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FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n Ciudad
Universitaria, Córdoba, Argentina
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The matrix-valued spherical functions for the pair (K × K, K), K = SU(2), are studied.

By restriction to the subgroup A, the matrix-valued spherical functions are diagonal.

For suitable set of spherical functions, we take these diagonals as a matrix-valued func-

tion, which are the full spherical functions. Their orthogonality is a consequence of

the Schur orthogonality relations. From the full spherical functions, we obtain matrix-

valued orthogonal polynomials of arbitrary size, and they satisfy a three-term recur-

rence relation which follows by considering tensor product decompositions. An explicit

expression for the weight and the complete block-diagonalization of the matrix-valued

orthogonal polynomials is obtained. From the explicit expression, we obtain right-

hand-sided differential operators of first and second order for which the matrix-valued

orthogonal polynomials are eigenfunctions. We study the low-dimensional cases explic-

itly, and for these cases additional results, such as the Rodrigues’ formula and being

eigenfunctions to first-order differential–difference and second-order differential oper-

ators, are obtained.
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5674 E. Koelink et al.

1 Introduction

The connection between special functions and representation theory of Lie groups is a

very fruitful one, see, for example, [34, 35]. For the special case of the group SU(2), we

know that the matrix elements of the irreducible finite-dimensional representations are

explicitly expressible in terms of Jacobi polynomials, and in this way many of the prop-

erties of the Jacobi polynomials can be obtained from the group theoretic interpretation.

In particular, the spherical functions with respect to the subgroup S(U(1)× U(1)) are

the Legendre polynomials, and using this interpretation one obtains product formula,

addition formula, integral formula, etc. for the Legendre polynomials, see, for example,

[11, 19, 20, 34, 35] for more information on spherical functions.

In the development of spherical functions for a symmetric pair (G, K) the empha-

sis has been on spherical functions with respect to one-dimensional representations

of K, and in particular, the trivial representation of K. Godement [12] considered the

case of higher-dimensional representations of K, see also [11, 33] for the general theory.

Examples studied are [2, 5, 15, 23, 31]. However, the focus is usually not on obtain-

ing explicit expressions for the matrix-valued spherical functions, see Section 2 for the

definition, except for [15, 23, 32]. In [15] the matrix-valued spherical functions are stud-

ied for the case (U, K)= (SU(3),U(2)), and the calculations revolve around the study of

the algebra of differential operators for which these matrix-valued orthogonal polyno-

mials are eigenfunctions. The approach in this paper is different.

In our case, the paper [23] by Koornwinder is relevant. Koornwinder studies the

case of the compact symmetric pair (U, K)= (SU(2)× SU(2),SU(2)), where the subgroup

is diagonally embedded, and he calculates explicitly vector-valued orthogonal polyno-

mials. The goal of this paper is to study this example in more detail and to study the

matrix-valued orthogonal polynomials arising from this example. The spherical func-

tions in this case are the characters of SU(2), which are the Chebyshev polynomials

of the second kind corresponding to the Weyl character formula. So the matrix-valued

orthogonal polynomials can be considered as analogues of the Chebyshev polynomi-

als. Koornwinder [23] introduces the vector-valued orthogonal polynomials which coin-

cide with rows in the matrix of the matrix-valued orthogonal polynomials in this paper.

We provide some of Koornwinder’s results with new proofs. The matrix-valued spher-

ical functions can be given explicitly in terms of the Clebsch–Gordan coefficients, or

3 − j-symbols, of SU(2). Moreover, we find many more properties of these matrix-valued

orthogonal polynomials. In particular, we give an explicit expression for the weight,

that is, the matrix-valued orthogonality measure, in terms of Chebyshev polynomi-

als by using an expansion in terms of spherical functions of the matrix elements and

 at R
adboud U

niversity on D
ecem

ber 6, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Matrix Valued Orthogonal Polynomials 5675

explicit knowledge of Clebsch–Gordan coefficient. This gives some strange identities

for sums of hypergeometric functions in Appendix 1. Another important result is the

explicit three-term recurrence relation which is obtained by considering tensor prod-

uct decompositions. Also, using the explicit expression for the weight function we can

obtain differential operators for which these matrix-valued orthogonal polynomials are

eigenfunctions.

Matrix-valued orthogonal polynomials arose in the work of Krein [26, 27] and

have been studied from an analytic point of view by Durán and others, see [6–10, 13,

14, 16, 17] and references given there. As far as we know, the matrix-valued orthogonal

polynomials that we obtain have not been considered before. Also 2 × 2-matrix-valued

orthogonal polynomials occur in the approach of the noncommutative oscillator, see [22]

for more references. A group theoretic interpretation of this oscillator in general seems

to be lacking.

The results of this paper can be generalized in various ways. First of all, the

approach can be generalized to pairs (U, K) with the centralizer (Ug)k abelian, but this

is rather restrictive [25]. Given a pair (U, K) and a representation δ of K such that [π |K :

δ] ≤ 1 for all representations π of G and δ|M is multiplicity free, we can perform the same

construction to get matrix-valued orthogonal polynomials. Needless to say, in general, it

might be difficult to be able to give an explicit expression of the weight function. Another

option is to generalize to (K × K, K) to obtain matrix-valued orthogonal polynomials

generalizing Weyl’s character formula for other root systems, see, for example, [19].

We now discuss the contents of the paper. In Section 2, we introduce the matrix-

valued spherical functions for the pair (SU(2)× SU(2),diag) taking values in the matri-

ces of size (2�+ 1)× (2�+ 1), � ∈ 1
2N. In Section 3, we prove the recurrence relation for

the matrix-valued spherical functions using a tensor product decomposition. This result

gives us the opportunity to introduce polynomials, and this coincides with results of

Koornwinder [23]. In Section 4, we introduce the full spherical functions on the subgroup

A∗, corresponding to the Cartan decomposition U = K∗ A∗K∗, by putting the restriction

to A∗ of the matrix-valued spherical function into a suitable matrix. In Section 5, we

discuss the explicit form and the symmetries of the weight. Moreover, we calculate the

commutant explicitly and this gives rise to a decomposition of the full spherical func-

tions, the matrix-valued orthogonal polynomials and the weight function in a 2 × 2-

block diagonal matrix, which cannot be reduced further. After a brief review of gener-

alities of matrix-valued orthogonal polynomials in Section 6, we discuss the even- and

odd-dimensional cases separately. In the even-dimensional case an interesting relation

between the two blocks occurs. In Section 7, we discuss the right-hand-sided differential
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operators, and we show that the matrix-valued orthogonal polynomials associated to the

full spherical function are eigenfunctions to a first-order differential operator as well

as to a second-order differential operator. Section 8 discusses explicit low-dimensional

examples, and gives some additional information such as the Rodrigues’ formula for

these matrix-valued orthogonal polynomials and more differential operators. Finally, in

the appendices we give somewhat more technical proofs of two results.

2 Spherical Functions of the Pair (SU(2) × SU(2), diag)

Let K = SU(2), U = K × K and K∗ ⊂ U the diagonal subgroup. An element in K is of

the form

k(α, β)=
(
α β

−β̄ ᾱ

)
, |α|2 + |β|2 = 1, α, β ∈ C. (2.1)

Let mt := k(eit/2,0) and let T ⊂ K be the subgroup consisting of the mt. T is the (standard)

maximal torus of K. The subgroup T × T ⊂ U is a maximal torus of U . Define

A∗ = {(mt,m−t) : 0 ≤ t< 4π} and M = {(mt,mt) : 0 ≤ t< 4π}.

We write at = (mt,m−t) and bt = (mt,mt). We have M = ZK∗(A∗) and the decomposition

U = K∗ A∗K∗. Note that M is the standard maximal torus of K∗.

The equivalence classes of the unitary irreducible representations of K are

parametrized by K̂ = 1
2N. An element � ∈ 1

2N determines the space

H � := C[x, y]2�,

the space of homogeneous polynomials of degree 2� in the variables x and y. We view

this space as a subspace of the function space C (C2,C) and as such, K acts naturally on

it via

k : p �→ p◦ kt,

where kt is the transposed. Let

ψ�
j : (x, y) �→

(
2�

�− j

) 1
2

x�− j y�+ j, j = −�,−�+ 1, . . . , �− 1, �. (2.2)
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Fig. 1. Plot of the parametrization of the pairs (�1, �2) that contain � upon restriction.

We stipulate that this is an orthonormal basis with respect to a Hermitian inner product

that is linear in the first variable. The representation T� : K → GL(H �) is irreducible and

unitary.

The equivalence classes of the unitary irreducible representations of U are para-

matrized by Û = K̂ × K̂ = 1
2N × 1

2N. An element (�1, �2) ∈ 1
2N × 1

2N gives rise to the Hilbert

space H �1,�2 := H �1 ⊗ H �2 and in turn to the irreducible unitary representation on this

space, given by the outer tensor product

T�1,�2(k1,k2)(ψ
�1
j1 ⊗ ψ

�2
j2 )= T�1(k1)(ψ

�1
j1 )⊗ T�2(k2)(ψ

�2
j2 ).

The restriction of (T�1,�2 , H �1,�2) to K∗ decomposes multiplicity free in summands

of type � ∈ 1
2N with

|�1 − �2| ≤ �≤ �1 + �2 and �1 + �2 − � ∈ Z. (2.3)

Conversely, the representations of U that contain a given � ∈ 1
2N are the pairs (�1, �2) ∈

1
2N × 1

2N that satisfy (2.3). We have pictured this parametrization in Figure 1 for �= 3
2 .

The following theorem is standard, see [24].

Theorem 2.1. The space H �1,�2 has a basis

{φ�1,�2
�, j : � satisfies (2.3) and | j| ≤ �}
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such that, for every �, the map β�1,�2
� : H � → H �1,�2 defined by ψ�

j �→ φ
�1,�2
�, j is a K-intertwiner.

The base change with respect to the standard basis {ψ�1
j1 ⊗ ψ

�2
j2 } of H �1,�2 is given by

φ
�1,�2
�, j =

�1∑
j1=−�1

�2∑
j2=−�2

C �1,�2,�
j1, j2, j ψ

�1
j1 ⊗ ψ

�2
j2 ,

where the C �1,�2,�
j1, j2, j are the Clebsch–Gordan coefficients, normalized in the standard way.

The Clebsch–Gordan coefficient satisfies C �1,�2,�
j1, j2, j = 0, if j1 + j2 �= j. �

Definition 2.2 (Spherical Function). Fix a K-type � ∈ 1
2N and let (�1, �2) ∈ 1

2N × 1
2N be a

representation that contains � upon restriction to K∗. The spherical function of type

� ∈ 1
2N associated to (�1, �2) ∈ 1

2N × 1
2N is defined by

Φ�
�1,�2

: U → End(H �) : x �→
(
β
�1,�2
�

)∗
◦ T�1,�2(x) ◦ β�1,�2

� . (2.4)

�

If Φ�
�1,�2

is a spherical function of type �, then it satisfies the following

properties:

(i) Φ�
�1,�2

(e)= I , where e is the identity element in the group U and I is the

identity transformation of H �,

(ii) Φ�
�1,�2

(k1xk2)= T�(k1)Φ�(x)T�(k2) for all k1,k2 ∈ K∗ and x ∈ U ,

(iii) Φ�
�1,�2

(x)Φ�
�1,�2

(y)= ∫
K∗ χ�(k−1)Φ�

�1,�2
(xky)dk, for all x, y∈ U . Here ξ� denotes

the character of T� and χ� = (2�+ 1)ξ�.

Remark 2.1. Definition 2.2 is not the definition of a spherical function given by

Godement [12], Gangolli and Varadarajan [11], or Tirao [33], but it follows from prop-

erty (iii) that it is equivalent in this situation. The point where our definition differs

is essentially that we choose one space, namely End(H �), in which all the spheri-

cal functions take their values, instead of different endomorphism rings for every

U-representation. We can do this because of the multiplicity free splitting of the irre-

ducible representations. �

Proposition 2.3. Let EndM(H �) be the algebra of elements Y ∈ End(H �) such that

T�(m)Y = YT�(m) for all m ∈ M. Then Φ�
�1,�2

(A∗)⊂ EndM(H �). The restriction of Φ�
�1,�2

to

A∗ is diagonalizable. �
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Proof. This is observation [23, (2.6)]. Another proof, similar to [15, Proposition 5.11],

uses ma= am for all a∈ A∗ and m ∈ M so that by (ii)

Φ�
�1,�2

(a)= T�(m)Φ�
�1,�2

(a)T�(m)−1.

The second statement follows from the fact that the restriction of any irreducible repre-

sentation of K∗ ∼= SU(2) to M ∼= U(1) decomposes multiplicity free. �

The standard weight basis (2.2) is a weight basis in which Φ�
�1�2

|A∗ is diagonal.

The restricted spherical functions are given by

(Φ�
�1,�2

(at)) j, j =
�1∑

j1=−�1

�2∑
j2=−�2

ei( j2− j1)t(C �1,�2,�
j1, j2, j )

2, (2.5)

which follows from Definition 2.2 and Theorem 2.1.

3 Recurrence Relation for the Spherical Functions

A zonal spherical function is a spherical function Φ�
�1,�2

for the trivial K-type �= 0. We

have a diffeomorphism U/K∗ → K : (k1,k2)K∗ �→ k1k−1
2 and the left K∗-action on U/K∗ cor-

responds to the action of K on itself by conjugation. The zonal spherical functions are,

up to a scalar, the characters on K [34] which are parametrized by pairs (�1, �2) with

�1 = �2 and we write ϕ� =Φ0
�,�. Note that ϕ� = (−1)− j+l(2�+ 1)−1/2U2�(cos t) by (2.5) and

C �,�,0
j,− j,0 = (−1)− j+l(2�+ 1)−1/2, where Un is the Chebyshev polynomial of the second kind

of degree n. The zonal spherical function ϕ 1
2

plays an important role and we denote it by

ϕ = ϕ 1
2
. Any other zonal spherical function ϕn can be expressed as a polynomial in ϕ, see,

for example, [34, 36]. For the spherical functions, we obtain a similar result. Namely, the

product of ϕ and a spherical function of type � can be written as a linear combination

of at most four spherical functions of type �.

