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Advances in theory that explain the magnetic behavior as function of temperature for two phase

nanocrystalline soft magnetic materials are presented. The theory developed is based on the well

known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy

energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity

was obtained in the temperature range between the amorphous phase Curie temperature and the

crystalline phase one.
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1. Introduction

Over the past few decades nanocrystalline magnetic materials
have been investigated for their application in magnetic devices
requiring magnetically soft materials such as transformers,
induction devices, etc. These materials present optimal magnetic
properties because of their microstructure, in which chemistry
and structure vary at the nanoscale. The softest nanocrystal-
line grain structure magnetic materials, known to date, are
the FINEMET [1] (Fe73.5Si13.5B9Nb3Cu1) and NANOPERM [2]
(Fe88Zr7B4Cu1) alloys. The FINEMET alloy exhibits excellent
permeability (105 at 1 kHz), almost zero magnetostriction
(2�10�6) and high saturation magnetization (B=1.2 T). These
excellent soft magnetic materials are based on a two phase
microstructure consisting of nanocrystalline ferromagnetic grains
surrounded by a ferromagnetic amorphous matrix. In order to
control and obtain the optimal microstructure and properties,
amorphous precursors produced by melt spinning are annealed at
nearly 823 K, which is above the primary crystallization tem-
perature of nearly 783 K. Several works have studied the influence
of different elements on these alloys [3–8] and the state of the art
has been reviewed in different works [9,10].

During the last fifteen years thermal dependence of magnetic
properties of these materials has been studied and discussed from
the theoretical point of view. Different authors have reported
results on the thermal dependence of the coercivity as function of
the annealing temperature [11–13]. For values between the
ll rights reserved.

raca).
amorphous Curie temperature and the crystalline phase one, they
found a singular behavior characterized by a rapid increase of
coercivity with temperature. Hernando et al. [12] suggested that
this behavior could be explained considering that the sample has
two different coercivity contributions, one of ferromagnetic type
and the other of superferro-paramagnetic type.

It is well known that the microstructure, magnetostriction,
anisotropy, saturation magnetization, and grain size essentially
determine the magnetic properties of a ferromagnetic material.
The combination of small grain size and soft magnetic properties
is surprising and very interesting from theoretical and technolo-
gical points of view. The origin of the magnetic softness in these
materials is due to the condition that the structural correlation
length is shorter than the exchange (magnetic) correlation
length (Lexch) over which spins are coupled via exchange
interaction. Alben et al. [14] described the effective energy of
the amorphous based on a statistical argument, the so-called
random anisotropy model (RAM). This model considers a random
anisotropy distribution, which determines an effective random
anisotropy energy. In this model, the effective anisotropy density
is given by the square root of the mean square fluctuation of the
anisotropy within a volume determined by the exchange correla-
tion length. Different authors have used this model to describe
and understand the magnetic behavior of soft magnetic materials
[12,15–17].

Particularly, Herzer [15] applied the RAM to the dependence of
coercivity on the nanocrystals size, D. To do this, he considered an
assembly of ferromagnetic coupled grains of size D with magneto-
crystalline anisotropies Kcr randomly oriented. Based on these
assumptions he obtained the effective anisotropy affecting the
magnetization process, which can be written as /KS¼ ð4=3Þ3
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K4
crD6=A3

cr where Acr denotes the crystalline exchange stiffness.
However, in this approximation the two phases character of the
nanocrystalline alloy was neglected.

The aim of this paper is to clarify and improve this
phenomenological model by introducing a new approach to the
thermal dependence of the coercivity above the amorphous Curie
temperature. To do this, a model of single domain ferromagnetic
particles embedded in an amorphous paramagnetic matrix was
considered. Based on the idea presented by Hernando et al. [12]
thermal coercivity dependence studies were performed in the
range between amorphous and crystallite Curie temperature.

Based on the approximation made by Herzer, Hernando et al.
[17] proposed a phenomenological model but including the two-
phase character of the nanocrystalline material. To take into
account the influence of the amorphous phase they modified the
crystalline exchange stiffness proposed by Herzer as Acr-gAAcr

where gA ¼ e�L=Lam is a parameter varying between 0 and 1 and is
closely related to the amorphous exchange correlation length Lam

and where L is the average distance between the surfaces of two
adjacent crystallites.

