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ON THE DIAGONALIZATION OF THE RICCI FLOW

ON LIE GROUPS

JORGE LAURET AND CYNTHIA WILL

(Communicated by Lei Ni)

Abstract. The main purpose of this note is to prove that any basis of a
nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal
Ricci tensor necessarily produce quite a simple set of structural constants;
namely, the bracket of any pair of elements of the basis must be a multiple of
one of them, and only the bracket of disjoint pairs can be a nonzero multiple of
the same element. Some applications to the Ricci flow of left-invariant metrics

on Lie groups concerning diagonalization are also given.

1. Introduction

The classification of all possible signatures for the Ricci curvature of left-invariant
metrics on 3-dimensional unimodular Lie groups obtained by Milnor in [M76] re-
lies on the following key fact: any such Lie algebra admits a basis such that the
corresponding diagonal metrics represent all left-invariant metrics up to isometry
and, moreover, their Ricci tensors are all diagonal as well. This of course has also
been crucial in the study of the Ricci flow and Ricci solitons for these metrics in
[IJ92, KM01, G08, CS09, GP10], which actually cover most 3-dimensional geome-
tries from the Geometrization Conjecture. Indeed, if a basis {X1, . . . , Xn} of a Lie
algebra is stably Ricci-diagonal in the sense that any diagonal left-invariant metric
(i.e. 〈Xi, Xj〉 = 0 for all i �= j) has diagonal Ricci tensor, then the set of diagonal
metrics is invariant under the Ricci flow and hence the qualitative study of the solu-
tions reduces considerably. These distinguished bases were introduced and named
by Payne in [P10], where a deep study of the qualitative behavior of the Ricci flow
for those left-invariant metrics on nilpotent Lie groups admitting such a basis has
been done.

It is therefore natural to ask which Lie algebras admit a stably Ricci-diagonal
basis or, even further, which left-invariant metrics admit an orthonormal stably
Ricci-diagonal basis. For instance, the study in [IJL06] of the Ricci flow on ho-
mogeneous 4-manifolds could not be carried out for the totality of left-invariant
metrics (even on the 3-step nilpotent Lie group) due to the lack of these special
bases (see also [Lt07]).

From a more algebraic point of view, there is a condition on the basis of a Lie
algebra based on the simplicity of the corresponding set of structural constants.
Namely, a basis {X1, . . . , Xn} of a Lie algebra is said to be nice if [Xi, Xj ] is
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3652 JORGE LAURET AND CYNTHIA WILL

always a scalar multiple of some element in the basis and two different brackets
[Xi, Xj ], [Xr, Xs] can be a nonzero multiple of the same Xk only if {i, j} and {r, s}
are disjoint. As far as we know, this concept first appeared in the literature in
[LW11, Lemma 3.9] and has been widely used in the study of nilsolitons (i.e. Ricci
soliton nilmanifolds). For instance, Nikolayevsky obtained a very useful and simple
criterium to decide whether a given nilpotent Lie algebra with a nice basis admits
a nilsoliton or not (see [N11, Theorem 3]). An updated overview of the existence
of these bases in the nilpotent case is given in Section 2.

Let (N, g) be a nilpotent Lie group endowed with a left-invariant metric (called
a nilmanifold for short). If (n, 〈·, ·〉) is the corresponding metric Lie algebra (i.e.
the value g(e) of the metric on the tangent space at the identity element Te N = n

is 〈·, ·〉), then the Ricci tensor is given by

(1) Rc(X,Y ) = − 1
2

∑
〈[X,Xi], Xj〉〈[Y,Xi], Xj〉+ 1

4

∑
〈[Xi, Xj ], X〉〈[Xi, Xj ], Y 〉,

for any X,Y ∈ n and any orthonormal basis {X1, . . . , Xn} of (n, 〈·, ·〉).
It follows at once from (1) that any nice basis is stably Ricci-diagonal. Indeed,

the basis {X1, . . . , Xn} is orthogonal relative to any diagonal metric 〈·, ·〉, and,
clearly, each summand in the formula for Rc(Xr, Xs) vanishes when r �= s. The
main object of this note is to prove that the converse assertion also holds.

Theorem 1.1. A basis of a nilpotent Lie algebra is stably Ricci-diagonal if and
only if it is nice.

A purely geometric condition on a basis of a nilpotent Lie algebra is therefore
characterized as a neat algebraic condition. The proof is based on the fact that the
Ricci operator is precisely the moment map for the GLn(R)-representation where
the Lie brackets live. In the nonnilpotent case, none of the implications in the
theorem remain true (see Examples 5.4, 5.5, 5.6).

Back to the Ricci flow, what Theorem 1.1 is saying is that, in the case of a
nilmanifold (N, g0), to ask for a stably Ricci-diagonal basis in order to get a diagonal
Ricci flow solution g(t) starting at g0 is quite expensive (see [L10] for a study of
the Ricci flow on nilmanifolds without the use of these special bases). We prove for
instance that any algebraic soliton (N, g0) (i.e. Ric(g0) ∈ RI ⊕Der(n), a condition
which easily implies that (N, g0) is indeed a Ricci soliton), where N is any (non-
necessarily nilpotent) Lie group, gives rise to a diagonal Ricci flow solution (see
Example 5.2).

On the other hand, already in dimension 4, there are nilmanifolds whose Ricci
flow is not diagonal with respect to any orthonormal basis (see Example 5.7).

