practice is suggested in

cases where the clinic and genetics do not allow arriving at the

same diagnosis.

In summary, an exhaustive search of the public literature

on NCLs by SA&C authors, as well as referring to affected

individuals in the same region, has been performed for this

review. In the same way, the clinical information of 44

individuals included in the Cordoba cohort since 2003 has been

compiled. Altogether, 71 scientific articles and 261 individuals

affected by any NCL have been analyzed, becoming the largest

compilation to date of clinical and bibliographic information on

NCLs for SA&C. This work aims to promote the creation and/or

improvement of public databases for the region, strengthen the

information network on NCLs, lay the foundations for rigorous

criteria for clinical data collection and help diagnose these

challenging pathologies.
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SUPPLEMENTARY FIGURE 1

Onset symptoms in the SA&C cohort. Graph showing the symptoms (or

set of them) and percentage of total individuals that showed them at the

onset of the disorder. In the cases of individuals that showed more than

one symptom at onset, they were added to each group. Seizures are

significantly the most common symptom at onset (possibly

overestimated) followed by language disorders, motor impairment and

visual failure. The NA group represents those individuals with data not

available.

SUPPLEMENTARY FIGURE 2

Lipofuscin-like accumulation in the SA&C cohort of individuals. Bar

graph showing the percentage of individuals a�ected by each NCL

disorder that showed any kind of lipofuscin-like accumulation observed

by TEM. The total number of individuals in each NCL disease is shown

on the X-axis. Curvilinear bodies (CB) are significantly the most

represented pattern observed in most of the NCLs, followed by granular

osmiophilic deposits (GROD) and fingerprints (FP). Rectilinear bodies

(RB) were not observed in any of the individuals analyzed. Those

individuals that showed more than one pattern (mixed) were added to all

the corresponding groups.

SUPPLEMENTARY FIGURE 3

Summary of the DNA variants information in the SA&C cohort. Graphs

showing information about the (A) position, (B) protein e�ect and (C)

predicted consequence of all DNA variants described in the SA&C
cohort. In those cases where the pathogenicity of the DNA variant was

not defined in the publication, it was predicted bioinformatically by

using Mutation Taster (https://www.mutationtaster.org/).

SUPPLEMENTARY FIGURE 4

Enzymatic analyzes in SA&C. Bar graphs showing the number of

individuals analyzed enzymatically for each type of sample and NCL

disorder. TPP1 was significantly more analyzed than PPT1 in all samples

and NCLs. In addition, leukocytes and dried blood spots (DBS) are

significantly more used than saliva. In turn, it is observed that the largest

number of tests were performed for individuals a�ected by CLN2

disease, as expected. Likely, there is a bias mainly toward CLN2 disease

on the total number of tests performed, due to the lack of information

on enzyme assays in other NCLs. N, the total number of individuals

analyzed for each NCL disorder. If an individual was analyzed for more

than one tissue and/or enzyme, it was added to all the corresponding

groups.
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