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Bistability in orbital trajectories of a chiral self-propelled particle interacting with an external field
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In this paper, the dynamics of a self-propelled stochastic particle under the influence of an axisymmetric
light field is experimentally studied. The particle under consideration has the main characteristic of carrying
a light sensor in an eccentric location. For the chosen experimental conditions, the emerging trajectories are
orbital, and, more interestingly, they suggest the existence of bistability. A mathematical model incorporating
the key experimental components is introduced. By means of numerical simulations and theoretical analysis, it is
found that, in addition to the orbiting behavior, the sensor location could produce trapped or diffusive behaviors.
Furthermore, the study reveals that stochastic perturbation and the eccentric location of the sensor are responsible
for inducing bistability in the orbital trajectories, supporting experimental observations.
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I. INTRODUCTION

Active matter describes systems which, being out of ther-
mal equilibrium, are composed of agents that consume energy
and have the characteristic of being self-propelled [1,2]. These
types of systems can have both natural [3–5] and artificial
[6–9] origins. Currently, many researchers have focused their
attention on studying the interaction of active matter with
the environment [10–15]. This is of importance since, on the
one hand, systems found in nature are always confined or
affected by external stimuli [10], and on the other, synthetic
systems are designed to work under such conditions [10,16].
In particular, the motion of particles can be affected by local or
global gradients of some external influence. Therefore, effects
such as chemotaxis [13,17,18] and phototaxis [15,19,20] may
occur. An example of a motile cell that navigates assisted by
an external concentration field is the sperm cell [21]. These
cells use the chemotaxis mechanism to find the egg [22]. Un-
like bacteria [23], where they measure the component parallel
to the trajectory of the concentration gradient, sperm cells can
sense the perpendicular component and use this information
to steer their direction of motion [21].

The main objective of this paper focuses on studying the
behavior of an isolated active particle that interacts with an
external light field through an eccentric sensor. The goal is
to elucidate the role of the former asymmetry in emergent
behavior when considering deterministic and stochastic in-
teractions. Section II presents experimental results on the
behavior of the particle when interacting deterministically and
stochastically with an external field. For this aim, a robot
commercially available as Kilobot was used [24]. In Sec. III,
a mathematical model incorporating the key experimental in-
gredients is presented and used to further analyze the role
of the sensor location and noise. Finally, Sec. IV discusses
conclusions.

*gpatters@itba.edu.ar

II. EXPERIMENTAL RESULTS

The Kilobot features differential locomotion and ambient
light sensing capacities, among others. The robot stands on
three legs: one front and two rear. Owing to the differential
control of two vibrators, the robot can rotate in one direction
or the other around one of its rear legs at a speed of 0.5 rad/s.
The Kilobot has the peculiarity that the light sensor is located
on top of the robot at an angle β ≈ 1.4 with respect to the
orientation of the particle n—defined by the front leg and the
center of the robot—as can be seen in Fig. 1(a).

The experimental setup consisted of a square table with
sides L = 1.2 m whose surface was covered by a melamine
whiteboard. This table was illuminated by a flashlight located
at H = 1.4 m in height, projecting an axisymmetric spotlight
as illustrated in Figs. 1(a) and 1(b). The experiments were
recorded at a rate of 1 fps with a zenith camera located next
to the flashlight [see Fig. 1(a)]. The propulsion mechanism
of the robot was based on consecutive steps caused by turns
around one of its rear legs. The counterclockwise turns were
around the left leg, while the clockwise turns were around the
right leg. Two different step sizes were produced by varying
the turning time T , that is, the duty cycle of the vibrators.
Between each step, the robot stopped for 0.5 s and measured
the light intensity.

The interaction with the light field was based on an algo-
rithm seeking maximum intensity. Two types of interactions
were considered: one deterministic and the other stochastic.
The first consisted of reversing the direction of rotation if the
intensity value remained the same or decreased with respect to
the measurement of the previous step. For the second interac-
tion, the robot made a random choice regarding the direction
of the subsequent turn if the intensity of light measured be-
tween steps remained the same or decreased. In both cases, the
turning direction remained the same if the intensity value was
greater than that of the previous step. Therefore, the interplay
between the sensor asymmetry and the interaction with the
external field effectively converted the Kilobot into a chiral
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FIG. 1. Experimental setup. (a) The Kilobot is placed over a
squared table of length L = 1.2 m, illuminated by a flashlight lo-
cated at height H = 1.4 m. Robot top view: The sensor is located
at an angle β with respect to orientation n. (b) Photograph of the
experiment. (c) Intensity profile measured at the surface of the table.
The line stands for the fit of a super-Gaussian function.

particle. Studies in systems composed of chiral particles have
shown rich emergent behaviors [25–27].