2. On the existence of a nice basis

Let n be a nilpotent Lie algebra. A basis {X1, . . . , Xn} of n is called nice if the
structural constants given by [Xi, Xj ] =

∑
ckijXk satisfy

(2)
• for all i, j there exists at most one k such that ckij �= 0,
• for all i, k there exists at most one j such that ckij �= 0.

n is said to be of type (n1, ..., nr) if ni = dimCi−1(n)/Ci(n), where Ci(n) is the
central descendent series of n defined by C0(n) = n, Ci(n) = [n, Ci−1(n)]. One
can always take a direct sum decomposition n = n1 ⊕ ... ⊕ nr such that Ci(n) =
ni+1 ⊕ ...⊕ nr for all i, and so dim ni = ni.
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THE DIAGONALIZATION OF THE RICCI FLOW ON LIE GROUPS 3653

If the type of n is (n1, ..., nr), then we can reorder any nice basis so that the first
n1 elements give a basis for n1, the following n2 give a basis for n2, and so on. This
easily follows from the fact that a nonzero bracket [Xi, Xj ] must be a multiple of
some Xk.

Concerning existence, from the explicit bases exhibited in the classification lists
available in the literature, we have that any nilpotent Lie algebra of dimension ≤ 5
as well as any filiform N-graded Lie algebra admits a nice basis (see e.g. [N08b]).
Also, by using the classification of 6-dimensional nilpotent Lie algebras given for
example in [dG07], it is easy to check that all of the 34 algebras in the list are
written in a nice basis with the exception only of L6,11, which is denoted by μ11 in
[W03]. We now prove that indeed this algebra cannot have a nice basis (this fact
has independently been mentioned in [F11] after Definition 2.7, including an idea
of the proof).

Proposition 2.1. The 6-dimensional 4-step nilpotent Lie algebra of type (3, 1, 1, 1)
defined by

[X1, X2] = X4, [X1, X4] = X5, [X1, X5] = [X2, X3] = [X2, X4] = X6,

does not admit any nice basis.

Proof. Let n be a 4-step nilpotent Lie algebra of type (3, 1, 1, 1) with no abelian fac-
tor. Assume that {X1, . . . , X6} is a nice basis of n so that n1 = span{X1, X2, X3},
n2 = RX4, n3 = RX5 and n4 = RX6. Thus X6 is in the center of n and there exist
i, j, k, l ∈ {1, 2, 3} such that

(3) [Xi, Xj ] = aX4, [Xk, X4] = bX5, [Xl, X5] = cX6, a, b, c �= 0.

Note that since the basis is nice, the brackets [X1, X2], [X1, X3], [X2, X3], if nonzero,
are linearly independent. We therefore have three cases to consider:

d := dim 〈[X1, X2], [X1, X3], [X2, X3]〉 = 1, 2 or 3,

and in any case we can assume that [X1, X2] = X4.
The simplest one corresponds to d = 1, where by using Jacobi identities it is

easy to see that RX3 is an abelian factor. If d = 3, that is,

[X1, X2] = X4, [X1, X3] = X5, [X2, X3] = X6,

then we also must have

[X2, X4] = b′X5, [X1, X5] = c′X6,

for some b′, c′ ∈ R. The Jacobi identities now imply that b′c′ = 0, and therefore (3)
would not hold.

Finally, if d = 2, we may assume that

[X1, X2] = X4, [X2, X3] = αX5 + βX6,

where either α �= 0 or β �= 0. If β = 0, by assuming that α = 1, we obtain that
k = 1 and [X3, X4] = −[X1, X5]. Thus the nontrivial Lie brackets are

[X1, X2] = X4, [X2, X3] = X5, [X3, X4] = X6,
[X1, X4] = bX5, [X1, X5] = −X6,

for some b �= 0. A change of bases given by

{X1, X2, εX3, ε
−1X4, εX5, εX6},
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3654 JORGE LAURET AND CYNTHIA WILL

where ε = |b|1/2, shows that n is isomorphic to L6,13. A similar argument shows
that if α = 0, we get L6,12.

We have then showed that any type-(3, 1, 1, 1) 4-step nilpotent Lie algebra with
no abelian factor that admits a nice basis must be isomorphic to either L6,12 or
L6,13, and thus L6,11 cannot admit a nice basis. We note that the fact that these
three algebras are pairwise nonisomorphic also follows by using the fact that they
admit nilsolitons of different eigenvalue types (compare with μ9, μ10 and μ11 in
[W03, Tables 1, 3]). �

A distinguished class of nilpotent Lie algebras admitting a nice basis is given by
nilradicals of Borel subalgebras of any semisimple Lie algebra.

On the other hand, it is proved in [N11, Example 4] that the free 3-step nilpotent
Lie algebra in 3 generators (which is of type (3, 3, 8)) does not admit a nice basis,
and, by a dimensional argument, it is also shown that there exist infinitely many
2-step nilpotent Lie algebras with no nice basis for any type (p, q) such that

1
2 min{q(q − 1), pq}+ q2 + p2 − 1 < 1

2pq(q − 1).

This condition holds, for example, for any q − 1 ≥ p ≥ 6, and the 13-dimensional
case (6, 7) is the lowest one. In dimension 7, by using the classification given in
[Mg07], one can check that from the 117 algebras and 6 curves of 7-dimensional
indecomposable nilpotent Lie algebras, all but 27 algebras and 2 curves are written
in a nice basis (see [F11]). We do not know whether these exceptions admit a nice
basis or not.