Considering that amorphous phase anisotropy cannot be ne-
glected, the anisotropy of the system will be K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2K2
crþð1� xÞ2 Kamh i

2
q

¼ gK Kcr where gK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þð1� xÞ2 Kamh i=Kcr

� �2
q

; x

is the crystalline volumetric fraction and we considered the
amorphous anisotropy as the mean value of the anisotropy in the
amorphous phase (/KamS) obtained by Alben et al. [14] based on
the random walk principle, being

Kamh i ¼
Kamffiffiffiffiffiffiffiffiffi
Nam

p ; ð1Þ

where Nam is the number of amorphous units surrounding the crystal
defined as

Nam ¼
ðDþLÞ3 � D3

d3
; ð2Þ

where D is the structural correlation length of the crystalline phase

(grain size), L¼Dð1=xÞð1=3Þ
� D is the distance between the different

grains in the alloy and d is the structural correlation length of the
amorphous phase. Considering that

x¼D3=ðDþLÞ3; ð3Þ

and using Eqs. (1) and (2) the /KamS can be expressed as

Kamh i ¼
Kam

1
x � 1
� �1=2

d
D

� �3=2

: ð4Þ

The effective magnetocrystalline anisotropy constant may
have other contributions besides the magnetocrystalline aniso-
tropy. The amorphous anisotropy constant is due to the residual
stresses and the magnetoelastic coupling. The strength of the local
magnetoelastic anisotropy can be written as

Kamh i ¼
3

2
l/sS; ð5Þ

where /sS is the average absolute value of the residual stresses,
and l is the saturation magnetostriction of the isotropic
amorphous.

The optimal magnetic correlation length (Lexch), with LexchcD,
will be determined by the spin fluctuation within the volume
element (Lexch)3. Considering

gD ¼

1

x
if x4

D3

L3
exch

D3

L3
exch

if xo
D3

L3
exch

8>>>><
>>>>:

ð6Þ

the effective macroscopic anisotropy /KS can be derived from
random-walk considerations, in the same form that it was
proposed by Alben et al. [14], to be

Kh i ¼ gK

Kcrffiffiffiffi
N
p ¼ KcrgK

g1=3
D D

� �3=2

L3=2
exch

; ð7Þ

Hence

Kh i ¼ KcrgKgD1=2

D3=2

L3=2
exch

; ð8Þ

where

N¼
L3

exch

ðLþDÞ3
¼

1

gD

L3
exch

D3
¼

L3
exch

g1=3
D D

� �3
ð9Þ

From this last equation and considering the definition of L, it is
easy to note that gD only depends on the volume fraction of the
crystallites (x).

Minimization of the sum of exchange and anisotropy energies
leads to the corresponding correlation length, which is
Lexch ¼ 16A2

am=9K2
amd

3 in an amorphous single phase [14] and
Lexch ¼ 16A2

cr=9K2
crD3 in the case of a single crystalline phase [13].

For a two ferromagnetic phase system Lexch is given as

Lexch ¼
16

9

A2
cr

K2
crD3

g2
A

g2
KgD

¼ L0
g2

A

g2
KgD

¼ L0gL: ð10Þ

This last expression was obtained replacing Acr-gAAcr ,
K-gK Kcr and D-g1=3

D D in the exchange correlation length of a
single crystalline phase and L0 corresponds to the exchange
correlation length of a single crystalline phase system. From
Eqs. (7) and (10), the effective macroscopic anisotropy can be
written, for Nc1 or LexchcD, as

Kh i ¼
3

4

� �3

geff

K4
crD6

A3
cr

; ð11Þ

where

geff ¼
g4

Kg2
D

g3
A

ð12Þ

The geff and gL are dimensionless coefficients and they are
functions of the volume fraction of the nanocrystalline phase and
the relative parameters of the material. These coefficients
summarize the most important results of the two-phase system
coupled through exchange interaction and random orientation
anisotropies.