Before carrying out the experiments, the intensity profile
was characterized. For this, a Kilobot was programed to emit
a flashing signal with a duty cycle proportional to the intensity
received. Figure 1(c) shows the radial profile measured from
the center of the table. It can be seen to follow a bell-like curve
that extends up to approximately 30 cm from the center.

First, the deterministic interaction was studied. The Kilo-
bot was placed at an arbitrary position away from the center of
the spotlight (between 20 and 30 cm) and allowed to circulate
freely for 15 min. Figures 2(a) and 2(b) show the trajectories
made by the robot for T = 1 s and T = 2 s, respectively. In
both cases, the trajectories converge to approximately circular
orbits and their direction of circulation is counterclockwise
(the sensor always pointing towards the center of the table).
These results are in agreement with those found in different
types of chiral particles [25,26,28].

For the experiments involving a stochastic interaction, tra-
jectories of 60 min duration were recorded. Figures 2(c) and
2(d) show that the Kilobot roamed over a larger area, per-
forming more complex trajectories. In the case of T = 1 s,
the trajectory followed shorter radial distances, while for
T = 2 s, the Kilobot was mostly at farther radial distances.
Figures 2(e)–2(h) show the radial distances as a function
of time and their corresponding probability density func-
tions (PDFs). Bimodal distributions reveal that the trajectories
could have two preferential distances. While for T = 1 s, the
PDF has a maximum at r ≈ 5 cm, when the turning time
is increased to T = 2 s, the maximum value rises to r ≈
15 cm. Despite its stochastic behavior, the robot follows a
counterclockwise orbital trajectory as shown by the azimuthal
velocity vθ in Figs. 2(i) and 2(j).

III. NUMERICAL RESULTS

The experimental results suggest that sensor location
affects the emergent trajectories by imposing a preferen-
tial direction of rotation and, in addition, the stochastic

FIG. 2. Experimental results. (a) and (b) Deterministic behavior
with T = 1 s and T = 2 s, respectively. The Kilobot orbits around
the spotlight with the sensor facing towards the center of the field.
(c) and (d) Stochastic behavior with T = 1 s and T = 2 s, respec-
tively. The Kilobot performs more complex trajectories but is still
biased by the position of the sensor. (e) and (f) Radial position
as a function of time for the stochastic behavior with T = 1 s and
T = 2 s, respectively. Probability distribution (PDF) of (g), (h) the
radial position and (i), (j) the azimuthal velocity. The black lines
stand for the kernel density estimate.

component introduces a bistability effect. To further study
these behaviors, a model was designed to include the fol-
lowing factors: (i) alignment between sensor orientation and
external field, and (ii) a correlated noise term to account for
stochastic steps. The evolutions of the position r and the
orientation n = (cos α, sin α) are

ṙ = v0 n, (1)

τ0α̇ ẑ = s × ∇rI (r) + ξ ẑ, (2)

where v0 is the constant velocity of the particle, α is the orien-
tation angle of the particle n, s = [cos (α + β ), sin (α + β )]
is the absolute orientation of the sensor, τ0 is a character-
istic relaxation time, I (r) the field intensity at distance r,
and ξ Gaussian colored noise with correlation 〈ξ (t )ξ (t ′)〉 =
2D
τξ

exp −| t−t ′
τξ

| that models the stochastic steps. The light in-
tensity profile was modeled by a super-Gaussian function
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FIG. 3. Numerical results. (a) and (b) Estimated PDF for
τα = 10−3 and τα = 10−2, respectively. (c)–(f) Radial position as
a function of time and the corresponding probability distribution
(PDF). The black lines stand for the kernel density estimate. The
parameters are τη = 1, a = 4.5, β = 1.4, d = 10−2, and (c), (d) τα =
10−3 and (e), (f) τα = 10−2.

I (r) = I0 exp (− r
l0

)a whose parameters were extracted from
the data presented in Fig. 1(c). The calibration leads to I0 =
900, l0 = 250 cm, and a = 4.5. Rescaling the length by l0 and
the time by l0

v0
, the dimensionless equations are

ṙ = n, (3)