Proposition 3.1. We have as functions on U

ϕ ·Φ�
�1,�2

=
�1+ 1

2∑
m1=|�1− 1

2 |

�2+ 1
2∑

m2=|�2− 1
2 |

|a(�1,�2)

(m1,m2),�
|2Φ�

m1,m2
, (3.1)
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where the coefficients a(�1,�2)

(m1,m2),�
are given by

a(�1,�2)

(m1,m2),�
=

∑
j1, j2,i1,i2,n1,n2

C �1,�2,�
j1, j2,�C

1
2 ,

1
2 ,0

i1,i2,0C
�1,

1
2 ,m1

j1,i1,n1
C
�2,

1
2 ,m2

j2,i2,n2
C m1,m2,�

n1,n2,�
, (3.2)

where the sum is taken over

| j1| ≤ �1, | j2| ≤ �2, |i1| ≤ 1
2 , |i2| ≤ 1

2 , |n1| ≤ m1 and |n2| ≤ m2. (3.3)

Moreover, a(�1,�2)

(�1+1/2,�2+1/2),� �= 0. Note that the sum in (3.2) is a double sum because of

Theorem 2.1. �

Proposition 3.1 should be compared with [29, Theorem 5.2], where a similar cal-

culation is given for the case (SU(3),U(2)), see also [30].

Proof. On the one hand, the representation T�1,�2 ⊗ T
1
2 ,

1
2 can be written as a sum of

at most four irreducible U-representations that contain the representation T� upon

restriction to K∗. On the other hand we can find a ‘natural’ copy H � of H � in the space

H �1,�2 ⊗ H
1
2 ,

1
2 that is invariant under the K∗-action. Projection onto this space transfers

via α, defined below, to a linear combination of projections on the spaces H � in the

irreducible summands. The coefficients can be calculated in terms of Clebsch–Gordan

coefficients and these in turn give rise to the recurrence relation. The details are as

follows.

Consider the U-representation T�1,�2 ⊗ T
1
2 ,

1
2 in the space H �1,�2 ⊗ H

1
2 ,

1
2 . By

Theorem 2.1, we have

α : H �1,�2 ⊗ H
1
2 ,

1
2 →

�1+ 1
2⊕

m1=|�1− 1
2 |

�2+ 1
2⊕

m2=|�2− 1
2 |

Hm1,m2

which is a U-intertwiner given by

α : (ψ�1
j1 ⊗ ψ

�2
j2 )⊗ (ψ

1
2

i1 ⊗ ψ
1
2

i2 ) �→
�1+ 1

2∑
m1=|�1− 1

2 |

m1∑
n1=−m1

�2+ 1
2∑

m2=|�2− 1
2 |

m2∑
n2=−m2

C
�1,

1
2 ,m1

j1,i1,n1
C
�2,

1
2 ,m2

j2,i2,n2
ψm1

n1
⊗ ψm2

n2
.
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Let H � ⊂ H �1,�2 ⊗ H
1
2 ,

1
2 be the space that is spanned by the vectors

{φ�1,�2
�, j ⊗ φ

1
2 ,

1
2

0,0 : −�≤ j ≤ �}.

The element φ�1,�2
�, j ⊗ φ

1
2 ,

1
2

0,0 maps to

�1∑
j1=−�1

�2∑
j2=−�2

1
2∑

i1=− 1
2

1
2∑

i2=− 1
2

�1+ 1
2∑

m1=|�1− 1
2 |

m1∑
n1=−m1

�2+ 1
2∑

m2=|�2− 1
2 |

m2∑
n2=−m2

m1+m2∑
p=|m1−m2|

p∑
u=−p

× C �1,�2,�
j1, j2, j C

1
2 ,

1
2 ,0

i1,i2,0C
�1,

1
2 ,m1

j1,i1,n1
C
�2,

1
2 ,m2

j2,i2,n2
C m1,m2,p

n1,n2,u φm1,m2
p,u .

Note that u= n1 + n2 = j1 + i1 + j2 + i2 = j, so the last sum can be omitted. Also, since α

is a K∗-intertwiner, we must have p= �. For every pair (m1,m2), we have a projection

P (m1,m2)
� :

�1+ 1
2⊕

m1=|�1− 1
2 |

�2+ 1
2⊕

m2=|�2− 1
2 |

Hm1,m2 →
�1+ 1

2⊕
m1=|�1− 1

2 |

�2+ 1
2⊕

m2=|�2− 1
2 |

Hm1,m2

onto the �-isotypical summand in the summand Hm1,m2 . Hence

P m1,m2
� (α(φ

�1,�2
�, j ⊗ φ

1
2 ,

1
2

0,0 ))

=
�1∑

j1=−�1

�2∑
j2=−�2

1
2∑

i1=− 1
2

1
2∑

i2=− 1
2

m1∑
n1=−m1

m2∑
n2=−m2

C �1,�2,�
j1, j2, j C

1
2 ,

1
2 ,0

i1,i2,0C
�1,

1
2 ,m1

j1,i1,n1
C
�2,

1
2 ,m2

j2,i2,n2
C m1,m2,�

n1,n2, j φ
m1,m2
�, j .

The map P m1,m2
� ◦ α is a K∗-intertwiner so Schur’s lemma implies that

�1∑
j1=−�1

�2∑
j2=−�2

1
2∑

i1=− 1
2

1
2∑

i2=− 1
2

m1∑
n1=−m1

m2∑
n2=−m2

C �1,�2,�
j1, j2, j C

1
2 ,

1
2 ,0

i1,i2,0C
�1,

1
2 ,m1

j1,i1,n1
C
�2,

1
2 ,m2

j2,i2,n2
C m1,m2,�

n1,n2, j

is independent of j. Hence it is equal to a(�1,�2)

(m1,m2),�
, taking j = �. We have

α(φ
�1,�2
�, j ⊗ φ

1
2 ,

1
2

0,0 )=
∑

m1,m2

a(�1,�2)

(m1,m2), j
φ

m1,m2
�, j .
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Moreover, the map

P =
�1+1/2∑

m1=|�1−1/2|

�2+1/2∑
m2=|�2−1/2|

P m1,m2
� ◦ α : H �1,�2 ⊗ H

1
2 ,

1
2 →

�1+ 1
2⊕

m1=|�1− 1
2 |

�2+ 1
2⊕

m2=|�2− 1
2 |

Hm1,m2

is a K∗-intertwiner. To show that it is not the trivial map we note that a(�1,�2)

(�1+ 1
2 ,�2+ 1

2 ),�
is

nonzero. Indeed, the equalities

C �1,�2,�
j1, j2,� = (−1)�1− j1(�+ �2 − �1)!

(�1 + �2 + �+ 1)!Δ(�1, �2, �)

[
(2�+ 1)(�1 + j1)!(�2 + �− j1)!

(�1 − j1)!(�2 − �+ j1)!

]1/2

,

C
�1,

1
2 ,�1+ 1

2

j1, 1
2 , j1+ 1

2
=
[
�1 + j1 + 1

2�1 + 1

]1/2

and C
�1,

1
2 ,�1+ 1

2

j1,− 1
2 , j1− 1

2
=
[
�1 − j1 + 1

2�1 + 1

]1/2

,

where Δ(�1, �2, �) is a positive function, can be found in [34, Chapter 8] and plugging

these into the formula for a(�1,�2)

(�1+ 1
2 ,�2+ 1

2 ),�
shows that it is the sum of positive numbers,

hence it is nonzero.

We conclude that P is nontrivial, so its restriction to H � is an isomorphism

and it intertwines the K∗-action. It maps K∗-isotypical summands to K∗-isotypical sum-

mands. Hence, α|H � = P |H �. Define

γ
�1,�2
� : H � → H �1,�2 ⊗ H

1
2 ,

1
2 :ψ�

j �→ φ
�1,�2
�, j ⊗ φ

1
2 ,

1
2

0,0 .

This is a K-intertwiner. It follows that

α ◦ γ �1,�2
� =

∑
m1,m2

a(�1,�2)

(m1,m2),�
β

m1,m2
� . (3.4)

Define the End(H �)-valued function

Ψ �
�1,�2

: U → End(H �) : x �→ (γ
�1,�2
� )∗ ◦ (T�1,�1 ⊗ T

1
2 ,

1
2 )(x) ◦ γ �1,�2

� .

Note that Ψ �
�1,�2

(x)= ϕ(x)Φ�
�1,�2

(x). On the other hand, we have T�1,�2 ⊗ T
1
2 ,

1
2 = α ◦

(
⊕

m1,m2
Tm1,m2) ◦ α. Together with (3.4) this yields

Ψ �
�1,�2

=
∑

m1,m2

|a(�1,�2)

(m1,m2),�
|2(β�1,�2

� )∗ ◦ Tm1,m2 ◦ βm1,m2
� .

Hence the result. �
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Fig. 2. Plot of how the tensor product T
5
2 ,3 ⊗ T

1
2 ,

1
2 splits into irreducible summands.

In Figure 2, we have depicted the representations ( 1
2 ,

1
2 ) and ( 5

2 ,3) with black

nodes. The tensor product decomposes into the four types ( 5
2 ± 1

2 ,3 ± 1
2 ) which are indi-

cated with the white nodes.

Corollary 3.2. Given a spherical function Φ�
�1,�2

there exist 2�+ 1 elements q�, j�1,�2
, j ∈

{−�,−�+ 1, . . . , �} in C[ϕ] such that

Φ�
�1,�2

=
�∑

j=−�
q�, j�1,�2

Φ�
(�+ j)/2,(�− j)/2. (3.5)

The degree of q�, j�1,�2
is �1 + �2 − �. �

Proof. We prove this by induction on �1 + �2. If �1 + �2 = �, then the statement is true

with the polynomials q�, j(�−k)/2,(�+k)/2 = δ j,k. Suppose �1 + �2 > � and that the statement holds

for (�′
1, �

′
2) with �≤ �′

1 + �′
2 < �1 + �2. We can write |a(�1−1/2,�2−1/2)

(�1,�2),�
|2Φ�

�1,�2
as

ϕ ·Φ�

�1− 1
2 ,�2− 1

2
− |a�1− 1

2 ,�2− 1
2

(�1−1,�2),�
|2Φ�

�1−1,�2
− |a�1− 1

2 ,�2− 1
2

(�1,�2−1),� |2Φ�
�1,�2−1 − |a�1− 1

2 ,�2− 1
2

(�1−1,�2−1),�|2Φ�
�1−1,�2−1

by means of Proposition 3.1. The result follows from the induction hypothesis and

a(�1−1/2,�2−1/2)
(�1,�2),�

�= 0. �
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Remark 3.1. The fact that these functions q�, j�1,�2
are polynomials in cos(t) has also been

shown by Koornwinder in [23, Theorem 3.4] using different methods. �

4 Restricted Spherical Functions

For the restricted spherical functions Φ�
�1,�2

: A∗ → End(H �), we define a pairing:

〈Φ,Ψ 〉A∗ = 2

π
tr
(∫

A∗
Φ(a)(Ψ (a))∗|D∗(a)| da

)
, (4.1)

where D∗(at)= sin2
(t), see [21]. In [23, Proposition 2.2], it is shown that on A∗ the follow-

ing orthogonality relations hold for the restricted spherical functions.

Proposition 4.1. The spherical functions on U of type �, when restricted to A∗, are

orthogonal with respect to (4.1). In fact, we have

〈Φ�
�1,�2

, Φ�
�′1,�

′
2
〉A∗ = (2�+ 1)2

(2�1 + 1)(2�2 + 1)
δ�1,�

′
1
δ�2,�

′
2
. (4.2)

�

This is a direct consequence of the Schur orthogonality relations and the integral

formula corresponding to the U = K∗ A∗K∗ decomposition.

The parametrization of the U-types that contain a fixed K-type � is given by (2.3).

For later purposes, we reparamatrize (2.3) by the function ζ : N × {−�, . . . , �} → 1
2N × 1

2N

given by

ζ(d,k)=
(

d+ �+ k

2
,

d+ �− k

2

)
.

This new parametrization is pictured in Figure 3. For each degree d, we have 2�+ 1

spherical functions. By Proposition 2.3, the restricted spherical functions take their val-

ues in the vector space EndM(H �) which is 2�+ 1-dimensional. The appearance of the

spherical functions in 2�+ 1-tuples gives rise to the following definition.

Definition 4.2. Fix a K-type � ∈ 1
2N and a degree d∈ N. The function Φ�

d : A∗ → End(H �)

is defined by associating to each point a∈ A∗ a matrix Φ�
d(a) whose jth row is the vector

Φ�
ζ(d, j)(a). More precisely, we have

(Φ�
d(a))p,q = (Φ�

ζ(d,p)(a))q,q for all a∈ A∗. (4.3)

The function Φ�
d is called the full spherical function of type � and degree d. �
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Fig. 3. Another parametrization of the pairs (�1, �2) containing �; the steps of the ladder are

paramatrized by d, the position on a given step by k.

The construction of a full spherical function from the spherical functions

restricted to A∗ has been previously employed by Grünbaum et al. [15] for the pair

(SU(3),U(2)), see also Pacharoni and Tirao [29, 30] and Pacharoni and Román [28] for

other cases.

Let A′
∗ be the open subset {at ∈ A∗ : t �∈ πZ}. This is the regular part of A∗. The

following proposition is shown in [23, Proposition 3.2]. In Proposition 5.7, we prove this

result independently for general points in A∗ in a different way.

Proposition 4.3. The full spherical function Φ�
0 of type � and degree 0 has the property

that its restriction to A′
∗ is invertible. �

Definition 4.4. Fix a K-type � ∈ 1
2N and a degree d∈ N. Define the function

Q�
d : A′

∗ → End(H �) : a �→Φ�
d(a)(Φ

�
0(a))

−1. (4.4)

The jth row is denoted by Q�
ζ(d, j)(a). Q�

d is called the full spherical polynomial of type �

and degree d. �

The functions Q�
d and Q�

ζ(d,k) are polynomials because (Q�
d)p,q = q�,qζ(d,p)(ϕ). The

degree of each row of Q�
d is d which justifies the name we have given these functions

in Definition 4.4. Also Theorem 4.8 implies that Q�
d is indeed a matrix-valued polynomial
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of degree d in ϕ(a) with a nonsingular leading coefficient, cf. Vretare [36]. In contrast, Φ�
d

is not polynomial in φ(a) since these are Fourier polynomials which are not symmetric

under the Weyl group S2 for the reduced root system.