We can also mention the following sufficient condition: any nilpotent Lie algebra
admitting a simple derivation (i.e. diagonalizable over R and with all its eigenvalues
of multiplicity one) has a nice basis. Indeed, any basis of eigenvectors {X1, . . . , Xn}
of D is automatically nice since [Xi, Xj ] is either 0 or also an eigenvector of D,
and if [Xi, Xj ], [Xr, Xs] ∈ RXk, then the (pairwise different) eigenvalues satisfy
di + dj = dr + ds = dk. This implies that {i, j} and {r, s} are either equal or
disjoint. We note that this is not a necessary condition. One may check, for
example in [W11, Tables 4-6], that the 6-dimensional algebras μ8 and μ18 do not
admit any simple derivation and that they both admit a nice basis.

3. Technical preliminaries

Let us consider the space of all skew-symmetric algebras of dimension n, which
is parameterized by the vector space

V = Λ2(Rn)∗ ⊗ R
n = {μ : Rn × R

n −→ R
n : μ bilinear and skew-symmetric}.

There is a natural linear action of GLn(R) on V defined by

(4) A · μ(X,Y ) = Aμ(A−1X,A−1Y ), X, Y ∈ R
n, A ∈ GLn(R), μ ∈ V,

and the corresponding representation of the Lie algebra gln(R) of GLn(R) on V is
given by

(5) π(α)μ = αμ(·, ·)− μ(α·, ·)− μ(·, α·), α ∈ gln(R), μ ∈ V.

The canonical inner product 〈·, ·〉 on Rn determines inner products on V and gln(R),
both also denoted by 〈·, ·〉, as follows:

(6) 〈μ, λ〉 =
∑
ijk

〈μ(ei, ej), ek〉〈λ(ei, ej), ek〉, 〈α, β〉 = trαβt,
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THE DIAGONALIZATION OF THE RICCI FLOW ON LIE GROUPS 3655

where {e1, ..., en} denotes the canonical basis of Rn and βt the transpose with
respect to 〈·, ·〉. We note that π(α)t = π(αt) and (adα)t = adαt for any α ∈ gln(R),
due to the choice of canonical inner products everywhere.

We use gln(R) = so(n) ⊕ sym(n) as a Cartan decomposition of gln(R), where
so(n) and sym(n) denote the subspaces of skew-symmetric and symmetric matrices,
respectively. The set a of all diagonal n×nmatrices is a maximal abelian subalgebra
of sym(n) and therefore determines a system of roots Δ ⊂ a. Let Φ denote the set
of positive roots, which is given by

(7) Φ = {Ell − Emm ∈ a, l > m},
where Ers denotes the matrix whose only nonzero coefficient is 1 at entry rs. We
have the root space decomposition gln(R) = a⊕

⊕
λ∈Δ

gλ, where for each λ ∈ Δ,

gλ = {X ∈ gln(R) : [α,X] = 〈α, λ〉X, ∀α ∈ a}.
If {e′1, ..., e′n} is the basis of (Rn)∗ dual to the canonical basis {e1, ..., en}, then

{vijk = (e′i ∧ e′j)⊗ ek : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}
is a basis of weight vectors of V for the representation (5), where vijk is actually the
bilinear form on Rn defined by vijk(ei, ej) = −vijk(ej , ei) = ek and zero otherwise.
The corresponding weights αk

ij ∈ a, i < j, are given by

(8) π(α)vijk = (ak − ai − aj)vijk = 〈α, αk
ij〉vijk, ∀α =

⎡
⎢⎣

a1
. . .

an

⎤
⎥⎦ ∈ a,

where αk
ij := Ekk − Eii − Ejj .

The representation (V, π) of gln(R) is multiplicity free; i.e. the weight spaces all
have dimension one. An additional special feature of this representation is that the
sum of two weights αk

ij + αt
rs is never zero.

4. Proof of Theorem 1.1

By fixing any basis of an n-dimensional nilpotent Lie algebra n, we can identify
its underlying vector space n with Rn and view its bracket [·, ·] as an element of
V = Λ2(Rn)∗ ⊗ Rn (see Section 3 for all definitions and notation used in what
follows). The structural constants ckij are therefore given by

[ei, ej ] =
∑
k

ckijek or [·, ·] =
∑
k; i<j

ckijvijk.

We note that

n admits a nice basis if and only if the canonical basis {e1, . . . , en}
is nice for some A · [·, ·] ∈ V with A ∈ GLn(R),

as this is precisely the ‘change of basis’ action. Let us first show that the nice
condition on a bracket [·, ·], in the sense that the canonical basis is nice for n, can
be written in terms of the set Φ of positive roots of gln(R) (see (7)) and the weights
of the representation (V, π) (see (8)).

Lemma 4.1. The canonical basis {e1, . . . , en} is nice for n if and only if

αk
ij − αt

rs /∈ Φ, for any ckij , c
t
rs �= 0.
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3656 JORGE LAURET AND CYNTHIA WILL

Proof. According to (2), {e1, . . . , en} is nice for n if and only if

(9) �{k : ckij �= 0} ≤ 1 and �{j : ckij �= 0} ≤ 1.