ταα̇ ẑ = s × ∇r i(r) + η ẑ, (4)

with τα = v0
I0

τ0, η = l0
I0
ξ , 〈η(t )η(t ′)〉 = 2d

τη
exp −| t−t ′

τη
|, d =

l0v0

I2
0

D, and τη = v0
l0

τξ .
The equations were simulated using the Euler-Maruyama

algorithm with an integration time step of dt = 10−5 and a
simulation length of 103. The colored-noise samples were
generated from an Ornstein-Uhlenbeck process. A nonpara-
metric algorithm was used to estimate the spatial probability
distribution from the simulated trajectories. Figures 3(a) and
3(b) show the probability distributions for τα = 10−3 and
τα = 10−2, respectively. The results show that, in both distri-
butions, there are two regions where the probability reaches
local maxima: a central one and a peripheral one. Further-
more, as the value of τα increases, the probability of finding
the particle in the peripheral region rises. Figures 3(c) and 3(e)
show the radial position r as a function of 100 units of time
for τα = 10−3 and τα = 10−2, respectively. Figures 3(b) and

FIG. 4. Numerical results. (a)–(f) Translational (MSD), rota-
tional (MSRD), and azimuthal mean square displacement (MSAD)
for different β values. The parameters are τη = 1, a = 4.5, d = 10−2,
and (a)–(c) τα = 10−3 and (d)–(f) τα = 10−2.

3(d) present the integrated PDFs of the radial distribution for
the full simulation and show that the model reproduces the
bistability behavior of the Kilobot. Remarkably, the effect is
independent of the nature of the propulsion mechanism, which
is discrete for the Kilobot and continuous in the model. As was
demonstrated in the experiments, it is possible to adjust the be-
havior of the trajectories based on the system’s time constants:
A low time constant makes the particle move through nearby
regions, while a high value favors particle movement through
outlying regions.

Next, the role of the sensor location was investigated. For
this, considering three values of β, the mean squared trans-
lational (MSD = 〈|r − r0|2〉), rotational (MSRD = 〈|α −
α0|2〉), and azimuthal (MSAD = 〈|θ − θ0|2〉) displacements
were computed. Regardless of τα , Figs. 4(a)–4(f) show that
the long-term results can be classified into three different
behaviors: (i) For β = 0, the MSD is bounded, and the MSRD
and MSAD show diffusive behavior in agreement with the
behavior of an active particle trapped within an axisymmetric
potential [29,30]; (ii) for β = 1.4, the MSD is bounded, and
the MSRD and MSAD are ballistic, indicating that the particle
orbits around the field center; and (iii) for β = 1.6, the MSD
and MSRD are diffusive, and the MSAD shows subdiffusive
behavior, compatible with the diffusive behavior of an isolated
particle driven by a dichotomous force [31].

Qualitatively, the results for the two τα are similar. The
quantitative differences are observed in the crossover times
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FIG. 5. Theoretical approximation. (a) Stationary probability (Ps) as a function of τα . The line stands for the deterministic equilibrium
position given by Eq. (9). (b) and (c) Stability diagrams as a function of τα and τη, and τα and α, respectively. The solid lines stand for the
condition for orbital trajectories given by Eq. (10). The parameters are a = 4.5, d = 10−5, and (b) α = 1.4 and (c) τη = 1.

in which the slopes change. In short times, all observables
have the same behavior independent of the value of τα and
β: ballistic for the MSD and MSAD, superballistic for the
MSRD.

To analyze the stationary behavior of the particle, Eqs. (3)
and (4) can be rewritten in polar coordinates as

ṙ = − sin γ , (5)

θ̇ =1

r
cos γ , (6)

γ̇ = −
(

1

r
+ ∂r i(r)

τα

cos β

)
cos γ

+
(

∂r i(r)

τα

sin β

)
sin γ + η

τα

, (7)

where γ is the angle formed by the directions n and θ̂ and is
defined as γ = α − θ − π/2. The steady-state solution of the
noiseless system corresponds to an orbital motion if it holds
that ṙ = 0, θ̈ = 0, and γ̇ = 0, leading to γ = 0 and(

1

r
+ ∂r i(r)

τα

cos β

)
= 0. (8)

Equation (8) gives the equilibrium distance as a function of
the system parameters. Considering that i(r) = exp −ra, the
equilibrium positions are

req
k =

[
−Wk

(
− τα

a cos β

)]1/a

, (9)

where Wk (x) is the k branch of the Lambert function. The
domain of this function implies that the existence of req

k is
restricted to

τα � a cos β

e
, (10)

with e being Euler’s number. While the branch k = 0 gives the
stable equilibrium positions, k = −1 gives the unstable ones.
Both branches annihilate when the equality of Eq. (10) holds,

describing a saddle-node bifurcation. The stable solution ac-
counts for the deterministic behavior of the Kilobot shown in
Figs. 2(a) and 2(b). When the sensor is aligned to the direction
of motion (β = 0), Eqs. (5)–(7) do not present a stable point
for γ , and the orbital motion does not occur.