We shall show that the functions Φ�
d and Q�

d satisfy orthogonality relations that

come from (4.1). We start with the Φ�
d. This function encodes 2�+ 1 restricted spherical

functions and to capture the orthogonality relations of (4.1), we need a matrix-valued

inner product.

Definition 4.5. Let Φ and Ψ be End(H �)-valued functions on A∗. Define

〈Φ,Ψ 〉 := 2

π

∫
A∗
Φ(a)(Ψ (a))∗|D∗(a)| da. (4.5)

�

Proposition 4.6. The pairing defined by (4.5) is a matrix-valued inner product. The

functions Φ�
d with d∈ N form an orthogonal family with respect to this inner product. �

Proof. The pairing satisfies all the linearity conditions of a matrix-valued inner prod-

uct. Moreover, we have Φ(a)(Φ(a))∗|D∗(a)| ≥ 0, for all a∈ A∗. If 〈Φ,Φ〉 = 0, then ΦΦ∗ = 0

from which it follows that Φ = 0. Hence the pairing is an inner product. The orthogonal-

ity follows from the formula

(〈Φd, Ψd′ 〉)p,q = 〈Φ�
ζ(d,p), Φ

�
ζ(d′,q)〉A∗ = δd,d′δp,q

(2�+ 1)2

(d+ �+ p+ 1)(d+ �− p+ 1)

and Proposition 4.1. �

Define

V�(a)=Φ�
0(a)(Φ

�
0(a))

∗|D∗(a)|, (4.6)

with D∗(at)= sin2 t. This is a weight matrix and we have the following corollary.

Corollary 4.7. Let Q and R be End(H �)-valued functions on A∗ and define the matrix-

valued paring with respect to the weight V� by

〈Q, R〉V� =
∫

A∗
Q(a)V�(a)(R(a))∗ da. (4.7)
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This pairing is a matrix-valued inner product and the functions Q�
d form an orthogonal

family for this inner product. �

The functions Φ�
d and Q�

d being defined, we can now transfer the recurrence rela-

tions of Proposition 3.1 to these functions. Let Ei, j be the elementary matrix with zeros

everywhere except for the (i, j)th spot, where it has a one. If we write Ei, j with |i|> � or

| j|> �, then we mean the zero matrix.

Theorem 4.8. Fix � ∈ 1
2N and define the matrices Ad, Bd, and Cd by

Ad =
�∑

k=−�
|aζ(d,k)ζ(d+1,k),�|2 Ek,k,

Bd =
�∑

k=−�

(
|aζ(d,k),ζ(d,k+1),�|2 Ek,k+1 + |aζ(d,k)ζ(d,k−1),�|2Ek,k−1

)
,

Cd =
�∑

k=−�
|aζ(d,k)ζ(d−1,k),�|2 Ek,k.

(4.8)

For a∈ A∗ we have

ϕ(a) ·Φ�
d(a)= AdΦ

�
d+1(a)+ BdΦ

�
d(a)+ CdΦ

�
d−1(a) (4.9)

and similarly

ϕ(a) · Q�
d(a)= AdQ�

d+1(a)+ BdQ�
d(a)+ CdQ�

d−1(a). (4.10)

Note Ad ∈ GL2�+1(R). �

Proof. It is clear that (4.10) follows from (4.9) by multiplying on the right with the

inverse of Φ�
0. To prove (4.9), we look at the rows. Let p∈ {−�,−�+ 1, . . . , �} and multiply

(4.9) on the left by E p,p to pick out the pth row. The left-hand side gives ϕ(a)E p,pΦ
�
d(a)

while the right-hand side gives

|aζ(d,p)ζ(d+1,p),�|2 E p,pΦ
�
d+1(a)+ |aζ(d,p)ζ(d,p+1),�|2E p,p+1Φ

�
d(a)+ |aζ(d,p)ζ(d,p−1),�|2 E p,p−1Φ

�
d(a)

+ |aζ(d,p)ζ(d−1,p),�|2 E p,pΦ
�
d−1(a).
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Now observe that these are equal by Proposition 3.1 and (4.3). This proves the result

since p is arbitrary. �

Finally, we discuss some symmetries of the full spherical functions. The Cartan

involution corresponding to the pair (U, K∗) is the map θ(k1,k2)= (k2,k1). The represen-

tation T�1,�2 and T�2,�1 ◦ θ are equivalent via the map ψ
�1
j1 ⊗ ψ

�2
j2 �→ψ

�2
j2 ⊗ ψ

�1
j1 . It follows

that θ∗Φ�
�1,�2

=Φ�
�2,�1

. This has the following effect on the full spherical functions Φ�
d from

Definition 4.2:

θ∗Φ�
d = JΦ�

d, (4.11)

where J ∈ End(H �) is given by ψ�
j �→ψ�

− j. The Weyl group W(U, K∗)= {1, s} consists of the

identity and the reflection s in 0 ∈ a∗. The group W(U, K∗) acts on A∗ and on the functions

on A∗ by pull-back.

Lemma 4.9. We have s∗Φ�
�1,�2

(a)= JΦ�
�1,�2

(a) for all a∈ A∗. The effect on the full spherical

functions of type � is

s∗Φ�
d =Φ�

dJ. (4.12)
�

Proof. This follows from (2.5) and the fact that C �1,�2,�
j1, j2, j = (−1)�1+�2−�C �1,�2,�

− j1,− j2,− j. �

Proposition 4.10. The functions Φ�
d commute with J. �

Proof. The action of θ and sα on A∗ is just taking the inverse. Formulas (4.11) and (4.12)

now yield the result. �

5 The Weight Matrix

We study the weight function V� : A∗ → End(H �) defined in (4.6), in particular, its symme-

tries and explicit expressions for its matrix elements. First note that V� is real valued.

Indeed, V� commutes with J,

JV�(a)J = JΦ�
0(a)J(JΦ

�
0(a)J)

∗|D∗(a)| =Φ�
0(a)Φ

�
0(a)

∗|D∗(a)| = V�(a), (5.1)

since J∗ = J and J2 = 1. This also shows that V is real valued,

¯V�(at)= V�(a−t)= JV�(at)J = V�(at). (5.2)

 at R
adboud U

niversity on D
ecem

ber 6, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Matrix Valued Orthogonal Polynomials 5689

Lemma 5.1. The weight has the symmetries V�
p,q = V�

q,p = V�
−p,−q = V�

−q,−p for p,q ∈
{−�, . . . , �}. �

Proof. The first equality follows since V�(a) is self-adjoint by (4.6) and real valued by

(5.2). Since V�(a) commutes with J we see that V�
p,q = V�

−p,−q. �

Set

v�(at)=Φ�
0(a)Φ

�
0(a)

∗ (5.3)

so that V�(at)= v�(at)|D∗(at)| = v�(at) sin2 t. Note that, for −�≤ p,q ≤ �, the matrix

coefficient

v�(at)p,q = tr(Φ�
�+p

2 ,
�−p

2
(at)(Φ

�
�+q

2 ,
�−q

2
(at))

∗) (5.4)

is a linear combination of zonal spherical functions by the following lemma.

Lemma 5.2. The function U → C : x �→ tr(Φ�
�1,�2

(x)(Φ�
m1,m2

(x))∗) is a bi-K-invariant func-

tion and

tr(Φ�
�1,�2

(at)(Φ
�
m1,m2

(at))
∗)=

min(�1+m1,�2+m2)∑
n=max(|�1−m1|,|�2−m2|)

cnU2n(cos t) (5.5)

if �1 + m1 − (�2 + m2) ∈ Z and tr(Φ�
�1,�2

(at)(Φ
�
m1,m2

(at))
∗)= 0, otherwise. �

Proof. It follows from Property (2) that the function is bi-K-invariant, so it is natural

to expand the function in terms of the zonal spherical functions U2n corresponding to

the spherical representations Tn,n, n∈ 1
2N. Since T�1,�2 is equivalent to its contragredient

representation, we see that the only spherical functions occurring in the expansion of

tr(Φ�
�1,�2

(x)(Φ�
m1,m2

(x))∗) are the ones for which (n,n) ∈ A= {(n1,n2) ∈ 1
2N × 1

2N : �i + mi −
ni ∈ Z, |�1 − m1| ≤ n1 ≤ �1 + m1, |�2 − m2| ≤ n2 ≤ �2 + m2} since the right-hand side corre-

sponds to the tensor product decomposition T�1,�2 ⊗ Tm1,m2 =⊕(n1,n2)∈A Tn1,n2 , see Propo-

sition 3.1 and Figure 4. �

Given d, e ∈ N and −�≤ p,q ≤ �, we write ζ(d, p)= (�1, �2), ζ(e,q)= (m1,m2). Then

we have

(Φ�
d(at)(Φ

�
e)(at)

∗)p,q = tr(Φ�
ζ(d,p)(at)(Φ

�
ζ(e,q)(at))

∗)=
∑

j, j1, j2,i1,i2

(C �1,�2,�
j1, j2, j C

m1,m2,�
i1,i2, j )2 ei( j2− j1+i1−i2)t,
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Fig. 4. Plot of the decomposition of the tensor product T4, 3
4 ⊗ T2, 9

2 into irreducible representa-

tions. The big nodes indicate the irreducible summands, the big black nodes the ones that contain

the trivial K∗-type upon restricting.

where the sum is taken over

| j| ≤ �, | j1| ≤ �1, | j2| ≤ �2, |i1| ≤ m1, |i2| ≤ m2,

satisfying j1 + j2 = i1 + i2 = j. This equals

(Φ�
d(at)(Φ

�
e(at))

∗)p,q =
∑

|s|≤min(�1+m1,�2+m2)

d�
�1,�2,m1,m2,s eist, (5.6)

where

d�
�1,�2,m1,m2,s =

∑
j, j1, j2,i1,i2

(C �1,�2,�
j1, j2, j C

m1,m2,�
i1,i2, j )2, (5.7)

where the sum is taken over

| j| ≤ �, | j1| ≤ �1, | j2| ≤ �2, |i1| ≤ m1, |i2| ≤ m2,

satisfying j1 + j2 = i1 + i2 = j and j2 − j1 + i1 − i2 = s. Since Un(cos t)= e−int + e−i(n−2)t +
· · · + eint, it follows from (5.6) and Lemma 5.2 that we have the following summation

result.
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Corollary 5.3. Let |s| ≤ max(|�1 − m1|, |�2 − m2|). Then d�
�1,�2,m1,m2,s is independent of s. �

Note that the sum in (5.7) is a double sum of four Clebsch–Gordan coefficients,

which in general are 3 F2-series [35].

We now turn to the case �1 = �+p
2 , �2 = �−p

2 ,m1 = �+q
2 ,m2 = �−q

2 . Because of

Lemma 5.1 the next theorem gives an explicit expression for the weight matrix.

Theorem 5.4. Let q − p≤ 0 and q + p≤ 0. For n= 0, . . . , �+ q, there are coefficients

c�n(p,q) ∈ Q>0 such that

(V�(at))p,q = sin2
(t)

�+q∑
n=0

c�n(p,q)U2�+p+q−2n(cos(t)), (5.8)

where the coefficients are given by

c�n(p,q)=
2�+ 1

�+ p+ 1

(�− q)!(�+ q)!

(2�)!

(p− �)�+q−n

(�+ p+ 2)�+q−n
(−1)�+q−n(2�+ 2 − n)n

n!
. (5.9)

�

By cn+p+q(p,q)= cn(−q,−p) the expansion (5.8) with (5.9) remains valid for q ≤ p.

Proof. Since min(�1 + m1, �2 + m2)= �+ p+q
2 and max(|�1 − m1|, |�2 − m2|)= p−q

2 in this

case we find the expansion of the form as stated in (5.8). It remains to calculate the

coefficients. Specializing (5.6) and writing

(C (�+m)/2,(�−m)/2,�
j1, j2, j )2 = δ j, j1+ j2

(
�+m

j1+(�+m)/2

)(
�−m

j2+(�−m)/2

)
( 2�
�− j

) , (5.10)

we find

v�pq(cos t)=
�+p

2∑
j=− �+p

2

�+q
2∑

i=− �+q
2

F �
i j(p,q) exp(i(−2(i + j)t))

=
�+ p+q

2∑
r=−(�+ p+q

2 )

⎛
⎝ min( �+q

2 ,r+ �+p
2 )∑

i=max(− �+q
2 ,r− �+p

2 )

F �
i,r−i(p,q)

⎞
⎠ e−2irt, (5.11)
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with

F �
i j(p,q)=

(
�+ p

j + (�+ p)/2

)(
�+ q

i + (�+ q)/2

) min(− j+ �−p
2 ,i+ �−q

2 )∑
k=max(− j− �−p

2 ,i− �−q
2 )

(
�−p

−k− j+(�−p)/2

)(
�−q

k−i+(�−q)/2

)
( 2�
�−k

)2 .

(5.12)

From this, we can obtain the explicit expression of v�(at)p,q in Chebyshev polynomials.

The details are presented in Appendix 1. �

Proposition 5.5. The commutant

{V�(a) : a∈ A∗}′ := {Y ∈ End(H �) : V�(a)Y = YV�(a) for all a∈ A∗} = {v�(a) : a∈ A∗}′

is spanned by the matrices I and J. �

Proof. By Proposition 4.10, we have J ∈ {V�(a) : a∈ A∗}′. It suffices to show that the com-

mutant contains no other elements than those spanned by I and J.

Let v�(at)=
∑2�

n=0 Un(cos t)An, with An ∈ Mat2�+1(C) by Theorem 5.4. Then for B

in the commutant it is necessary and sufficient that AnB = B An for all n. First, put

C = A2�. Then by Theorem 5.4 C p,q = ( 2�
�+p

)−1
δp,−q. The equation BC = C B leads to Bp,q =

(C −1 BC )p,q = Cq,−q

C p,−p
B−p,−q = Cq,−qC−q,q

C p,−pC−p,p
Bp,q by iteration. Since Cq,−q = C p,−p if and only if p= q

or p= −q we find Bp,q = 0 for p �= q or p �= −q. Moreover, Bp,p = B−p,−p and Bp,−p = B−p,p.