If αk
ij − αt

rs ∈ Φ for some ckij , c
t
rs �= 0, then

(10) Ekk − Eii − Ejj − Ett + Err + Ess = Ell − Emm,

for some l > m. Since n is nilpotent, we have that i, j �= k as soon as ckij �= 0 under

any of the two conditions in the lemma. Indeed, if ciij �= 0, then there must exist

k such that ckij �= 0, and so {e1, . . . , en} would not be nice and αi
ij − αk

ij would
equal Ekk − Eii ∈ ±Φ. It is therefore easy to check that the cancellation given
in (10) can only be possible when either {i, j} = {r, s} and t < k or t = k and
�({i, j} ∩ {r, s}) = 1. In any case, one of the conditions in (9) will not hold. In
other words, αk

ij − αt
rs ∈ Φ for some ckij , c

t
rs �= 0 if and only if {e1, . . . , en} is not a

nice basis for n, as was to be shown. �
We note that each μ ∈ V satisfying the Jacobi identity determines a Lie group Nμ

(the simply connected Lie group with Lie algebra (Rn, μ)), which can be endowed
with the left-invariant metric defined by the canonical inner product 〈·, ·〉 (fixed).
Let us denote by Rcμ the Ricci tensor of such a metric and by Ricμ its Ricci
operator. The action of GLn(R) on V given by (4) has the following geometric
interpretation: each A ∈ GLn(R) determines a Riemannian isometry

(11) (NA·μ, 〈·, ·〉) −→ (Nμ, 〈A·, A·〉)
by exponentiating the Lie algebra isomorphism A−1 : (Rn, A · μ) −→ (Rn, μ). It
follows from (11) that

the canonical basis {e1, . . . , en} is stably Ricci-diagonal for n if and
only if the matrix of RicA·[·,·] is diagonal for any diagonal A ∈
GLn(R).

It is proved in [L06, Proposition 3.5] that when μ is in addition nilpotent,

(12) 〈Ricμ, α〉 = 1
4 〈π(α)μ, μ〉, ∀α ∈ sym(n).

Remark 4.2. This is equivalent to saying that the moment map m : V � {0} −→
sym(n) for the action (4) is given by m(μ) = 4

||μ||2 Ricμ, a remarkable fact which

is really at the core not only of the main result obtained in the present paper
but actually of the whole subject of Ricci flow and solitons on nilmanifolds (see
[L09, L10]).

In light of what has already been shown in this section, Theorem 1.1 follows
from the equivalence between parts (i) and (iv) in the following theorem.

Theorem 4.3. For a nilpotent Lie algebra n, the following conditions are equiva-
lent:

(i) The canonical basis {e1, . . . , en} is nice for n.
(ii) 〈π(X)vijk, vrst〉 = 0, for all X ∈ gλ, λ ∈ Φ, ckij , c

t
rs �= 0.

(iii) RcA·μ(el, em) = 0 for all l �= m and any diagonal A ∈ GLn(R).
(iv) The canonical basis {e1, . . . , en} is stably Ricci-diagonal for n.

Proof. We first note that parts (iii) and (iv) are equivalent by (11), as was men-
tioned above. By evaluating the maps π([α,X]) = π(α)π(X) − π(X)π(α) at vijk
and then taking scalar product with vrst, we obtain

〈λ+αk
ij , α〉〈π(X)vijk, vrst〉 = 〈αt

rs, α〉〈π(X)vijk, vrst〉, ∀X ∈ gλ, λ ∈ Φ, α ∈ a,
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THE DIAGONALIZATION OF THE RICCI FLOW ON LIE GROUPS 3657

from which it follows that

(13) 〈π(X)vijk, vrst〉 �= 0 =⇒ αt
rs − αk

ij = λ ∈ Φ.

This implies that part (ii) follows from (i) and Lemma 4.1.
Conversely, assume that part (ii) holds. If {ei} is not nice, by Lemma 4.1 there

exist ckij , c
t
rs �= 0 such that αt

rs − αk
ij = Ell − Emm ∈ Φ. By using

(14) π(Elm)vijk = δkmvijl − δilvmjk − δjlvimk,

it is easy to check that 〈π(Elm)vijk, vrst〉 �= 0 if i, j, k are pairwise different. Oth-
erwise, if say j = k (and hence t = r or t = s), then by arguing as in the

proof of Lemma 4.1, we obtain that there exists k′ �= i, j such that ck
′

ij �= 0 and
〈π(Ek′i)vijk′ , vijk〉 �= 0. Part (i) therefore follows since for all l > m, Elm ∈ gλ for
λ = Ell − Emm ∈ Φ.

By using (12) and the fact that for any A = Diag(a1, . . . , an) ∈ GLn(R), A·vijk =
ak

aiaj
vijk, we get that

4RcA·[·,·](el, em) = 〈π(Elm)A · [·, ·], A · [·, ·]〉

=
∑

ckijc
t
rs〈π(Elm)A · vijk, A.vrst〉(15)

=
∑

ckijc
t
rs

ak

aiaj

at

aras
〈π(Elm)vijk, vrst〉,

and thus part (iii) follows from (ii).
Finally, we will show that part (iii) implies (ii). We begin by noting that if

A = exp(α), α ∈ a, then

exp(α) · vijk = e〈α
k
ij ,α〉vijk.

It follows as in (15) and by using part (iii) that for all l > m,

(16) 0 = 4RcA·[·,·](el, em) =
∑

ckijc
t
rse

〈αk
ij+αt

rs,α〉〈π(Elm)vijk, vrst〉,

where the sum runs only over the indices ijk and rst such that αk
ij − αt

rs =
Ell − Emm ∈ Φ, since otherwise 〈π(Elm)vijk, vrst〉 = 0 by (13). Also, notice that
〈π(Elm)vili, vrmr〉 = 0 for all i, r (see (14)), and so we can assume from now on
that i, j, k and r, s, t are respectively pairwise different.