Many dynamical systems in nature exhibit the phe-
nomenon of bistability. Examples range from chemical
reaction systems [32] and genetic transcription [33] to bee
foraging [34], queue formation [35], and stock trading [36].
Particles immersed in a viscoelastic liquid subject to a shear
flow have also shown bistability behavior. These systems ex-
hibit a regime where two types of stable states of particle
orientation coexist [37–39]. The response of colloid flocks to
external fields shows bistability as confined swimming bac-
teria [40,41]. More surprisingly, there are chemical systems
that may exhibit a single stable state but can become bistable
when a low number of species is considered [42,43]. In this
type of phenomenon, noise is responsible for the origination
of the bistable states and the transition between them. This
approach was used to study experimentally and numerically
several types of natural systems such as chemical reactions
[32,44] and ant foraging [45,46]. As the results shown in
Figs. 2(e)–2(h) and 3(c)–3(f) suggest that this system presents
bistability when stochastic behavior is introduced, the influ-
ence of noise is studied by combining Eqs. (5) and (7) while
approximating γ ≈ 0 and γ̇ ≈ 0. In this way, a stochastic
differential equation for r is obtained,

ṙ = −
τα

r + ∂r i(r) cos β

∂r i(r) sin β
+ 1

∂r i(r) sin β
η (11)

= h(r) + g(r)η. (12)

To calculate the stationary PDF, the unified colored-noise
approximation is used following Refs. [47–50]. Thus, the
stationary PDF is

Ps(r) = N
C(r)√
dg2(r)

exp

[∫ r

0

h(r′)C(r′)
dg2(r′)

dr′
]
, (13)
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where N is a normalization constant and

C(r) = 1 − τηg(r)
d

dr

(
h(r)

g(r)

)
, (14)

can be interpreted as a correction factor due to the correlation
of the stochastic disturbance η.

Figure 5 shows the results obtained from Eq. (13) taking
a small value of the perturbation amplitude d = 10−5. In
particular, Fig. 5(a) shows how Ps varies as a function of τα . It
can be seen that for values of τα < 10−2, there is a region of
bistability, that is, two local maxima in Ps. For higher values,
the distribution presents a single maximum that converges to
the value of the deterministic solution [Eq. (9)]. These results
show the dramatic change in the stability of the solutions when
considering the stochastic component. In agreement with the
experimental results shown in Figs. 2(e)–2(h), it is observed
that within the region of bistability, the absolute maximum
of Ps switches position as τα varies. The monostable-bistable
transition is also affected by the characteristic time τη, as
shown in the diagram of Fig. 5(b). These results were obtained
by counting the number of maxima presented by the Ps for
each set of parameters. Region 0 is defined by Ps that do not
present any maximum in the interval r = [0 − 2], regions I are
related to monomodal distributions, and region II to bimodal
distributions. The black line is the condition given by Eq. (10)
that accounts for the orbiting states. The diagram between τα

and β was also analyzed, as shown in Fig. 5(c). Subregions of
monostability and bistability can be distinguished within the
limit of orbiting states. As can be seen, while the monostable-
bistable transition is sensitive to time constants, the position
of the sensor has little effect.

IV. CONCLUSION

In summary, the behavior of a self-propelled particle
interacting with an external light field has been studied exper-
imentally. The main characteristic of the particle was that the
sensor with which it interacted with the light field was in an
eccentric position, turning the Kilobot into a chiral particle.

Two interactions based on a maximum intensity searching
algorithm were considered: one deterministic and the other
stochastic. For the first, it was found that the particle produced
orbital paths at a given radial distance, around the intensity
maximum. For the stochastic interaction, the emerging trajec-
tories were more complex, and it was found that, in addition to
preserving the orbital motion, they could have two preferential
radial distances.

To further analyze the observed behavior, a self-propelled
particle model was introduced that included a torque term
originating from the relative location of the light sensor with
respect to the direction of motion. It was found that, de-
pending on the position of the sensor, the trajectories of the
particle can be classified into three types: trapped, orbiting,
and diffusive.

Finally, to elucidate the emergence of bistability, an analyt-
ical approximation of the model was introduced to study the
influence of the parameters. It was found that the monostable-
bistable transition occurs only in the orbital region and is
mostly affected by the characteristic times of the system.

While some systems of self-propelled particles have shown
bistable behavior, these stable states have a deterministic ori-
gin and depend on the chosen set of parameters. This work has
the particularity that bistability arises from including an in-
trinsic stochastic behavior, a phenomenon formerly observed
in chemical circuit systems.

The findings of this paper may be of significance to un-
derstanding the behavior of biological systems that interact
with signals from their environment, as in the design of
navigation mechanisms of artificial agents where the sensor
location could be changed dynamically to tune different types
of trajectories.
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