Secondly, put C ′ = A2�−1. Then, by Theorem 5.4, we have

C ′
p,q = δ|p+q|,1(2�+ 1)

(
2�

�− p

)−1( 2�

�+ q

)−1

,

so the nonzero entries are different up to the symmetries C ′
p,q = C ′

−p,−q = C ′
q,p =

C ′
−q,−p. Now BC ′ = C ′B implies by the previous result Bp,pC ′

p,q + Bp,−pC ′
−p,q = C ′

p,q Bq,q +
C ′

p,−q Bq,q. Take q = 1 − p to find Bp,p = B1−p,1−p = Bp−1,p−1 unless p= 0 or p= 1, and

take q = p− 1 to find Bp,−p = B1−p,p−1 = Bp−1,1−p unless p= 0 or p= 1. In particular,

for � ∈ 1
2 + N this proves the result. In case � ∈ N we obtain one more equation: B0,0 =

B1,1 + B1,−1. This shows that B is in the span of I and J. �

The matrix J has eigenvalues ±1 and two eigenspaces H �
− and H �

+. The dimen-

sions are ��+ 1
2� and ��+ 1

2� . A choice of (ordered) bases of the eigenspaces is given by

{ψ�
j − ψ�

− j : −�≤ j < 0, �− j ∈ Z} and {ψ�
j + ψ�

− j : 0 ≤ j ≤ �, �− j ∈ Z}. (5.13)
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Let Y� be the matrix whose columns are the normalized basis vectors of (5.13). Conju-

gating V� with Y� yields a matrix with two blocks, one block of size ��+ 1/2� × ��+ 1/2�
and one of size ��+ 1/2� × ��+ 1/2�.

Corollary 5.6. The family (Q�
d)d≥0 and the weight V� are conjugate to a family and a

weight in block form. More precisely

Y−1
� Q�

d(at)Y� =
(

Q�
d,−(at) 0

0 Q�
d,+(at)

)
, Y−1

� V�(at)Y� =
(

V�
−(at) 0

0 V�
+(at)

)
.

The families (Q�
d,±)d≥0 are orthogonal with respect to the weight V�

±. Moreover, there is

no further possible reduction. �

Proof. The functions Q�
d can be conjugated by Y�. Since the Q�

d commute with J, we see

that the Y−1
� Q�

dY� has the same block structure as Y−1
� V�Y�. The blocks of the Y−1

� Q�
dY�

are orthogonal with respect to the corresponding block of Y−1
� V�Y�. The polynomials

Q�
d,− take their values in the (−1)-eigenspace H �

− of J, the polynomials Q�
d,+ in the (+1)-

eigenspace H �
+ of J. The dimensions are ��+ 1

2� and ��+ 1
2�, respectively.

A further reduction would require an element in the commutant {V�(a) : a∈ A∗}′
not in the span of I and J. This is not possible by Proposition 5.5. �

The entries of the weight v� with the Chebyshev polynomials of the highest

degree 2� occur only on the antidiagonal by Theorem 5.4. This shows that the deter-

minant of v�(at) is a polynomial in cos t of degree 2�(2�+ 1) with leading coefficient

(−1)�(2�+1)∏�
p=−� c0(p,−p)22� �= 0. Hence v� is invertible on A∗ away from the zeros of its

determinant, of which there are only finitely many. We have proved the following propo-

sition which should be compared with Proposition 4.3.

Proposition 5.7. The full spherical function Φ�
0 is invertible on A∗ except for a

finite set. �

In particular, Q�
d is well defined in Definition 4.2, except for a finite set. Since Q�

d

is polynomial, it is well defined on A.

Calculations in Mathematica lead to the following conjecture.

Conjecture 5.8. det(v�(at))= (1 − cos2 t)�(2�+1)∏�
p=−�(2

2�c�0(p,−p)). �
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5694 E. Koelink et al.

Conjecture 5.8 is supported by Koornwinder [23, Proposition 3.2], see Proposi-

tion 4.3. Conjecture 5.8 has been verified for �≤ 16.

6 The Matrix Orthogonal Polynomials Associated to (SU(2) × SU(2), diag)

The main goal of Sections 3–5 was to study the properties of the matrix-valued spher-

ical functions of any K-type associated to the pair (SU(2)× SU(2),diag). These func-

tions, introduced in Definition 2.2, are the building blocks of the full spherical functions

described in Definition 4.2. We have exploited the fact that the spherical functions diag-

onalize when restricted to the subgroup A. This allows us to identify each spherical

function with a row vector and arrange them in a square matrix.

The goal of this section is to translate the properties of the full spherical func-

tions obtained in the previous sections at the group level to the corresponding family of

matrix-valued orthogonal polynomials.

6.1 Matrix-valued orthogonal polynomials

Let W be a complex N × N matrix-valued integrable function on the interval (a,b)

such that W is positive definite almost everywhere and with finite moments of all

orders. Let MatN(C) be the algebra of all N × N complex matrices. The algebra over

C of all polynomials in the indeterminate x with coefficients in MatN(C) denoted by

MatN(C)[x]. Let 〈·, ·〉 be the following Hermitian sesquilinear form in the linear space

MatN(C)[x]:

〈P , Q〉 =
∫b

a
P (x)W(x)Q(x)∗ dx. (6.1)

The following properties are satisfied:

• 〈aP + bQ, R〉 = a〈P , R〉 + b〈Q, R〉, for all P , Q, R∈ MatN(C)[x], a,b ∈ C;

• 〈T P , Q〉 = T〈P , Q〉, for all P , Q ∈ MatN(C)[x], T ∈ MatN(C);

• 〈P , Q〉∗ = 〈Q, P 〉, for all P , Q ∈ MatN(C)[x];

• 〈P , P 〉 ≥ 0 for all P ∈ MatN(C)[x]. Moreover if 〈P , P 〉 = 0 then P = 0.

Given a weight matrix W one constructs a sequence of matrix-valued orthogonal

polynomials, which is a sequence {Rn}n≥0, where Rn is a polynomial of degree n with

nonsingular leading coefficient and 〈Rn, Rm〉 = 0, if n �= m.

It is worth noting that there exists a unique sequence of monic orthogonal poly-

nomials {Pn}n≥0 in MatN(C)[x]. Any other sequence of {Rn}n≥0 of orthogonal polynomials

in MatN(C)[x] is of the form Rn(x)= AnPn(x) for some An ∈ GLN(C).
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By following a well-known argument, see, for instance [26, 27], one shows that

the monic orthogonal polynomials {Pn}n ≥ 0 satisfy a three-term recurrence relation

xPn(x)= Pn+1(x)+ BnPn(x)+ CnPn−1(x), n≥ 0,

where P−1 = 0 and Bn, Cn are matrices depending on n and not on x.

There is a notion of similarity between two weight matrices that was pointed out

in [8]. The weights W and W̃ are said to be similar if there exists a nonsingular matrix

M, which does not depend on x, such that W̃(x)= MW(x)M∗ for all x ∈ (a,b).

Proposition 6.1. Let {Rn,1}n≥0 be a sequence of orthogonal polynomials with respect

to W and M ∈ GL N(C). Then the sequence {Rn,2(x)= Rn,1(x)M−1}n≥0 is orthogonal with

respect to W̃ = MWM∗. Moreover, if {Pn,1} is the sequence of monic orthogonal polyno-

mials orthogonal with respect to W then {Pn,2(x)= MPn,1(x)M−1} is the sequence of monic

orthogonal polynomials with respect to W̃. �

Proof. It follows directly by observing that

∫
Rn,2(x)W̃(x)Rm,2(x)

∗ dx =
∫

Rn,1(x)M
−1W̃(x)(M−1)∗ Rm,1(x)

∗ dx

=
∫

Rn,1(x)W(x)Rm,1(x)
∗ dx = 0, if n �= m.

The second statement follows by looking at the leading coefficient of Pn,2 and the unicity

of the sequence of monic orthogonal polynomials with respect to W̃. �

A weight matrix W reduces to a smaller size if there exists a matrix M such that

W(x)= M

(
W1(x) 0

0 W2(x)

)
M∗ for all x ∈ (a,b),

where W1 and W2 are matrix weights of smaller size. In this case, the monic polynomials

{Pn}n≥0 with respect to the weight W are given by

Pn(x)= M

(
Pn,1(x) 0

0 Pn,2(x)

)
M−1, n≥ 0,
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where {Pn,1}n≥0 and {Pn,2}n≥0 are the monic orthogonal polynomials with respect to W1

and W2, respectively.

6.2 Polynomials associated to SU(2) × SU(2)

In the rest of the paper, we will be concerned with the properties of the matrix orthogo-

nal polynomials Qd. For this purpose, we find it convenient to introduce a new labeling

in the rows and columns of the weight V . More precisely, for any � ∈ 1
2Z, let W be the

(2�+ 1)× (2�+ 1) matrix given by

√
1 − x2 W(x)n,m = V(aarccos x)−�+n,−�+m, n,m ∈ {0,1, . . . ,2�}. (6.2)

It then follows from Theorem 5.4 that

W(x)n,m = (1 − x)
1
2 (1 + x)

1
2
(2�+ 1)

n+ 1

(2�− m)!m!

(2�)!

×
m∑

t=0

(−1)m−t (n− 2�)m−t

(n+ 2)m−t

(2�+ 2 − t)t
t!

Un+m−2t(x), (6.3)

if n≤ m and W(x)n,m = W(x)m,n otherwise.

We also consider the sequence of monic polynomials {Pd}d≥0 given by

Pd(x)n,m =Υ −1
d Qd(aarccos x)−�+n,−�+m, n,m ∈ {0,1, . . . ,2�}, (6.4)

where Υd is the leading coefficient of the polynomial Qd(aarccos x), which is nonsingular

by Theorem 4.8. Now we can rewrite the results on Section 5 in terms of the weight W

and the polynomials Pd.

Corollary 6.2. The sequence of matrix polynomials {Pd(x)}d>0 is orthogonal with

respect to the matrix-valued inner product

〈P , Q〉 =
∫1

−1
P (x)W(x)Q(x)∗ dx. �

Theorem 4.8 states that there is a three-term recurrence relation defining the

matrix polynomials Qd. These polynomials are functions on the group A. We can use

(6.4) to derive a three-term recurrence relation for the polynomials Pd.
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Corollary 6.3. For any � ∈ 1
2N, the matrix-valued orthogonal polynomials Pd, are defined

by the following three-term recurrence relation:

xPd(x)= Pd+1(x)+ Υ −1
d BdΥdPd(x)+ Υ −1

d CdΥd−1 Pd−1(x), (6.5)

where the matrices Ad, Bd, and Cd are given in Theorem 4.8 and taking into account the

relabeling as in the beginning of this subsection. �

6.3 Symmetries of the weight and the matrix polynomials

In this section, we shall use the symmetries satisfied by the full spherical functions to

derive symmetry properties for the matrix weight W and the polynomials Pd.

For any n∈ N, let In be the n× n identity matrix and let Jn and Fn be the following

n× n matrices:

Jn =
n−1∑
i=0

Ei,n−1−i, Fn =
n−1∑
i=0

(−1)i Ei,i. (6.6)

For any n× nmatrix X the transpose Xt is defined by (Xt)i j = X ji (reflection in the diago-

nal) and we define the reflection in the antidiagonal by (Xd)i j = Xn− j,n−i. Note that taking

transpose and taking antidiagonal transpose commute, and that

(Xt)d = (Xd)t = Xdt = JnX Jn.

Moreover, (XZ)d = ZdXd for arbitrary matrices X and Z . We also need to consider the

(2�+ 1)× (2�+ 1) matrix Y defined by

Y = 1√
2

(
I�+ 1

2
J�+ 1

2

−J�+ 1
2

I�+ 1
2

)
if �= 2n+ 1

2
, n∈ N,

Y = 1√
2

⎛
⎜⎜⎝

I� 0 J�

0
√

2 0

−J� 0 I�

⎞
⎟⎟⎠ if � ∈ N.

(6.7)

Proposition 6.4. The weight matrix W(x) satisfies the following symmetries:

(i) W(x)t = W(x) and W(x)d = W(x), for all x ∈ [−1,1]. Thus,

J2�+1W(x)J2�+1 = W(x),

for all x ∈ [−1,1].

 at R
adboud U

niversity on D
ecem

ber 6, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


5698 E. Koelink et al.

(ii) W(−x)= F2�+1W(x)F2�+1 for all x ∈ [−1,1].

Here, F2�+1 is the (2�+ 1)× (2�+ 1) matrix given in (6.6). �

Proof. The symmetry properties of W in (i) follow directly from Lemma 5.1.

The proof of (ii) follows from (6.3) by using the fact that Un(−x)= (−1)nUn(x)

for any Chebyshev polynomial of the second kind Un(x), so that W(−x)n,m = (−1)n+m

Wn,m(x). �

The weight matrix W can be conjugated into a 2 × 2 block diagonal matrix. In

Corollary 5.6, we have pointed out this phenomenon for the weight V . The following

theorem translates Corollary 5.6 to the weight matrix W.

Theorem 6.5. For any � ∈ 1
2N, the matrix W satisfies

W̃(x)= YW(x)Yt =
(

W1(x) 0

0 W2(x)

)
,

where Y is a matrix given by (6.7). Moreover, if {Pd,1}d≥0 (resp. {Pd,2}d≥0) is a sequence

of monic matrix orthogonal polynomials with respect to the weight W1(x) (resp. W2(x)),

then

P̃d(x)=
(

Pd,1(x) 0

0 Pd,2

)
, d≥ 0 (6.8)

is a sequence of matrix orthogonal polynomials with respect to W̃. There is no further

reduction. �

The case �= (2n+ 1)/2, n∈ N, leads to weight matrices W of even size. In this

case, W splits into two blocks of size �+ 1
2 . In Corollary 6.6, we prove that these

two blocks are equivalent, hence the corresponding matrix orthogonal polynomials are

equivalent.

It follows from Proposition 6.4(1) that there exist (n+ 1)× (n+ 1) matrices A(x)

and B(x) such that A(x)t = A(x) and

W(x)=
(

A(x) B(x)

B(x)dt A(x)dt

)
, (6.9)

for all x ∈ [−1,1].
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Corollary 6.6. Let �= (2n+ 1)/2, n∈ Z. Then

YW(x)Yt =
(

W1(x) 0

0 W2(x)

)
,

where

W1(x)= A(x)+ B(x)Jn+1, W2(x)= Jn+1 Fn+1W1(−x)Fn+1 Jn+1.