If αko
iojo

− αto
roso = Ell − Emm, then there exists αo ∈ a such that 0 �= 〈αko

iojo
+

αto
roso , αo〉 and 〈αko

iojo
+ αto

roso , αo〉 �= 〈αk
ij + αt

rs, αo〉 for any pair ijk, rst of indices

with αk
ij −αt

rs = Ell−Emm (note that αko
iojo

+αto
roso �= αk

ij +αt
rs for any such 3-uple

of indices). It follows from (16) that

0 =
∑

ckijc
t
rs〈π(Elm)vijk, vrst〉et〈α

k
ij+αt

rs,αo〉 =
N∑

n=1

ane
tbn , ∀t ∈ R,

where in the last equality we have joined terms with the same exponent. Thus
an = 0 for all n and, in particular, for the exponent bno

= 〈αko
iojo

+αto
roso , αo〉, whose

coefficient is given by

ano
= cko

iojo
.ctoroso〈π(Elm)viojoko

, vrosoto〉 = 0.

This implies that cko
iojo

.ctoroso = 0, and so part (ii) follows, concluding the proof of
the theorem. �
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3658 JORGE LAURET AND CYNTHIA WILL

5. Ricci flow on Lie groups

Let (N, g0) be a (nonnecessarily nilpotent) Lie group endowed with a left-invariant
metric with metric Lie algebra (n, 〈·, ·〉0). Let g(t) be a solution to the Ricci flow

(17) ∂
∂tg(t) = −2Rc(g(t)), g(0) = g0.

The short time existence of a solution follows from [Sh89], as g0 is homogeneous
and hence complete and of bounded curvature. Alternatively, one may require N -
invariance of g(t) for all t, and thus the metric Lie algebra of (N, g(t)) would have
the form (n, 〈·, ·〉t), where 〈·, ·〉t := g(t)(e). The Ricci flow equation (17) is therefore
equivalent to the ODE

(18) d
dt 〈·, ·〉t = −2Rc(〈·, ·〉t),

where Rc(〈·, ·〉t) := Rc(g(t))(e) : n × n −→ R, and hence short time existence
and uniqueness of the solution in the class of N -invariant metrics is guaranteed.
In this way, g(t) is homogeneous for all t, and hence the uniqueness within the
set of complete and with bounded curvature metrics follows from [ChZ06]. It is
actually a simple matter to prove that such a uniqueness result, in turn, implies
our assumption of N -invariance, as the solution must preserve isometries. The need
for this circular argument is due to the fact that the uniqueness of the Ricci flow
solution is still an open problem in the noncompact general case (see [Ch09]).

In any case, there is an interval (a, b) ⊂ R such that 0 ∈ (a, b) and where existence
and uniqueness (within complete and with bounded curvature metrics) of the Ricci
flow g(t) starting at (N, g0) hold.

Remark 5.1. In the case of Lie groups one can use the existence and uniqueness of
the solution g(t), forward and backward from any t ∈ (a, b), to get that the isometry
groups satisfy I(N, g(t)) = I(N, g0) for all t. This fact has recently been proved for
the more general class of all complete and with bounded curvature metrics in [K10].

It is easy to prove that if P (t) is the smooth curve of positive definite operators
of (n, 〈·, ·〉0) such that

〈·, ·〉t = 〈P (t)·, ·〉0,
then the Ricci flow equation (18) determines the following ODE for P (t):

(19) d
dtP (t) = −2P (t) Rict, P (0) = I,

where Rict := Ric(g(t))(e) : n −→ n is the Ricci operator.
In this section, we aim to understand under what conditions on the starting

metric (N, g0) one has that the Ricci flow solution g(t) is diagonal, in the sense that
P (t) is diagonal when written in some fixed orthonormal basis of (n, 〈·, ·〉0) for all
t ∈ (a, b) (in such a case the metric g0 will be called Ricci flow diagonal ). It is easy
to check that this is equivalent to having the same property for Rict (see (19)) and
also to the commutativity of the family of symmetric operators {P (t) : t ∈ (a, b)}.

Clearly, the existence of an orthonormal stably Ricci-diagonal basis β for
(n, 〈·, ·〉0) implies that g(t) is diagonal, as the diagonal matrices with respect to
β are invariant under the ODE (19). It follows from Theorem 1.1 that when N is
nilpotent, stably Ricci-diagonal bases must necessarily be nice, which shows that
this is really too strong a condition to ask of a generic left-invariant metric and,
even worse, of any left-invariant metric if the nilpotent Lie algebra n happens to
have no nice basis whatsoever.
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We now show, as an application of Theorem 1.1, that the existence of an or-
thonormal stably Ricci-diagonal basis for (n, 〈·, ·〉0) is not necessary to get a diagonal
Ricci flow solution g(t).

Example 5.2. (N, g0) is said to be an algebraic soliton if Ric0 = cI +D for some
c ∈ R and D ∈ Der(n) (these metrics are called in the literature nilsolitons and
solvsolitons in the case when N is nilpotent or solvable, respectively). When N is
simply connected, this condition implies that (N, g0) is indeed a Ricci soliton, as
it follows that Rc(g0) = cg0 − 1

2LXD
g0, where XD denotes the field determined by

the one-parameter group of automorphisms of N with derivatives etD ∈ Aut(n). It
is easy to check that in this case,

P (t) = (−2ct+ 1)e
log(−2ct+1)

c D = e
log(−2ct+1)

c Ric0

is the solution to (19), and thus the Ricci flow g(t) is always diagonal for algebraic
solitons. Indeed, if {X1, . . . , Xn} is an orthonormal basis of eigenvectors of Ric0
with respective eigenvalues r1, . . . , rn, then

P (t) = Diag
(
(−2ct+ 1)r1/c, . . . , (−2ct+ 1)rn/c

)
,

which generalizes to the class of all algebraic solitons results on the asymptotic
behavior of some nilsolitons obtained in [P10, Theorem 2.2] and [Wl11].