A useful expression to analyze possible influences of some
parameters on the coercivity (HC) of the material can be derived as
a function of saturation magnetization (MS) and the effective
anisotropy constant /KS as follows:

HC ¼ pC
/KS
m0MS

; ð13Þ

where pC is a coefficient less than one, m0 is the vacuum magnetic
permeability and MS is the saturation magnetization of the
two-phase material. Eq. (13) represents HC as a function of
crystalline fraction, relative exchange stiffness, relative anisotro-
pies and grain size of the crystallites.

The maximum possible size Dn of the crystallites can be
inferred from the assumption that Lexch4x�1/3D:

D� ¼
16

9

A2
cr

K2
crD3

x1=3 g2
A

g2
KgD

¼
L0gL

x�1=3
¼ Lexchx1=3; ð14Þ

where Dn4D is the maximum possible size for different values of
exchange stiffness (A=gAAcr) and relative anisotropy (Kr=Kam/Kcr).
From Eq. (14) it can be seen that the behavior of this parameter is
well related to the exchange length parameter.
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It is interesting to note that in the limit when x-1, gD,gK and
gA - 1 so geff - 1 hence

Lexch ¼ L0 �

ffiffiffiffiffiffiffiffiffi
Kcr

Acr
;

s
ð15Þ

Kh i ¼
3

4

� �3 K4
crD6

A3
cr

) HC ¼
3

4

� �3 pCK4
crD6

m0A3
crMS

; ð16Þ

and

D�L0 ¼ Lexch; ð17Þ

On the other hand, when x-0 or xoD3=Lexch3 , gD ¼D3=L3
exch

and N=1 hence

L4
exch ¼

4

3

� �
A2

am

K2
am

) Lexch ¼
4

3

� �1=4
ffiffiffiffiffiffiffiffi
Aam

Kam

s
; ð18Þ

and

Kh i ¼ Kamh i ¼
3

4

� �3 K4
amd

6

A3
am

; ð19Þ

and

HC ¼ Kamh i ¼
3

4

� �3 pCK4
amd

6

m0A3
amMS

; ð20Þ

which match the value obtained by Alben et al. [14].
Thermal dependence of the coercive field can be divided into

two different ranges of temperatures. The first one between 273 K
and the ferromagnetic–paramagnetic transition temperature of
the amorphous phase (TC

am
� 600 K), and the second between TC

am

and 900 K. For temperatures below TC
am the thermal behavior of HC

can be described using Eq. (20) considering MS=MS(T). Turtelli
et al. [18] propose, for Finemet type alloy, that MS (T) can be
approximated as

MSðTÞ ¼ xMcr
S 1�

T

Tcr
C

	 
b
þð1� xÞMam

S 1�
T

Tam
C

	 
bam

; ð21Þ

where MS
cr (MS

am) is the saturation magnetization of the crystalline
(amorphous) phase. The dependence on the temperature of /KS
is principally through the thermal dependence of the amorphous
stiffness as was proposed by Herzer [11,15]

AampM2
amp 1�

T

Tam
C

	 
2bam

: ð22Þ

For temperatures higher than TC
am, HC exhibits a singular

behavior. The initial coupled system at low temperatures cross
over to an un coupled system at high temperatures. This behavior
is due to the decrease of L with the increase in temperature and
the un coupling occurs when L=D (dipolar magnetic interactions
are neglected in this approach). This un coupled system could be
considered as an ensemble of ferromagnetic particles through a
paramagnetic phase. We can obtain the temperature dependence
on the coercivity for temperature values higher than the Curie
temperature of the amorphous inter-grain. To do this we used the
general form of the coercivity [19] as follows:

HC ¼
pC Kh i

m0MSðTÞ
1�

25kBT

Kh iV

� �m	 

; ð23Þ

where V is the volume of the crystallites supposed to be single
domain particles and m is an exponent less than one.