Here, A(x) and B(x) are the matrices described in (6.3) and (6.9). Moreover, if {Pd,1}d≥0 is

the sequence of monic orthogonal polynomials with respect to W1(x) then

Pd,2(x)= (−1)dJn+1 Fn+1 Pd,1(−x)Fn+1 Jn+1 (6.10)

is the sequence of monic orthogonal polynomials with respect to W2(x). �

Proof. In this proof, we will drop the subindex in the matrices Jn+1 and Fn+1 and we

will use J and F instead. It is a straightforward calculation that, for (n+ 1)× (n+ 1)-

matrices A, B, C , and D, the following holds:

Y

(
A B

C D

)
Yt = 1

2

(
A+ Ddt + J(C + Bdt) B − C dt + (Ddt − A)J

J(Ddt − A)+ C − Bdt D + Adt − (C + Bdt)J

)
.

In particular, for the weight function W, we get

YW(x)Yt = Y

(
A(x) B(x)

B(x)dt A(x)dt

)
Yt =

(
A(x)+ B(x)J 0

0 J(A(x)− B(x)J)J

)
.

This proves that

W1(x)= A(x)+ B(x)J, W2(x)= J(A(x)− B(x)J)J.

It follows from Proposition 6.4 (2) that A(−x)= F A(x)F and B(−x)= F B(x)F . Therefore,

we have

JF W1(−x)F J = JF A(−x)F J + F J B(−x)F J = J A(x)J − J B(x)= W2(x).

This proves the first assertion of the theorem.

The last statement follows from Proposition 6.1 �
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7 Matrix-Valued Differential Operators

In the study of matrix-valued orthogonal polynomials, an important ingredient is the

study of differential operators which have these matrix-valued orthogonal polynomials

as eigenfunctions. In this section, we discuss some of the differential operators that

have the matrix-valued orthogonal polynomials of the previous section as eigenfunc-

tions. The calculations rest on the explicit form of the weight function (6.3).

7.1 Symmetric differential operators

We consider right-hand side differential operators

D =
s∑

i=0

∂ i Fi(x), ∂ = d

dx
, (7.1)

in such a way that the action of D on the polynomial P (x) is

P D =
s∑

i=0

∂ i(P )(x)Fi(x).

In [18, Propositions 2.6 and 2.7], one can find a proof of the following proposition.

Proposition 7.1. Let W = W(x) be a weight matrix of size N and let {Pn}n≥0 be the

sequence of monic orthogonal polynomials in MatN(C)[x]. If D is a right-hand side ordi-

nary differential operator as in (7.1) of order s such that

PnD =ΛnPn for all n≥ 0,

with Λn ∈ A, then

Fi = Fi(x)=
i∑

j=0

xj F i
j , F i

j ∈ MatN(C)

is a polynomial of degree less than or equal to i. Moreover, D is determined by the

sequence {Λn}n≥0 and

Λn =
s∑

i=0

[n]i F
i
i (D) for all n≥ 0,

where [n]i = n(n− 1) · · · (n− i + 1), [n]0 = 1. �
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We consider the following algebra of right-hand side differential operators with

coefficients in MatN(C)[x].

D =
{

D =
∑

i

∂ i Fi : Fi ∈ MatN(C)[x], deg Fi ≤ i

}
.

Given any sequence of matrix-valued orthogonal polynomials {Rn}n≥0 with respect to W,

we define

D(W)= {D ∈D : RnD = Γn(D)Rn, Γn(D) ∈ MatN(C), for all n≥ 0}.

We observe that the definition of D(W) does not depend on the sequence of orthogonal

polynomials {Rn}n≥0.

Remark 7.1. The mapping D �→ Γn(D) is a representation of D(W) in CN for each n≥ 0.

Moreover, the family of representations {Γn}n≥0 separates the points of D(W). Note that

D(W) is an algebra. �

Definition 7.2. A differential operator D ∈D is said to be symmetric if 〈P D, Q〉 =
〈P , QD〉 for all P , Q ∈ MatN(C)[x]. �

Proposition 7.3 ([18]). If D ∈D is symmetric, then D ∈D(W). �

The main theorem in [18] says that, for any D ∈D, there exists a unique dif-

ferential operator D∗ ∈D(W), the adjoint of D, such that 〈P D, Q〉 = 〈P , QD∗〉 for all

P , Q ∈ MatN(C)[x]. The map D �→ D∗ is a ∗-operation in the algebra D(W) . Moreover,

we have D(W)= S(W)⊕ iS(W), where S(W) denotes the set of all symmetric operators.

Therefore it suffices, in order to determine all the algebra D(W), to determine the space

of symmetric operators S(W).

The condition of symmetry in Definition 7.2 can be translated into a set of differ-

ential equations involving the weight W and the coefficients of the differential operator

D. For differential operators of order 2 this was proved in [7, Theorem 3.1].

Theorem 7.4. Let W(x) be a weight matrix supported on (a,b). Let D ∈D be the differ-

ential operator

D = ∂2 F2(x)+ ∂F1(x)+ F 0
0 ,

 at R
adboud U

niversity on D
ecem

ber 6, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


5702 E. Koelink et al.

Then D is symmetric with respect to W if and only if

F2W = WF2, (7.2)

2(F2W)′ = WF ∗
1 + F1W, (7.3)

(F2W)′′ − (F1W)′ + F0W = WF ∗
0 , (7.4)

with the boundary conditions

lim
x→a,b

F2(x)W(x)= 0, lim
x→a,b

(F2(x)W(x))′ − F1(x)W(x)= 0. (7.5)

�

7.2 Matrix-valued differential operators for the polynomials Pn

As in the previous section, we will denote by {Pn}n ≥ 0 the sequence of monic orthogonal

polynomials with respect to the weight matrix W. We can write the weight as W(x)=
ρ(x)Z(x), where ρ(x)= (1 − x)

1
2 (1 + x)

1
2 and Z(x) is the (2�+ 1)× (2�+ 1) matrix whose

(n,m)-entry is given by

Z(x)n,m = (2�+ 1)

n+ 1

(2�− m)!m!

(2�)!

m∑
t=0

(−1)m−t (n− 2�)m−t

(n+ 2)m−t

(2�+ 2 − t)t
t!

Un+m−2t. (7.6)

=
m∑

t=0

c(n,m, t)Un+m−2t(x),

if m ≤ n and Z(x)n,m = Z(x)m,n, otherwise.

Once we have an explicit expression for the weight matrix W, we can use the

symmetry equations in Theorem 7.4 to find symmetric differential operators. If we start

with a generic second-order differential operator

D =
2∑

i=0

∂ i Fi(x), Fi(x)=
i∑

j=0

xj F i
j , F i

j ∈ MatN(C)

then Equations (7.2)–(7.4) lead to linear equations in the coefficients F i
j . It is easy to

solve these equations for small values of N using any software tool such as Maple.

We have used the general expressions for small values of N to make an ansatz for the

expressions of a first-order and a second-order differential operator. Then we prove that
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these operators are symmetric for all N by showing that they satisfy the conditions in

Theorem 7.4.

In the following theorem, we show the matrix polynomials Pn satisfy a matrix-

valued first-order differential equation. This phenomenon, which does not appear in the

scalar case, has recently been studied in the literature, see, for instance [3, 4].

Theorem 7.5. Let E be the first-order matrix-valued differential operator

E =
(

d

dx

)
A1(x)+ A0,

where the matrices A1(x) and A0 are given by

A1(x)=
2�∑

i=0

(
2�− i

2�

)
Ei,i+1 −

2�∑
i=0

x
(
�− i

�

)
Ei,i −

2�∑
i=0

(
i

2�

)
Ei,i−1,

A0 =
2�∑

i=0

(2�+ 2)(i − 2�)

2�
Ei,i.

Then E is symmetric with respect to the weight W; hence, E ∈ D(W). Moreover, for every

integer n≥ 0,

Pn(x)E =Λn(E)Pn(x),

where

Λn(E)=
2�∑

i=0

(
−n(�− i)

�
+ (2�+ 2)(i − 2�)

2�

)
Ei,i. �

Proof. The proof of the theorem is performed by showing that the differential operator

E is symmetric with respect to the weight W. It follows from Theorem 7.4, with F2 = 0,

that E is symmetric if and only if

W(x)A1(x)
∗ + A1(x)W(x)= 0, (7.7)

−(A1(x)W(x))′ + A0W(x)= W(x)A∗
0, (7.8)

with the boundary condition

lim
x→±1

A1(x)W(x)= 0. (7.9)

The second statement will then follow from Propositions 7.1 and 7.3.
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The verification of (7.7) and (7.8) involves elaborate computations, see

Appendix 2. �

Theorem 7.6. Let D be the second-order matrix-valued differential operator

D = (1 − x2)
d2

dx2
+
(

d

dx

)
B1(x)+ B0,

where the matrices B1(x) and B0 are given by

B1(x)= −
2�∑

i=0

(4�+ 3)(i − 2�)

2�
Ei,i+1 +

2�∑
i=0

x
(2�+ 3)(i − 2�)

�
Ei,i −

2�∑
i=0

(
3i

2�

)
Ei,i−1,

B0 = −
2�∑

i=0

(i − 2�)(i�− 2�2 − 5�− 3)

�
Ei,i.

Then D is symmetric with respect to the weight W(x); hence, D ∈ D(W). Moreover, for

every integer n≥ 0,

Pn(x)D =Λn(D)Pn(x),

where

Λn(D)=
2�∑

i=0

(
−n(n− 1)+ n

(2�+ 3)(i − 2�)

�
− (i − 2�)(i�− 2�2 − 5�− 3)

�

)
Ei,i. �

Proof. The proof of the theorem is similar to that of Theorem 7.5, see Appendix 2. �

Corollary 7.7. The differential operators D and E commute. �

Proof. To see that D and E commute it is enough to verify that the corresponding eigen-

values commute. The eigenvalues commute because they are diagonal matrices. �

As we pointed out in Theorem 6.5, for any � ∈ 1
2N the matrix weight W and the

polynomials Pn are (2�+ 1)× (2�+ 1) matrices that can be conjugated into 2 × 2 block
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matrices. More precisely,

YW(x)Yt =
(

W1(x) 0

0 W2(x)

)
, YPn(x)Y

−1 =
(

Pn,1(x) 0

0 Pn,2(x)

)
,

where Y is the orthogonal matrix introduced in (6.7) and W1, W2 are the square matri-

ces described in Corollary 6.6. Here {Pn,1}n≥0 and {Pn,2}n≥0 are the sequences of monic

orthogonal polynomials with respect to the weights W1 and W2, respectively.

Proposition 7.8. Suppose �= (2n+ 1)/2, for some integer n, then E splits in (n+ 1)×
(n+ 1) blocks in the following way:

Y E Yt = Ẽ =
(

−(�+ 1)In+1 E1

E2 −(�+ 1)In+1

)
,

where

E1 =
(

d

dx

)
Ã1(x)+ Ã0,

E2 =
(

d

dx

)
Fn+1 Jn+1 Ã1(−x)Jn+1 Fn+1 + Fn+1 Jn+1 Ã0 Jn+1 Fn+1.

Here, Fn+1, Jn+1 are the matrices introduced in (6.6). The matrices A1 and A0 are given by

Ã1(x)= −
n−1∑
i=0

(2�− i)

2�
Ei,n−i−1 + x

n∑
i=0

(�− i)

�
Ei,n−i +

n∑
i=1

i

2�
Ei,n−i+1 + (2�+ 1)

4�
En,n+1,

Ã0 =
n∑

i=0

(�+ 1)(�− i)

�
Ei,n−i. �

Proof. The proposition follows by a straightforward computation. �

Proposition 7.9. Suppose � ∈ N, then we have

Y E Yt = Ẽ =
(

d

dx

)⎛⎜⎜⎝ O(�+1)
Ã1(x)

v1
t

F� Ã1(x)F� v2 O�×�

⎞
⎟⎟⎠+

⎛
⎜⎜⎝ −(�+ 1)I(�+1)

Ã0(x)

v0
t

F� Ã0(x)F� v0 −(�+ 1)I�

⎞
⎟⎟⎠ ,
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where Ã1 and Ã0 are n× n matrices given by

Ã1(x)= −
�−2∑
i=0

(2�− i)

2�
Ei,�−i−1 + x

�−1∑
i=0

(�− i)

�
Ei,�−i +

�−1∑
i=1

i

2�
Ei,�−i+1,

Ã0 =
�−1∑
i=0

(�+ 1)(�− i)

�
Ei,�−i,

and the vectors v0, v1, v2 ∈ C� are

v0 = (0,0, . . . ,0), v1 =
(
(2�+ 1)

√
2

4�
,0, . . . ,0

)
, v2 =

(
− (2�+ 1)

√
2

4(�+ 1)
,0, . . . ,0

)
. �

Proof. The proposition follows by a straightforward computation. �

Let us assume that �= (2n+ 1)/2 for some n∈ N so that the weight W and the

polynomials Pn are matrices of even dimension. Proposition 7.8 says that

P̃n(x)Ẽ = YΛnYt P̃n(x), n≥ 0. (7.10)

A simple computation shows that

YΛnYt = −(�+ 1)I2n+2 +
(

0 Λn,1

Λn,2 0

)
,

where Λn,1 is a (n+ 1)× (n+ 1) matrix (depending on n) and

Λn,2 = Fn+1 Jn+1Λn,1 Jn+1 Fn+1.

It follows from (7.10) that the following matrix equation is satisfied

(
−(�+ 1)Pn,1(x) Pn,1(x)E1

Pn,2(x)E2 −(�+ 1)Pn,2(x)

)
=
(

−(�+ 1)Pn,1(x) Λn,1 Pn,2(x)

Λn,2 Pn,1(x) −(�+ 1)Pn,2(x)

)
.

Therefore, the polynomials Pn,1 and Pn,2 satisfy the following differential equations

Pn,1 E1 −Λn,1 Pn,2 = 0, (7.11)

Pn,2 E2 −Λn,2 Pn,1 = 0. (7.12)
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Finally, it follows from (7.11), (7.12), and (6.10) that, for every n≥ 0, the polynomial Pn,1

is a solution of the following second-order matrix-valued differential equation

Pn,1 E1 E2 −Λn,1Λn,2 Pn,1 = 0.

We can also obtain a second order differential equation for Pn,2.