Any nilsoliton is therefore Ricci flow diagonal, though the Lie algebras of many
of them do not admit any nice basis and consequently do not admit stably Ricci-
diagonal bases by Theorem 1.1. The lowest-dimensional example of a nilsoliton
whose nilpotent Lie algebra does not admit any nice basis is given in Proposition 2.1
and has dimension 6. As another example of a nilsoliton which does not admit any
nice basis we can take the free 3-step nilpotent Lie algebra in 3 generators (see
[N08a]).

Remark 5.3. We take this opportunity to point out that the explicit nilsoliton
metric for the group in Proposition 2.1 given in [W03, Example 3.4] is wrong. The
formula for the Ricci operator of any diagonal metric is not always diagonal as is
asserted there. Nevertheless, the existence of a nilsoliton metric (with the same
eigenvalue type) can be proved by using an approach similar to [F11, Example 3.3].
Furthermore, the explicit expression for the nilsoliton,

μ̃(e1, e2) =
√
105
42 e3 +

√
70
35 e4, μ̃(e1, e3) =

1√
7
e5, μ̃(e1, e4) =

1√
42
e5,

μ̃(e1, e5) =
1√
10
e6, μ̃(e2, e4) =

√
105
30 e6,

was generously provided to us by Fernández Culma, who obtained it by applying
the method in [F11, Example 3.2].

In the non-nilpotent case, examples of diagonal Ricci flow solutions which are
not written in a nice basis are much easier to find, as the following 3-dimensional
solvable example shows.

Example 5.4. Let s3 be the 3-dimensional Lie algebra defined by

[X1, X3] = X2 +X3.
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The basis {X1, X2, X3} is not nice, but it is stably Ricci-diagonal. Indeed, for any
inner product 〈·, ·〉 such that

〈Xi, Xi〉 = a2i , ai > 0, 〈Xi, Xj〉 = 0 ∀i �= j,

we use formula (20) from the Appendix to get that H = 1
a2
1
X1, and thus for all

r �= s the corresponding Ricci tensor satisfies

Rc(Xr, Xs) =
1
4

∑
〈[ 1

ai
Xi,

1
aj
Xj ], Xr〉〈[ 1

ai
Xi,

1
aj
Xj ], Xs〉

− 1
2 〈[H,Xr], Xs〉 − 1

2 〈Xr, [H,Xs]〉.
This clearly vanishes if either r or s is 1 and if

Rc(X2, X3) =
1
2 〈[

1
a1
X1,

1
a3
X3], X2〉〈[ 1

a1
X1,

1
a3
X3], X3〉 − 1

2 〈X2, [
1
a2
1
X1, X3]〉

= 1
2

(
a2

a1

)2

− 1
2

(
a2

a1

)2

= 0.

This example also shows that, beyond nilpotent Lie groups, Theorem 1.1 is no
longer true.

On the other hand, in the nonnilpotent case, it is also possible to find nice bases
which are not stably Ricci-diagonal, as the following two examples show. In the
first one, what fails to be diagonal is the ‘unimodularity’ part S(adH) in formula
(20), while in the second one the Killing form part B is not diagonal.

Example 5.5. Let s4 be the solvable Lie algebra defined by

[X1, X2] = 2X3, [X1, X3] = X2, [X1, X4] = X4.

If 〈·, ·〉 is the inner product on s4 for which the basis {X1, . . . , X4} is orthonormal,
then the Ricci operator is

Ric〈·,·〉 =

⎡
⎢⎢⎢⎣

− 11
2 0 0 0

0 − 3
2 − 3

2 0

0 − 3
2

3
2 0

0 0 0 −1

⎤
⎥⎥⎥⎦ .

Notice that the basis is however nice.

Example 5.6. Let {X1, X2, X3} be a basis of sl2(R) such that

[X1, X2] = X2, [X1, X3] = −X3, [X2, X3] = X1.

This basis is nice, but the Ricci operator of the metric which makes it orthonormal
equals

Ric =

⎡
⎣

− 3
2 0 0
0 −1 −1
0 −1 − 1

2

⎤
⎦ .

We finally provide an example of a left-invariant metric on a 4-dimensional nilpo-
tent Lie group whose Ricci flow is not diagonal. Some other left-invariant metrics
on this group were proved to be Ricci flow diagonal in [IJL06, Proposition 3.5].

Example 5.7. Let n4 be the 4-dimensional 3-step nilpotent Lie algebra defined by

[X1, X2] =
√
2X3 +

√
2X4, [X1, X3] =

√
2X4.
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If 〈·, ·〉0 is the inner product on n4 for which the basis {X1, . . . , X4} is orthonormal,
then the Ricci operator of the corresponding nilmanifold (N4, g0), written in this
basis, is given by

Ric0 =

⎡
⎢⎢⎣

−3 0 0 0
0 −2 −1 0
0 −1 0 1
0 0 1 2

⎤
⎥⎥⎦ .