In our approximation we considered that HC corresponds to
ferromagnetic grains surrounded by a paramagnetic phase. This
phase appears due to the fact that Lexch diminish as a function
of temperature from values higher than D to Lexch=D when the
amorphous ferromagnetic inter-grain phase is transformed in a
paramagnetic phase under the influence of the magnetic mo-
ments of the grains. Replacing Lexch by D in Eq. (7) and considering
that gK=x and gD=1 we obtain the following:

Kh i ¼
3

4

� �3

xKcr : ð24Þ

From this last expression we can observe that the average
anisotropy obtained is less than the crystalline one while it is
higher than the associated with the nanocomposite at tempera-
tures below Curie temperature of the amorphous matrix, TC

am. This
result is well consistent because the anisotropy of the crystallites
is averaged over all the volume crystallite plus the paramagnetic
matrix. Hence the matrix acts as a reducer of the total anisotropy.
Using the last expression given for (K) in Eq. (23) the coercivity
will be

HC ¼
3

4

� �3 pCxKcrðTÞ

m0MSðTÞ
1�

25kBT

ð3=4Þ3xKcrðTÞV

 !m" #
; ð25Þ

where Kcr(T) is assumed to change as (MS
cr(T))n, 3rnr10 for

anisotropies between uniaxial and cubic, respectively, [11] and
MS(T) is saturation magnetization of the nanocomposite.

The resulting saturation magnetization MS(T) can be expressed
as

MSðTÞ ¼ xMcr
s ðTÞþð1� xÞMpara

S ðTÞ; ð26Þ

where MS
cr(T) depends on temperature as follows:

Mcr
S ðTÞpMcr

S 1�
T

Tcr
C

	 
b
; ð27Þ

b=0.36 being the critical exponent. The saturation magnetization
of the paramagnetic amorphous phase in the presence of an
external field can be expressed as

Mpara
S ðTÞ ¼M0BsðT;HamÞ ¼NmamBsðT;HamÞ; ð28Þ

where Bs(T,Ham) is the Brillouin function, Ham is the field applied
on the paramagnetic phase by the grains, N is the number of
magnetic moment per unit volume and mam is the magnetic
moment per atom in the amorphous phase. Hence the saturation
magnetization of the sample becomes

MSðTÞ ¼ xMcr
S ðTÞþð1� xÞNmamBsðyÞ; ð29Þ

where y¼Nm0gmBSHam=KBT with HampMcr
S ðTÞ. When the argu-

ment of the Brillouin function is small, the paramagnetic
saturation magnetization can be approximated as

Mpara
s ðTÞ ¼

Mcr
S ðTÞC1

T
ð30Þ

with C1 ¼ cNm0g2mB2 SðSþ1Þ=3kB where mB is the Bohr magneton, g

is the Land�e factor and c is a constant less than one related to the
geometric arrangement of the crystals.

Hence the temperature dependence of the coercivity will be

HCp
3

4

� �3

pC
xðMcr

S ðTÞÞ
n�1

m0 xþð1� xÞC1=T
� � 1�

C2T

ðMcr
S ðTÞÞ

nTcr
C

� �m	 

; ð31Þ

with

C2 ¼ ð4=3Þ325kBTcr
C =xD3; ð32Þ

where V=D3 is the volume of the crystallites.
From Fig. 1 we observed that the theory seems to be well

consistent with the experimental results reported previously [11].
The results obtained are very interesting from the physical point
of view, considering that could provide a useful tool to understand
the magnetic behavior of systems such as Finemet and Nanoperm
alloys. The crystalline fraction (x) of the material along with C1

and C2 determines the thermal dependence of the coercive field.
These three parameters depend on thermal treatment and
composition. The values of x, C1 and C2 in the simulation were
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Fig. 1. Coercive field (HC) as function of temperature, m=0.5, n=4.
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chosen just to consider three possible examples. Eq. (31) reveals
the magnetic behavior of the system for T4Tam. While the
approximation reveals the origin of the singular bahavior of the
coercive field with temperature, in order to achieve more detailed
approximation other contributions need to be considered, for
example the magnetic dipolar interaction.

In this paper we present an improved, more detailed,
treatment of a two phase soft magnetic system, constituted by
crystallites embedded in an amorphous matrix. The analysis is
performed within an extended temperature range, both below
and above the Curie temperature of the amorphous. Single
domain ferromagnetic particles embedded in an amorphous
paramagnetic matrix was considered to understand the coercivity
behavior between the amorphous (matrix) and the crystalline
(core) Curie temperatures. Based on these assumptions we
obtained a good approximation to the singular experimental
magnetic behavior of these types of materials in this temperature
range.
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