8 Examples

The purpose of this section is to study the properties of the monic orthogonal polynomi-

als {Pn}n ≥ 0 presented in Section 6 for small dimension. For �= 0, 1
2 ,1,

3
2 ,2, we show that

these polynomials are solutions of certain matrix-valued differential equations. We will

show that the polynomials can be defined by means of Rodrigues’ formulas and we will

give explicit expressions for the three-term recurrence relations.

8.1 The case � = 0; the scalar weight

In this case, the polynomials {Pn}n ≥ 0 are scalar-valued. The weight W reduces to the

real function

W(x)= (1 − x)
1
2 (1 + x)

1
2 , x ∈ [−1,1].

Therefore, the polynomials Pn are a multiple of the Chebyshev polynomials of the second

kind: Pn(x)= 2−nUn(x), n∈ N.

8.2 The case � = 1
2 ; weight of dimension 2

In this case, the polynomials {Pn}n ≥ 0 are 2 × 2 matrices. The weight W is given by

W(x)= (1 − x)
1
2 (1 + x)

1
2

(
2 2x

2x 2

)
, x ∈ [−1,1].

It is a straightforward computation that

YW(x)Yt = 2

(
(1 − x)

1
2 (1 + x)

3
2 0

0 (1 − x)
3
2 (1 + x)

1
2

)
, Y = 1√

2

(
1 1

−1 1

)
.
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Observe that W1(x)= (1 − x)
1
2 (1 + x)

3
2 and W2(x)= (1 − x)

3
2 (1 + x)

1
2 are Jacobi weights

and therefore we have

Pn,1 = 2nn!(n+ 2)!

(2n+ 2)!
P
( 1

2 ,
3
2 )

n (x), Pn,2(x)= 2nn!(n+ 2)!

(2n+ 2)!
P
( 3

2 ,
1
2 )

n , n∈ N0,

where {P (α,β)
n }n≥0 are the classical Jacobi polynomials

8.2.1 Differential equations

By Theorem 7.5, we have

d

dx
Pn(x)

(
−x 1

−1 x

)
+ Pn(x)

(
−3 0

0 0

)
=
(

−n− 3 0

0 n

)
Pn(x).

We can conjugate the differential operator E by the matrix Y to obtain

Ẽ = Y E Yt =
(

d

dx

)(
0 1 + x

x − 1 0

)
+ 3

2

(
−1 1

1 −1

)
.

The monic polynomials

P̃n(x)= YPn(x)Y
t =
(

Pn,1(x) 0

0 Pn,2(x)

)
, n∈ N0

satisfy

P̃n(x)Ẽ = Λ̃nP̃n(x) where Λ̃n(x)=
(

− 3
2 n+ 3

2

n+ 3
2 − 3

2

)
.

Now the fact that P̃n(x) is an eigenfunction of Ẽ is equivalent to the following relations

between Jacobi polynomials:

(1 + x)
d

dx
P ( 1

2 ,
3
2 )(x)+ 3

2
P
( 1

2 ,
3
2 )

n (x)−
(

n+ 3

2

)
P
( 3

2 ,
1
2 )

n (x)= 0,

(1 − x)
d

dx
P
( 3

2 ,
1
2 )

n (x)+ 3

2
P
( 3

2 ,
1
2 )

n (x)−
(

n+ 3

2

)
P
( 1

2 ,
3
2 )

n (x)= 0.
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8.3 Case � = 1; weight of dimension 3

Here, we consider the simplest example of nontrivial matrix orthogonal polynomials for

the weight W. The weight matrix W of size 3 × 3 is obtained by setting �= 1. We have

W(x)= (1 − x)
1
2 (1 + x)

1
2

⎛
⎜⎜⎝

3 3x 4x2 − 1

3x x2 + 2 3x

4x2 − 1 3x 3

⎞
⎟⎟⎠ . (8.1)

We know from Theorem 6.5 that the weight W(x) splits into a block of size 2 × 2 and

a block of size 1 × 1, namely

YW(x)Yt =
(

W1(x) 0

0 W2(x)

)
= (1 − x)

1
2 (1 + x)

1
2

⎛
⎜⎜⎝

4x2 + 2 3
√

2x 0

3
√

2x x2 + 2 0

0 0 4(1 − x2)

⎞
⎟⎟⎠ .

From Theorem 6.5 the monic orthogonal polynomials P̃n(x) with respect to W̃(x)

reduce to

P̃n =
(

Pn,1(x) 0

0 Pn,2(x)

)
,

where {Pn,2}n ≥ 0 are the monic polynomials with respect to W1(x) and {Pn,2}n ≥ 0 are the

monic polynomials with respect to the weight W2(x).

Remark 8.1. The weight W2 is a multiple of the Jacobi weight (1 − x)α(1 + x)β corre-

sponding to α = 3
2 and β = 3

2 . The monic polynomials {Pn,2}n≥0 are then a multiple of the

Gegenbauer polynomials

Pn,2(x)= 2nn!(n+ 3)!

(2n+ 3)!
P
( 3

2 ,
3
2 )

n (x). �

8.3.1 The first-order differential operator

By Theorem 7.5, we have that the monic polynomials Pn are eigenfunctions of the differ-

ential operator E . More precisely, the following equation holds:

d

dx
Pn(x)

⎛
⎜⎜⎝

−x 1 0

−1

2
0

1

2
0 −1 x

⎞
⎟⎟⎠+ Pn(x)

⎛
⎜⎜⎝

−4 0 0

0 −2 0

0 0 0

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

−n− 4 0 0

0 −2 0

0 0 n

⎞
⎟⎟⎠ Pn(x).
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Now, we can conjugate the differential operator E by the matrix Y to obtain a differential

operator Ẽ = Y E Yt. The fact that the polynomials Pn are eigenfunctions of E says that

the polynomials P̃n are eigenfunctions of Ẽ . In other words,

d

dx
P̃n(x)

⎛
⎜⎜⎜⎝

0 0 x

0 0

√
2

2
x −√

2 0

⎞
⎟⎟⎟⎠+ P̃n(x)

⎛
⎜⎜⎝

−2 0 2

0 −2 0

2 0 −2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

−2 0 n+ 2

0 −2 0

n+ 2 0 −2

⎞
⎟⎟⎠ P̃n(x).

We can now rewrite the equation above in terms of the polynomials Pn,1 and Pn,2.

d

dx
Pn,1(x)

⎛
⎝ x√

2

2

⎞
⎠+ Pn,1(x)

(
2

0

)
= Pn,2(x)

(
n+ 2

0

)
,

d

dx
Pn,2(x)

(
x −√

2
)

+ Pn,2(x)
(
2 0

)
=
(
n+ 2 0

)
Pn,1(x).

Since Pn,2 is a Gegenbauer polynomial, we see that the elements of the first row of Pn,2

can be written explicitly in terms of Gegenbauer polynomials.

8.3.2 Second-order differential operators

In this section, we describe a set of linearly independent differential operators that have

the polynomials Pn,1 as eigenfunctions.

Proposition 8.1. The matrix orthogonal polynomials {Pn,1}n≥0 satisfy

Pn,1 Dj =Λn(Dj)Pn,1, j = 1,2,3, n≥ 0,

where the differential operators Dj are

D1 = (x2 − 1)
(

d2

dx2

)
+
(

d

dx

)(
5x −2

√
2

−√
2 5x

)
+
(

1 0

0 0

)
,

D2 =
(

d2

dx2

)⎛⎝ x2 −√
2x√

2x

2
−1

⎞
⎠+

(
d

dx

)(
5x −3

√
2√

2 0

)
+
(

4 0

0 0

)
,

D3 =
(

d2

dx2

)(−√
2x 4x2 − 2

x2 − 2
√

2x

)
+
(

d

dx

)(−4
√

2 16x

6x −2
√

2

)
+
(

0 8

6 0

)
.
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and the eigenvalues Λ j are given by

Λn(D1)=
(

n(n+ 4)+ 1 0

0 n(n+ 4)

)
, Λn(D2)=

(
(n+ 2)2 0

0 0

)
,

Λn(D3)=
(

0 4(n+ 1)(n+ 2)

(n+ 3)(n+ 2) 0

)
.

Moreover, the differential operators D1, D2, and D3 satisfy

D1 D2 = D2 D1, D1 D3 �= D3 D1, D2 D3 �= D3 D2. �

Proof. The proposition follows by proving that the differential operators Dj, where

j = 1,2,3, are symmetric with respect to the weight matrix W1. This is accomplished by

a straightforward computation, showing that the differential equations (7.2)–(7.4) and

the boundary conditions (7.5) are satisfied. As a consequence of Remark 7.1, the commu-

tativity properties of the differential operators follow by observing the commutativity

of the corresponding eigenvalues. �

8.3.3 Rodrigues’ Formula

Proposition 8.2. The matrix orthogonal polynomials {Pn,1(x)}n≥0 satisfy the Rodrigues’

formula

Pn,1(x)= cn

⎡
⎢⎢⎢⎣(1 − x2)

1
2 +n

⎛
⎜⎜⎜⎝
(

4x2 + 2 3
√

2x

3
√

2x x2 + 2

)
+

⎛
⎜⎜⎜⎝

2n

n+ 2

√
2nx

n+ 2

−
√

2nx

n+ 1
− n

n+ 1

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦
(n)

W−1
1 (x), (8.2)

where

cn = (−1)n2−2n−2(n+ 2)(n+ 3)
√
π

(2n+ 3)Γ (n+ 3
2 )

. �

Proof. The proposition can be proved in a similar way to [9, Theorem 3.1]. We include a

sketch of the proof for the sake of completeness. First of all, we recall that the classical

Jacobi polynomials P (α,β)
n (x) satisfy the Rodrigues’ formula

P (α,β)
n (x)= (−1)n

2nn!
(1 − x)−α(1 + x)−β [(1 − x)α+n(1 + x)β+n](n).
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Let R(x) and Yn be the matrix polynomials of degree 2 and 1

R(x)=
(

4x2 + 2 3
√

2x

3
√

2x x2 + 2

)
, Yn(x)=

⎛
⎜⎜⎜⎝

2n

n+ 2

n
√

2x

n+ 2

−
√

2nx

n+ 1
− n

n+ 1

⎞
⎟⎟⎟⎠ ,

so that the (8.2) can be rewritten as

Pn,1(x)= cn[(1 − x2)
1
2 +n

(R(x)+ Yn(x))]
(n)W−1

1 (x).

Then by applying the Leibniz rule on the right-hand side of (8.2), it is not difficult to

prove that

Pn,1(x)= cn
1
2 n(n− 1)[(1 − x)

1
2 +n(1 + x)

1
2 +n](n−2)(1 − x)−

1
2 (1 + x)−

1
2 R′′(x)R(x)−1

+ cnn[(1 − x)
1
2 +n(1 + x)

1
2 +n](n−1)(1 − x)−

1
2 (1 + x)−

1
2 (R′(x)+ Y′

n(x))R(x)
−1

+ cn[(1 − x)
1
2 +n(1 + x)

1
2 +n](n)(1 − x)−

1
2 (1 + x)−

1
2 (I + Yn(x)R(x)

−1).

Now by applying the Rodrigues’ formula for the Jacobi polynomials we obtain

Pn,1(x)= 2nn!(−1)ncn[P
( 1

2 ,
1
2 )

n (x)(I + Yn(x)R(x)
−1)

− 1
2 (1 − x)(1 + x)P

( 3
2 ,

3
2 )

n−1 (x)(Y′
n(x)+ R′(x))R(x)−1

+ 1
8 (1 − x)2(1 + x)2 P

( 5
2 ,

5
2 )

n−2 (x)R′′(x)R(x)−1]. (8.3)

Now with a careful computation, we can show that the expression above is a matrix

polynomial of degree n with nonsingular leading term. Using integration by parts it is

easy to show the orthogonality of Pn,1 and xm, m = 0,1, . . . ,n− 1, with respect to the

weight W1. �

8.3.4 Three-term recurrence relations

In Corollary 6.3, we show that the matrix polynomials Pn(x) of any size satisfy a three

term recurrence relation. The recurrence relation for the polynomials Pn,1 can then be

obtained by conjugating the recurrence relation for Pn(x) by the matrix Y. The recurrence

coefficients (4.8) are given in terms of Clebsch–Gordan coefficients and are difficult to
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manipulate. For �= 1, we can use the Rodrigues’ formula (8.2) to derive explicit formulas

for the three-term recurrence relation for the polynomials Pn,1.

First we need to compute the norm of Pn,1(x). The Rodrigues’ formula (8.2) and

integration by parts lead to

‖Pn,1‖2 = 2−2n−1π

⎛
⎜⎜⎝
(n+ 3)

(n+ 1)
0

0
(n+ 3)2

4(n+ 1)2

⎞
⎟⎟⎠ .

If {Pn,1}n≥0 is a sequence of orthonormal polynomials with respect to W1 with leading

coefficients Ωn, then it follows directly from the orthogonality relations for the monic

polynomials that ‖Pn,1‖2 =Ω−1
n (Ω∗

n)
−1. The orthonormal polynomials Pn,1 with leading

coefficient

Ωn =

⎛
⎜⎜⎜⎝
√

22n+1(n+ 1)

π(n+ 3)
0

0
2n+2(n+ 1)√
π(n+ 3)

⎞
⎟⎟⎟⎠

satisfy the three-term recurrence relation

xPn(x)= An+1Pn+1(x)+ BnPn(x)+ A∗
nPn−1(x),

where An =Ωn−1Ω
−1
n and

Bn =Ωn[coef. of xn−1 in Pn,1 − coef. of xn in Pn+1,1]Ω−1
n .

The coefficient of xn−1 in Pn,1 can be obtained from (8.3). Now a careful computation

shows that

An =

⎛
⎜⎜⎝

1

2

√
n(n+ 3)

(n+ 1)(n+ 2)
0

0
n(n+ 3)

2(n+ 1)(n+ 2)

⎞
⎟⎟⎠ ,

Bn =

⎛
⎜⎜⎝

0

√
2√

(n+ 1)(n+ 3)(n+ 2)√
2√

(n+ 1)(n+ 3)(n+ 2)
0

⎞
⎟⎟⎠ .
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Therefore, the monic polynomials Pn,1 satisfy the three-term recurrence relation

xPn,1(x)= Pn+1,1(x)+ B̃nPn,1(x)+ C̃nPn−1,1(x),

where

B̃n =

⎛
⎜⎜⎝

0
2
√

2

(n+ 2)(n+ 3)√
2

2(n+ 1)(n+ 2)
0

⎞
⎟⎟⎠ , C̃n =

⎛
⎜⎜⎝

n(n+ 3)

4(n+ 1)(n+ 2)
0

0
n2(n+ 3)2

4(n+ 1)2(n+ 2)2

⎞
⎟⎟⎠ .