The following is an orthonormal basis of eigenvectors of Ric0, which is unique up
to ±1-scaling and permutations:

Y1 = (1, 0, 0, 0), Y2 =
(
0,− 1

2 − 1√
6
,− 1√

6
, 1
2 − 1√

6

)
,

Y3 = 1√
6
(0, 1,−2, 1), Y4 =

(
0,− 1

2 + 1√
6
, 1√

6
, 1
2 + 1√

6

)
,

with respective eigenvalues −3,−
√
6, 0,

√
6. Let us assume that the Ricci flow g(t)

starting at (N4, g0) is diagonal. Thus there exists an orthonormal basis of (n4, 〈·, ·〉0)
such that the corresponding matrix of Rict is diagonal for all t, in particular, for
t = 0, and so such a basis must be {Y1, . . . , Y4} up to ±1-scaling and permutations.
This implies that both Rict and the solution P (t) to the ODE (19) are diagonal
with respect to the basis {Y1, . . . , Y4} for all t, say P (t) = Diag(a−2, b−2, c−2, d−2),
a, b, c, d > 0. A straightforward computation gives that the Ricci curvature there-
fore satisfies

〈Rict Y2, Y3〉t = a2

(
√
6+2)2

(
4+

√
6

24
d2

bc + 12+5
√
6

8
c
b +

12+5
√
6

8
b
c −

76+31
√
6

24
bc
d2

)
= 0,

〈Rict Y2, Y4〉t = a2

(
√
6+2)2

(
4+

√
6

24
bd
c2 + 12+5

√
6

8
d
b + 12+5

√
6

8
b
d − 76+31

√
6

24
c2

bd

)
= 0,

〈Rict Y3, Y4〉t = a2(5+2
√
6)

12(
√
6+2)2b2cd

(b4 − c2d2) = 0.

All positive solutions to this system are easily seen to satisfy b2 = c2 = d2. This in
turn implies that

〈Rict Y2, Y2〉 = 0, 〈Rict Y3, Y3〉 = a2(12+5
√
6)

(
√
6+2)2

,

and hence b2 and c2 cannot solve the ODE system determined by (19) and still be
equal to each other, a contradiction. We conclude that the Ricci flow g(t) starting
at the nilmanifold (N4, g0) is not diagonal with respect to any orthonormal basis.

6. Appendix: Ricci curvature of left-invariant metrics

In this section we give a formula for the Ricci operator of a left-invariant metric
on a Lie group with corresponding metric Lie algebra (g, 〈·, ·〉). There exists a
unique element H ∈ g such that 〈H,X〉 = tr adX for any X ∈ g. If B denotes the
symmetric operator defined by the Killing form of g relative to 〈·, ·〉 (i.e. 〈BX, Y 〉 =
tr adX adY for all X,Y ∈ g), then the Ricci operator Ric of (g, 〈·, ·〉) is given by
(see for instance [B87, 7.38])

(20) Ric = M − 1
2B − S(adH),

where S(adH) = 1
2 (adH + (adH)t) is the symmetric part of adH and M is the

symmetric operator such that 〈MX,Y 〉 equals the right hand side of formula (1)
for all X,Y ∈ g, where {Xi} can be any orthonormal basis of (g, 〈·, ·〉).

Licensed to Universitat Munster. Prepared on Mon Jul 29 11:20:15 EDT 2013 for download from IP 128.176.12.211.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3662 JORGE LAURET AND CYNTHIA WILL

Acknowledgement

The authors would like to thank Edison Fernández Culma for very helpful com-
ments on a first version of this paper.

References

[B87] A. Besse, Einstein manifolds, Ergeb. Math. 10 (1987), Springer-Verlag, Berlin-
Heidelberg. MR867684 (88f:53087)

[CS09] X. Cao, L. Saloff-Coste, Backward Ricci flow on locally homogeneous three-manifolds,
Comm. Anal. Geom. 17 (2009), 305-325. MR2520911 (2010k:53095)

[C96] R. Carles, Weight systems for complex nilpotent Lie algebras and application to the
varieties of Lie algebras. Publ. Univ. Poitiers, 96 (1996)

[Ch09] B.-L. Chen, Strong uniqueness of the Ricci flow, J. Diff. Geom. 82 (2009), 336-382.
MR2520796 (2010h:53095)

[ChZ06] B.-L. Chen, X.-P. Zhu, Uniqueness of the Ricci flow on complete noncompact Riemann-
ian manifolds, J. Diff. Geom. 74 (2006), 119-154. MR2260930 (2007i:53071)

[F11] E. Fernandez Culma, Classification of 7-dimensional Einstein nilradicals, Transform.
Groups 17 (2012), 639-656. MR2956161

[dG07] W. A. de Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of

characteristic not 2, J. Algebra 309 (2007), 640-653. MR2303198 (2007k:17012)
[G08] D. Glickenstein, Riemannian groupoids and solitons for three-dimensional homoge-

nous Ricci and cross-curvature flows, Int. Math. Res. Not. 12 (2008). MR2426751
(2009f:53100)

[GP10] D. Glickenstein, T. Payne, Ricci flow on three-dimensional, unimodular metric Lie
algebras, Comm. Anal. Geom. 18 (2010), 927-962. MR2805148

[IJ92] J. Isenberg, M. Jackson, Ricci flow of locally homogeneous geometries on closed man-
ifolds, J. Diff. Geom. 35 (1992), 723-741. MR1163457 (93c:58049)

[IJL06] J. Isenberg, M. Jackson, P. Lu, Ricci flow on locally homogeneous closed 4-manifolds,
Comm. Anal. Geom. 14 (2006), 345-386. MR2255014 (2007e:53087)

[KM01] D. Knopf, K. McLeod, Quasi-convergence of model geometries under the Ricci flow,
Comm. Anal. Geom. 9 (2001), 879-919. MR1868923 (2003j:53106)

[K10] B.L. Kotschwar, Backwards uniqueness for the Ricci flow, Int. Math. Res. Not. 2010
(2010), no. 21, 4064-4097. MR2738351 (2012c:53100)

[L06] J. Lauret, A canonical compatible metric for geometric structures on nilmanifolds, Ann.
Global Anal. Geom. 30 (2006), 107-138. MR2234091 (2007g:53092)