8.4 Case � = 3
2 ; weight of dimension 4

The weight matrix W of size 4 × 4 is obtained by setting �= 3
2 .

W(x)= (1 − x2)
1
2

⎛
⎜⎜⎜⎜⎝

4 4x 4
3 (4x2 − 1) 4x(2x2 − 1)

4x 4
9 (4x2 + 5) 4

9 x(2x2 + 7) 4
3 (4x2 − 1)

4
3 (4x2 − 1) 4

9 x(2x2 + 7) 4
9 (4x2 + 5) 4x

4x(2x2 − 1) 4
3 (4x2 − 1) 4x 4

⎞
⎟⎟⎟⎟⎠ .

We know from Corollary 6.5 that the weight W(x) splits in two blocks of size 2 × 2,

namely

W̃(x)= YW(x)Yt =
(

W1(x) 0

0 W2(x)

)
,

where

W1(x)= 4(1 − x)1/2(1 + x)3/2
(

2x2 − 2x + 1 1
3 (4x − 1)

1
3 (4x − 1) 1

9 (2x2 + 2x + 5)

)
,

and

W2(x)= J2 F2W1(−x)F2 J2, where F2 =
(

1 0

0 −1

)
and J2 =

(
0 1

1 0

)
.

It follows from Corollary 6.6 that the monic orthogonal polynomials Pn,2 with respect to

the weight W2 are completely determined by the the monic orthogonal polynomials Pn,1

with respect to Pn,2(x)= J2 F2 Pn,1(−x)F2 J2. Therefore, we only need to study the polyno-

mials Pn,1.
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8.4.1 Differential operators

In this section, we describe a set of linearly independent differential operators that have

the polynomials Pn,1 as eigenfunctions.

Proposition 8.3. The matrix orthogonal polynomials {Pn,1}n≥0 satisfy

Pn,1 Dj =Λn(Dj)Pn,1, j = 1,2,3, n≥ 0,

where the differential operators Dj are

D1 = (x2 − 1)
(

d2

dx2

)
+
(

d

dx

)(
6x −3

−1 6x − 2

)
+
(

2 0

0 0

)
,

D2 =
(

d2

dx2

)⎛⎜⎝x2 − 1

4
−3

2
x + 3

4
x

2
+ 1

4
−3

4

⎞
⎟⎠+

(
d

dx

)⎛⎜⎝6x
9

2
3

2
0

⎞
⎟⎠+

(
6 0

0 0

)
,

D3 =
(

d2

dx2

)( −3x + 3 9x2 − 9x

x2 + x − 2 3x − 3

)
+
(

d

dx

)( −9 36x − 18

8x + 4 −3

)
+
(

0 18

12 0

)
,

and the eigenvalues Λ j are given by

Λn(D1)=
(

n(n+ 5)+ 2 0

0 n(n+ 5)

)
, Λn(D2)=

(
(n+ 3)(n+ 2) 0

0 0

)
,

Λn(D3)=
(

0 9(n+ 2)(n+ 1)

(n+ 4)(n+ 3) 0

)
.

Moreover, the differential operators D1, D2, and D3 satisfy

D1 D2 = D2 D1, D1 D3 �= D3 D1, D2 D3 �= D3 D2. �

8.4.2 Rodrigues’ formula

The monic orthogonal polynomials {Pn,1(x)}n≥0 satisfy the Rodrigues’ formula

Pn,1(x)= cn[(1 − x)
1
2 +n

(1 + x)
3
2 +n

(R(x)+ Yn(x))]
(n)W−1

1 (x),
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where

cn = 2−2n−2(−1)n(n+ 3)(n+ 4)
√
π

Γ (n+ 5
2 )

,

and

R(x)=

⎛
⎜⎝2x2 − 2x + 1

1

3
(4x − 1)

1

3
(4x − 1)

1

9
(2x2 + 2x + 5)

⎞
⎟⎠ ,

Yn(x)=

⎛
⎜⎝

n

n+ 3

n

3(n+ 3)
(2x + 1)

n

3(n+ 1)
(1 − 2x) − n

3(n+ 1)

⎞
⎟⎠ .

8.4.3 Three-term recurrence relations

The orthonormal polynomials Pn,1(x)= ‖Pn,1‖−1 Pn,1, with leading coefficient

Ωn =

⎛
⎜⎜⎜⎝
√

22n+1(n+ 1)

π(n+ 4)
0

0
9(n+ 1)

√
22n+1(n+ 2)√

π(n+ 3)(n+ 4)

⎞
⎟⎟⎟⎠

satisfy the three-term recurrence relation

xPn(x)= An+1Pn+1(x)+ BnPn(x)+ A∗
nPn−1(x),

where

An =

⎛
⎜⎜⎝

1

2

√
n(n+ 4)

(n+ 1)(n+ 3)
0

0
n(n+ 4)

2(n+ 2)
√
(n+ 1)(n+ 3)

⎞
⎟⎟⎠ ,

Bn =

⎛
⎜⎜⎝

0
3

2
√
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

3

2
√
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

2

(n+ 2)(n+ 3)

⎞
⎟⎟⎠ .

Therefore, the monic polynomials Pn,1(x) satisfy the three-term recurrence relation

xPn,1 = Pn+1,1 + B̃nPn,1 + C̃nPn−1,1,
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where

B̃n =

⎛
⎜⎜⎝

0
9

2(n+ 3)(n+ 4)
1

2(n+ 1)(n+ 2)

2

(n+ 2)(n+ 3)

⎞
⎟⎟⎠ ,

C̃n =

⎛
⎜⎜⎝

n(n+ 4)

4(n+ 1)(n+ 3)
0

0
n2(n+ 4)2

4(n+ 1)(n+ 2)2(n+ 3)

⎞
⎟⎟⎠ .

8.5 Case � = 2; weight of dimension 5

In this section, we consider the 2 × 2 irreducible block in the case �= 2, where the matrix

weight W is of dimension 5. This case completes the list of all irreducible 2 × 2 blocks

obtained by conjugating the weight W by the matrix Y.

The 2 × 2 block is given by

W1(x)= (1 − x)
3
2 (1 + x)

3
2

(
x2 + 4 10x

10x 16x2 + 4

)
.

As before, we denote by {Pn,1}n the sequence of monic orthogonal polynomials with

respect to W1.

8.5.1 Differential operators

In this section, we describe a set of linearly independent differential operators that have

the polynomials Pn,1 as eigenfunctions.

Proposition 8.4. The matrix orthogonal polynomials {Pn,1}n≥0 satisfy

Pn,1 Dj =Λn(Dj)Pn,1, j = 1,2,3, n≥ 0,

where the differential operators Dj are

D1 = (x2 − 1)
(

d2

dx2

)
+
(

d

dx

)(
7x −1

−4 7x

)
+
(

−3 0

0 0

)
,
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D2 =
(

d2

dx2

)⎛⎝x2 −1

2
x

2x −1

⎞
⎠+

(
d

dx

)(
7x −3

2 0

)
+
(

5 0

0 0

)
,

D3 =
(

d2

dx2

)⎛⎜⎝
3

8
x

x2

16
− 1

4
x2 − 1

4
−3

8
x

⎞
⎟⎠+

(
d

dx

)⎛⎝−1

4

5

8
x

4x −1

⎞
⎠+

⎛
⎝0

5

4
2 0

⎞
⎠ ,

and the eigenvalues Λ j are given by

Λn(D1)=
(

n(n+ 6)− 3 0

0 n(n+ 6)

)
, Λn(D2)=

(
(n+ 1)(n+ 5) 0

0 0

)
,

Λn(D3)=
(

0 1
16 (n+ 5)(n+ 4)

(n+ 2)(n+ 1) 0

)
.

Moreover, the differential operators D1, D2, and D3 satisfy

D1 D2 = D2 D1, D1 D3 �= D3 D1, D2 D3 �= D3 D2.
�

8.5.2 Rodrigues’ Formula

The monic orthogonal polynomials {Pn,1(x)}n≥0 satisfy the Rodrigues’ formula

Pn,1(x)= cn[(1 − x)
3
2 +n

(1 + x)
3
2 +n

(R(x)+ Yn(x))]
(n)W−1

1 (x),

where

cn = (−1)n2−2n−4(n+ 3)(n+ 4)(n+ 5)
√
π

(2n+ 5)Γ (n+ 5
2 )

,

and

R(x)=
(

x2 + 4 10x

10x 16x2 + 4

)
, Yn(x)=

⎛
⎜⎜⎝

− 3n

n+ 1
− 6nx

n+ 1
6nx

n+ 4

12n

n+ 4

⎞
⎟⎟⎠ .
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8.5.3 Three-term recurrence relations

The orthonormal polynomials Pn,1(x)= ‖Pn,1‖−1 Pn,1 with leading coefficient

Ωn =

⎛
⎜⎜⎝

22n+2

√
(n+ 2)(n+ 1)√
π(n+ 4)(n+ 5)

0

0 2n

√
2(n+ 1)√
π(n+ 5)

⎞
⎟⎟⎠

satisfy the three term recurrence relation

xPn(x)= An+1Pn+1(x)+ BnPn(x)+ A∗
nPn−1(x),

where

An =

⎛
⎜⎜⎝

n(n+ 5)

2
√
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

0

0

√
n(n+ 5)√

(n+ 1)(n+ 4)

⎞
⎟⎟⎠ ,

Bn =

⎛
⎜⎝ 0

2√
(n+ 1)(n+ 2)(n+ 4)(n+ 5)

2√
(n+ 1)(n+ 2)(n+ 4)(n+ 5)

0

⎞
⎟⎠ .

Therefore, the monic polynomials Pn,1(x) satisfy the three-term recurrence relation

xPn,1 = Pn+1,1 + B̃nPn,1 + C̃nPn−1,1,

where

B̃n =

⎛
⎜⎜⎝

0
1

2(n+ 1)(n+ 2)
8

(n+ 4)(n+ 5)
0

⎞
⎟⎟⎠ ,

C̃n =

⎛
⎜⎜⎝

n2(n+ 5)2

4(n+ 1)(n+ 2)(n+ 3)(n+ 4)
0

0
n(n+ 5)

4(n+ 1)(n+ 4)

⎞
⎟⎟⎠ .
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Appendix 1. Transformation Formulas

The goal of this appendix it to prove Theorem 5.4. We use the standard notation for the

Pochhammer symbols and the hypergeometric series from [1]. In the manipulations, we

only need the Chu–Vandermonde summation formula [1, Corollary 2.2.3] which reads

2 F1

(
−n,a

c
; 1

)
= (c − a)n

(c)n
(A.1)

and Sheppard’s transformation formula for 3 F2’s [1, Corollary 3.3.4] written as

n∑
k=0

(e + k)n−k(d+ k)n−k
(−n)k(a)n(b)n

k!

=
n∑

k=0

(d− a)n−k(e − a)n−k
(−n)k(a)k(a + b − n− d− e + 1)k

k!
. (A.2)

Proposition A.1. Let � ∈ 1
2N and p,q ∈ 1

2Z such that |p|, |q| ≤ �, �− p, �− q ∈ Z, q − p≤ 0

and q + p≤ 0. Let s ∈ {0, . . . , �+ q} and define

es(p,q)=
�+q−s∑

n=0

(
�+ p

n

)(
�+ q

n+ s

) �−p−s∑
m=0

(
�−p
m+s

)(
�−q
m

)
( 2�

m+n+s

)2 . (A.3)

Then we have

e�s(p,q)=
(2�+ 1)

(�+ p+ 1)

(�− q)!(�+ q)!

(2�)!

�+q−s∑
T=0

(−1)�+q−T (p− �)�+q−T (2 + 2�− T)T
(�+ p+ 2)�+q−T T!

. (A.4)

�
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Proof. First we reverse the inner summation using M = �− p− s − m to get

es(p,q)=
�+q−s∑

n=0

(
�+ p

n

)(
�+ q

n+ s

) �−p−s∑
M=0

(
�−p
M

)(
�−q

�−p−M−s

)
( 2�
�−p−M+n

)2 . (A.5)

We rewrite the inner summation:

�−p−s∑
M=0

(
�−p
M

)(
�−q

�−p−M−s

)
( 2�
�−p−M+n

)2 = (�− q)!

(2�)!
(−1)s(−�+ p)s

(
2�

�− p+ n

)−1

×
�−p−s∑
M=0

(−�+ p+ s)M(�+ p− n+ 1)M
M!(−�+ p− n)M

B(M), (A.6)

where B(M)= (�− p− M + 1)n(p− q + M + s + 1)�+q−s−n is a polynomial in M of degree

�+ q − s that depends on �, p,q,n, and s. The polynomial B(M) has an expansion in

(−1)t(−M)t,

B(M)=
�+q∑
t=0

At · (−1)t(−M)t. (A.7)

The coefficients At = At(�, p,q,n, s) can be found by repeated application of the differ-

ence operator ΔM f = f(M + 1)− f(M). Let Δi
M be its ith power. We have

Δt
M

t!

∣∣∣∣
M=0

B = At. (A.8)

In other words,

B(M)=
�+q∑
t=0

At · (−1)t(−M)t with At = Δt
M

t!

∣∣∣∣
M=0

B. (A.9)

We calculate (A.6) by substituting (A.7) in it. Interchanging summations, the inner sum

can be evaluated using (A.1) (after shifting the summation parameter). We get

�−p−s∑
M=0

(
�−p
M

)(
�−q

�−p−M−s

)
( 2�
�−p−M+n

)2 = (�− q)!

(2�)!
(−1)s(−�+ p)s

(
2�

�− p+ n

)−1

×
�+q−s∑

t=0

At
(−2�− 1)�−p−s−t(−�+ p+ s)t(�+ p− n+ 1)t

(−�+ p− n)�−p−s
. (A.10)
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Substituting (A.10) and (A.8) in (A.5) and simplifying gives

es(p,q)= (�− q)!(�+ p)!