[L09] , Einstein solvmanifolds and nilsolitons, Contemp. Math. 491 (2009), 1-35.
MR2537049 (2010g:53081)

[L10] , The Ricci flow for simply connected nilmanifolds, Comm. Anal. Geom. 19
(2011), 831-854. MR2886709

[LW11] J. Lauret, C.E. Will, Einstein solvmanifolds: existence and non-existence questions,
Math. Annalen 350 (2011), 199-225. MR2785768

[Lt07] J. Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339

(2007), 627-666. MR2336062 (2008i:53093)
[Mg07] L. Magnin, Adjoint and trivial cohomology tables for indecomposable nilpotent Lie

algebras of dimension ≤ 7 over C, e-Book, 2nd Corrected Edition, 2007.
[M76] J. Milnor, Curvature of left-invariant metrics on Lie groups, Adv. Math. 21 (1976),

293-329. MR0425012 (54:12970)
[N08a] Y. Nikolayevsky, Einstein solvmanifolds with free nilradical, Ann. Global Anal. Geom.

33 (2008), 71-87. MR2369187 (2008m:53120)
[N08b] , Einstein solvmanifolds with a simple Einstein derivation, Geom. Ded. 135

(2008), 87-102. MR2413331 (2009f:53064)
[N11] , Einstein solvmanifolds and the pre-Einstein derivation, Trans. Amer. Math. Soc.

363 (2011), 3935-3958. MR2792974 (2012f:53095)
[P10] T. Payne, The Ricci flow for nilmanifolds, J. Modern Dyn. 4 (2010), 65-90. MR2643888

(2011d:53163)
[S01] S. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157

(2001), 311-333. MR1812058 (2002g:53089)

Licensed to Universitat Munster. Prepared on Mon Jul 29 11:20:15 EDT 2013 for download from IP 128.176.12.211.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=867684
http://www.ams.org/mathscinet-getitem?mr=867684
http://www.ams.org/mathscinet-getitem?mr=2520911
http://www.ams.org/mathscinet-getitem?mr=2520911
http://www.ams.org/mathscinet-getitem?mr=2520796
http://www.ams.org/mathscinet-getitem?mr=2520796
http://www.ams.org/mathscinet-getitem?mr=2260930
http://www.ams.org/mathscinet-getitem?mr=2260930
http://www.ams.org/mathscinet-getitem?mr=2956161
http://www.ams.org/mathscinet-getitem?mr=2303198
http://www.ams.org/mathscinet-getitem?mr=2303198
http://www.ams.org/mathscinet-getitem?mr=2426751
http://www.ams.org/mathscinet-getitem?mr=2426751
http://www.ams.org/mathscinet-getitem?mr=2805148
http://www.ams.org/mathscinet-getitem?mr=1163457
http://www.ams.org/mathscinet-getitem?mr=1163457
http://www.ams.org/mathscinet-getitem?mr=2255014
http://www.ams.org/mathscinet-getitem?mr=2255014
http://www.ams.org/mathscinet-getitem?mr=1868923
http://www.ams.org/mathscinet-getitem?mr=1868923
http://www.ams.org/mathscinet-getitem?mr=2738351
http://www.ams.org/mathscinet-getitem?mr=2738351
http://www.ams.org/mathscinet-getitem?mr=2234091
http://www.ams.org/mathscinet-getitem?mr=2234091
http://www.ams.org/mathscinet-getitem?mr=2537049
http://www.ams.org/mathscinet-getitem?mr=2537049
http://www.ams.org/mathscinet-getitem?mr=2886709
http://www.ams.org/mathscinet-getitem?mr=2785768
http://www.ams.org/mathscinet-getitem?mr=2336062
http://www.ams.org/mathscinet-getitem?mr=2336062
http://www.ams.org/mathscinet-getitem?mr=0425012
http://www.ams.org/mathscinet-getitem?mr=0425012
http://www.ams.org/mathscinet-getitem?mr=2369187
http://www.ams.org/mathscinet-getitem?mr=2369187
http://www.ams.org/mathscinet-getitem?mr=2413331
http://www.ams.org/mathscinet-getitem?mr=2413331
http://www.ams.org/mathscinet-getitem?mr=2792974
http://www.ams.org/mathscinet-getitem?mr=2792974
http://www.ams.org/mathscinet-getitem?mr=2643888
http://www.ams.org/mathscinet-getitem?mr=2643888
http://www.ams.org/mathscinet-getitem?mr=1812058
http://www.ams.org/mathscinet-getitem?mr=1812058


THE DIAGONALIZATION OF THE RICCI FLOW ON LIE GROUPS 3663

[Sh89] W.X. Shi, Deforming the metric on complete Riemannian manifolds, J. Diff. Geom. 30
(1989), 223-301. MR1001277 (90i:58202)

[W03] C.E. Will, Rank-one Einstein solvmanifolds of dimension 7, Diff. Geom. Appl. 19
(2003), 307-318. MR2013098 (2004j:53060)

[W11] , The space of solvsolitons in low dimensions, Ann. Global Anal. Geom. 40 (2011),
291-309. MR2831460 (2012j:53053)

[Wl11] M.B. Williams, Explicit Ricci solitons on nilpotent Lie groups, J. Geom. Anal. 23

(2013), 47-72. MR3010272
[Wi82] E. Wilson, Isometry groups on homogeneous nilmanifolds, Geom. Ded. 12 (1982), 337-

346. MR661539 (84a:53048)

FaMAF and CIEM, Universidad Nacional de Córdoba, Córdoba, Argentina
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