(2�)!(2�)!
(−1)�−p−s(−�+ p)s(−�− q)s

×
�+q−s∑

t=0

(�+ p+ 1)t(−2�− 1)�−p−s−t(−�+ p+ s)t
Δt

M

t!

∣∣∣∣
M=0

(p− q + s + M + 1)�+q−s

×
�+q−s∑

n=0

(−�− q − s)n(−�− p)n(�− p− M + 1)n
n!(−�− p− t)n(−�− p− M)n

. (A.11)

The inner sum over n is a 3 F2-series, which can be transformed using (A.2). Note that the

t-order difference operator can now be evaluated yielding only one nonzero term in the

sum over n. This gives

es(p,q)= 2�+ 1

�+ p+ 1

(�− q)!(�+ q)!

(2�)!

�+q−s∑
t=0

(−1)−s−t (−�+ p)s+t(2 + �− q + s + t)�+q−s−t

(�+ p+ 2)s+t(�+ q − s − t)!
.

(A.12)

Reversing the order of summation using T = �+ q − s − t yields

e�s(p,q)=
(2�+ 1)

(�+ p+ 1)

(�− q)!(�+ q)!

(2�)!

�+q−s∑
T=0

(−1)�+q−T (p− �)�+q−T (2 + 2�− T)T
(�+ p+ 2)�+q−T T!

(A.13)

as was to be shown. �

Proof of Theorem 5.4. We already argued that there is an expansion in Chebyshev

polynomials (5.8). From (5.11) it follows that there are coefficients d�
r (p,q) such that

v�p,q(cos t)=
�+ p+q

2∑
r=−(�+ p+q

2 )

d�
r (p,q) e−2irt. (A.14)

The coefficients d�r (p,q) and c�n(p,q) are related by

d�
r (p,q)=

�+q−(r+ q−p
2 )∑

n=0

c�n(p,q). (A.15)
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Let q − p≤ 0, q + p≤ 0 and r ≥ p−q
2 and substitute r(s)= s + p−q

2 in (5.11). Comparing this

to (A.14) shows

d�
r(s)(p,q)=

�+q−s∑
n=0

(
�+ p

n

)(
�+ q

n+ s

) �−p−s∑
m=0

(
�−p
m+s

)(
�−q
m

)
( 2�

m+n+s

)2 (A.16)

for s = 0, . . . , �+ q. Now, we use Proposition A.1 to show that d�
r (p,q) equals

(2�+ 1)

(�+ p+ 1)

(�− q)!(�+ q)!

(2�)!

�+q−(r+ q−p
2 )∑

n=0

(−1)�+q−n(p− �)�+q−n(2 + 2�− n)n
(�+ p+ 2)�+q−nn!

(A.17)

for r = p−q
2 , . . . , �+ p+q

2 . It follows that

c�n(p,q)=
2�+ 1

�+ p+ 1

(�− q)!(�+ q)!

(2�)!

(p− �)�+q−n

(�+ p+ 2)�+q−n
(−1)�+q−n(2�+ 2 − n)n

n!
. (A.18)

This proves the theorem. �

We can reformulate Proposition A.1 in terms of hypergeometric series.

Corollary A.2. For N ∈ N, a,b, c ∈ N so that 0 ≤ a≤ N, 0 ≤ b ≤ N, and additionally a≤ b,

N ≤ a + b and 0 ≤ c ≤ N − b, we have

c∑
m=0

(−c)m (b + 1)m (b + 1)m
(N − a − c + 1)m m! (b − N)m

4 F3

(
−b, N − a − b − c, N − b − m + 1, N − b − m + 1

N − b − c + 1,−b − m,−b − m
; 1

)

=
(N+1

a

)
( b

N−a−c

)( N−b
N−b−c

) c∑
n=0

(−a)N−b−n (−1)N−b−n (N + 2 − n)n
(N − a + 2)N−b−n n!

. �

The 4 F3-series in the summand is not balanced. Note that the case s = 0 leads

to single sums, and the 4 F3 boils down to a terminating 2 F1 which can be summed by

the Chu–Vandermonde sum, so Corollary A.2 can be viewed as an extension of Chu–

Vandermonde sum (A.1).

The coefficients d�r (p,q) of (5.11) with |r| ≤ p−q
2 are independent of r. Corollary 5.3

in case �= �1 + �2 = m1 + m2 can be stated as follows.
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Corollary A.3. For N ∈ N, a,b, c ∈ N so that 0 ≤ a≤ N, 0 ≤ b ≤ N, b ≤ a, a + b ≤ N, and

0 ≤ c ≤ N − a − b, we have

(N−b
a+c

)(N−a
c

)
( N

a+c

)2
b∑

n=0

(−b)n (c + a − N)n (a + c + 1)n (a + c + 1)n
n! (c + 1)n (a + c − N)n (a + c − N)n

× 4 F3

(
−a,−a − c, N − a − c − n+ 1, N − a − c − n+ 1

N − a − b − c + 1,−a − c − n,−a − c − n
; 1

)

= N + 1

N − a + 1

(
N

b

)−1 b∑
m=0

(−a)m (N − b + m + 2)b−m (−1)m

(N − a + 2)m (b − m)!
.

In particular, the left-hand side is independent of c in the range stated. �

Different proofs of Corollaries A.2, A.3 using transformation and summation for-

mulas for hypergeometric series have been communicated to us by Mizan Rahman.

Appendix 2. Proof of the Symmetry for Differential Operators

Proof of Theorem 7.5. In terms of ρ(x) and Z(x), the Equations (7.7) and (7.8) are

given by

0 = Z(x)A1(x)
∗ + A1(x)Z(x), (A.19)

0 = −A′
1(x)Z(x)− ρ(x′)

ρ(x)
A1(x)Z(x)− A1(x)Z

′(x)+ A0 Z(x)− Z(x)A0. (A.20)

As a consequence of the properties of symmetry of the weight W, it suffices to verify the

conditions above for all the (n,m)-entries with m ≤ n. Here, we assume that m<n. The

case m = n can be done similarly. The first Equation (A.19) holds true if and only if

Zn,m−1 A1(x)m,m−1 + Zn,m A1(x)m,m + Zn,m+1 A1(x)m,m+1 + Zn−1,m A1(x)n,n−1

+ Zn,m A1(x)n,n + Zn+1,m A1(x)n,n+1 = 0

for all m ≤ n. In order to prove the expression above we replace the coefficients of A1 and

Z in the left-hand side and we obtain

− m

2�

m−1∑
t=0

c(n,m − 1, t)Un+m−2t−1(x)− �− m

�

m∑
t=0

c(n,m, t) xUn+m−2t(x)
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+ 2�− m

2�

m+1∑
t=0

c(n,m + 1, t)Un+m−2t+1(x)− n

2�

m∑
t=0

c(n− 1,m, t)Un+m−2t−1(x)

− �− n

�

m∑
t=0

c(n,m, t) xUn+m−2t(x)+ 2�− n

2�

m∑
t=0

c(n+ 1,m, t)Un+m−2t+1(x).

By using the recurrence relation xUr(x)= 1
2Ur−1(x)+ 1

2Ur+1(x), we obtain

m−1∑
t=0

[
− m

2�
c(n,m − 1, t)− n

2�
c(n− 1,m, t)− 2�− n− m

2�
c(n,m, t)

]
Un+m−2t−1(x)

×
m∑

t=0

[
2�− m

2�
c(n,m + 1, t)+ 2�− n

2�
c(n+ 1,m, t)− 2�− n− m

2�
c(n,m, t)

]
Un+m−2t+1(x)

+
[
− n

2�
c(n,m + 1,m)− 2�− m

2�
c(n,m + 1,m + 1)− 2�− m − n

2�
c(n,m,m)

]
Un−m−1(x).

A simple computation shows that the coefficient of Un−m−1 in the expression above is

zero. Now, by changing the index of summation t, we obtain

[
2�− m

2�
c(n,m + 1,0)+ 2�− n

2�
c(n+ 1,m,0)− 2�− n− m

2�
c(n,m,0)

]
Un+m+1(x)

+
m−1∑
t=0

[
− m

2�
c(n,m − 1, t)− n

2�
c(n− 1,m, t)− 2�− n− m

2�
c(n,m, t)

2�− m

2�

× c(n,m + 1, t + 1)+ 2�− n

2�
c(n+ 1,m, t + 1) −2�− n− m

2�
c(n,m, t + 1)

]
Un+m−2t−1(x).

(A.21)

Using the explicit expression of c(n,m, t) in (7.6), we obtain that (A.21) is given by

m∑
t=0

c(n,m, t)
[
− (m + 1 − t + n)(2�− m + 1)

2�(−m + 1 + t − n+ 2�)
− (−n+ 1 + 2�)(m + 1 − t + n)

2�(−m + 1 + t − n+ 2�)
− 2�− n− m

2�

+ (2�+ 1 − t)(m + 1)

2�(t + 1)
+ (2�+ 1 − t)(n+ 1)

2�(t + 1)
+ (2�− n− m)(m + 1 − t + n)(2�+ 1 − t)

�(−m + 1 + t − n+ 2�)(t + 1)

]

× Un+m−2t−1(x)= 0,
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since the sum of the terms in the square brackets is zero. This completes the proof

of (A.19).

Now we prove (A.20). The (n,m)-entry of the right-hand side of (A.20) is given by

x(A1(x)Z(x))n,m − (1 − x2)(A1(x)Z
′(x))n,m + (1 − x2)[(A0)n,n − A′

1(x)n,n − (A0)m,m]Zn,m.

Using (7.6) we obtain

(1 − x2)[(A0)n,n − A′
1(x)n,n − (A0)m,m]Zn,m

=
m∑

t=0

�(n− m + 1)− m

�
c(n,m, t)(1 − x2)Un+m−2t(x), (A.22)

x(A1(x)Z(x))n,m =
m∑

t=0

[
− n

2�
c(n− 1,m, t)xUn+m−2t−1(x)− �− n

�
c(n,m, t)x2Un+m−2t(x)

+ 2�− n

2�
c(n+ 1,m, t)xUn+m−2t+1(x)

]
, (A.23)

(1 − x2)(A1(x)Z
′(x))n,m

=
m∑

t=0

[
− n

2�
c(n− 1,m, t)(1 − x2)U ′

n+m−2t−1(x) − �− n

�
c(n,m, t)x(1 − x2)U ′

n+m−2t(x)

+ 2�− n

2�
c(n+ 1,m, t)(1 − x2)U ′

n+m−2t+1(x)
]
. (A.24)

Now we proceed as in the proof of condition (A.19). In (A.22) and (A.23), we use the three-

term recurrence relation for the Chebyshev polynomials to get rid of the factors x and

x2. Equation (A.24) involves the derivative of the polynomials U . For this, we use the

following identity

U ′
n(x)=

(n+ 2)Un−1(x)− nUn+1(x)

2(1 − x2)
, n≥ 0, (U−1 ≡ 0).

Finally, we change the index of summation t and we use the explicit expression of the

coefficients c(n,m, t) to complete the proof.

The boundary condition (7.9) can easily be checked. �

Proof of Theorem 7.6. We will show that the conditions of symmetry in Theorem 7.4

hold true. The first Equation (7.2) is satisfied because A2(x) is a scalar matrix.

 at R
adboud U

niversity on D
ecem

ber 6, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Matrix Valued Orthogonal Polynomials 5727

Equation (7.3) can be written in terms of ρ(x) and Z(x) in the following way:

(6x − B1(x))Z(x)+ 2(x2 − 1)Z ′(x)− Z(x)B1(x)
∗ = 0.

This can be checked by a similar computation to that of the proof of Theorem 7.5.

Now we give the proof of the third condition for symmetry. If we take the deriva-

tive of (7.3), we multiply it by 2 and we add it to (7.4), we obtain the following equivalent

condition

(W(x)B1(x)
∗ − B1(x)W(x))′ − 2(W(x)B0 − B0W(x))= 0. (A.25)

We shall prove instead that

W(x)B1(x)
∗ − B1(x)W(x)− 2

(∫
W(x)dx

)
B0 − 2B0

(∫
W(x)dx

)
= 0,

which is obtained by integrating (A.25) with respect to x. Then (A.25) will follow by

taking the derivative with respect to x.

We assume m<n. The other cases can be proved similarly. We proceed as in the

proof of (A.19) in Theorem 7.5 to show that

(W(x)B1(x)
∗ − B1(x)W(x))n,m

= −ρ(x)
m∑

t=0

c(n,m, t)
(m − n)(�+ 1)(4 �2 − �m − �n+ 5�+ 3)

�(−m + 1 + t − n+ 2�)(t + 1)
Un+m−2t−1(x). (A.26)

On the other hand, we have

−
(

2
(∫

W(x)dx
)

B0 + 2B0

(∫
W(x)dx

))
n,m

=
m∑

t=0

[
2c(n,m, t)((B0)m,m − (B0)n,n)

∫
ρ(x)Un+m−2t(x)dx

]
. (A.27)

It is easy to show that the following formula for the Chebyshev polynomials holds

∫
ρ(x)Ui(x)= ρ(x)

(
Ui+1(x)

2(i + 2)
− Ui−1(x)

2i

)
, (U−1 ≡ 0).
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Therefore, we have that (A.27) is given by

ρ(x)
m∑

t=0

c(n,m, t)
(B0)m,m − (B0)n,n)

(n+ m − 2t)

(
c(n,m, t + 1)

c(n,m, t)
− 1
)

Un+m−2t−1(x)

= ρ(x)
m∑

t=0

c(n,m, t)
(m − n)(�+ 1)(4 �2 − �m − �n+ 5�+ 3)

�(−m + 1 + t − n+ 2�)(t + 1)
Un+m−2t−1(x). (A.28)

Now (A.28) is exactly the negative of (A.26). This completes the proof of the theorem. �

References
[1] Andrews, G. E., R. Askey, and R. Roy. Special Functions. Cambridge: Cambridge University

Press, 1999.

[2] Camporesi, R. “Harmonic analysis for spinor fields in complex hyperbolic spaces.” Advances

in Mathematics 154, no. 2 (2000): 367–442.

[3] Castro, M. M. “Matrix polynomials satisfying first order differential equations and three

term recurrence relations.” Journal of Computational and Applied Mathematics 233, no. 6

(2010): 1491–8.
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