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In partly linear models, the dependence of the response y on (xT, t) is modeled through the relationship
y = xTβ + g(t) + ε, where ε is independent of (xT, t). We are interested in developing an estimation
procedure that allows us to combine the flexibility of the partly linear models, studied by several authors,
but including some variables that belong to a non-Euclidean space. The motivating application of this paper
deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the
predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the
explanatory variables t take values on a Riemannian manifold and the asymptotic properties of the proposed
estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using
an environmental data set and we explore the performance of the estimators through a simulation study.

Keywords: environmental data; hypothesis test; non-parametric estimation; partly linear models;
Riemannian manifolds

1. Introduction

Partly linear models were introduced by Engle et al. [6] to analyze the relationship between
electricity usage and average daily temperature. In recent years, these model have gained a lot of
attention for their use in the exploration of the nature of complex nonlinear phenomena. Partly
linear models have been widely studied in the literature, see, for example, [1,4,17], among others.
These models allow us to model the response variable with a set of predictors that enter into the
models linearly while one of them is considered non-parametrically in the models.

In this paper, we discuss the application of these models to the sulfur dioxide (SO2) pollution
problem. More specifically, we are interested in modeling the emission of SO2 through variables
such as the temperature and the direction and speed of the wind. It is important to mention
that the variables of wind have a common structure. Also, the circular structure of the wind
direction allows us to consider a cylinder as the space where the speed and direction take values.
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2 W. Gonzalez-Manteiga et al.

However, partly linear models do not seem to include this structure. The case studied in this paper
is only an example of predictive variables taking values on a Riemannian manifold rather than on
an Euclidean space. Some other examples of variables taking values on a non-Euclidean space can
be found in meteorology, astronomy, geology and other fields, which include natural distributions
on spheres, tangent bundles and Lie groups. Research on the statistical analysis of variables with
one of these structures was done by Bhattacharya and Patrangenaru [3] and Mardia [13] and,
more recently, by Hendriks and Landsman [9], Henry and Rodriguez [10], Pelletier [14] and
Pennec [15].

The aim of this work is to study partly linear models when the explanatory variable t takes
values on a Riemannian manifold, that is, when the variable to be modeled in a non-parametric
way is in a manifold. We introduce an estimation procedure that includes this structure of the
variables.

The paper is organized as follows. In Section 2, we construct estimates for these models and give
a review of the non-parametric estimation on Riemannian manifolds proposed in [14]. In Section 3,
we present the asymptotic behavior of the proposed estimators under regular assumptions. In
Section 4, we explore the performance of the estimators through a simulation study and we give
an example using real data. Moreover, we review a cross-validation procedure for partly linear
models. The proofs of the theoretical results presented in Section 3 are given in Appendix 1.

2. Estimators

2.1 Model and estimators

Let (yi, xT
i , ti) be an iid random vector valued in R

p+1 × M with a distribution identical to that of
(y, xT, t), where (M, ξ) is a Riemannian manifold of dimension d. Partly linear models assume
that the relation between the response variable yi and the covariates (xT

i , ti) can be represented as

yi = xT
i β + g(ti) + εi, 1 ≤ i ≤ n, (1)

where the errors εi are independent of (xT
i , ti)T and also of E(εi|xi, ti) = 0. In many situations, it

seems reasonable to suppose that a relationship between the covariates x and t exists; so as has
been done in [1,17], we assume that for 1 ≤ j ≤ p,

xij = φj(ti) + ηij, 1 ≤ i ≤ n, (2)

where the errors ηij are independent. Denote φ0(τ ) = E(y|t = τ) and φ(t) = (φ1(t), . . . , φp(t)),
then we have that g(t) = φ0(t) − φ(t)Tβ and hence y − φ0(t) = (x − φ(t))Tβ + ε. These equa-
tions suggest estimating the unknown functions and parameters as follows. Let φ̂j(t) be the
non-parametric estimators of φj, 0 ≤ j ≤ p. Regarding the estimation of the parameter β, we
note that using the non-parametric estimators of the functions φj, the regression parameter can be
estimated considering the least-square estimators obtained by minimizing

β̂ = arg min
β

n∑
i=1

[(yi − φ̂0(ti)) − (xi − φ̂(ti))
Tβ]2,

where φ̂(t) = (φ̂1(t), . . . , φ̂p(t)). Then, the function g can be estimated as ĝ(t) = φ̂0(t) − φ̂(t)Tβ̂.
Note that the regression functions correspond to the predictors taking values in a Riemannian

manifold; non-parametric kernel-type estimators adapted to this structure have been considered
in [14] and also studied in [11]. An overview of these estimators is given in Section 2.2.

The proposed estimators are consistent with the respective estimators when the explanatory
variable t take values in Euclidean spaces, that is, in this case, the proposed estimators correspond
to the estimators introduced by Engle et al. [6].
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2.2 Review of non-parametric estimators on Riemannian manifolds

2.2.1 Preliminaries

Let (M, ξ) be a d-dimensional connected Riemannian manifold. We denote by dξ the distance in M
induced by ξ . (M, ξ) is a complete Riemannian manifold if (M, dξ ) is complete as a metric space.
R

d endowed with the Euclidean metric, ξ d
e , the hyperbolic space (Hd , ξh), the d-dimensional torus

(T d , ξ) and the graph of a smooth function f : R
d −→ R are examples of complete Riemannian

manifolds.
Let t ∈ (M, ξ) and TtM be the tangent fiber of M at t. Let expt : TtM −→ M be the exponential

map induced by the metric ξ , see for instance [5]. Recall that expt(0t) = t, where 0t is the null
vector of TtM, and there exists a neighborhood W of 0t that satisfies that expt |W : W −→ expt(W)

is a diffeomorphism. We say that a ball Br(t) = {q ∈ M : dξ (t, q) < r} is normal if there exists a
ball Br(0t) such that

expt |Br(0t) : Br(0t) −→ Br(p)

is a diffeomorphism.
The injectivity radius of (M, ξ) is defined by

injξ (M) := inf
r>0

{Br(t) is a normal ball}.

In the case of the Euclidean or the hyperbolic space, it is easy to see that injξ d
e
(Rd) = injξh(H

d) =
∞. The surface M := {x2 + y2 − e−z = 0} ⊆ R

3 endowed with the metric induced by ξ 3
e is a

complete Riemannian manifold without a boundary with an injectivity radius equals zero. If
(Sd , ξ d

0 ) is the d-dimensional sphere with its canonical metric, then injξ d
0
(Sd) = π . Every compact

Riemannian manifold has a positive injectivity radius.
In this paper, we consider only complete Riemannian manifolds without boundary and positive

injectivity radius. The assumption about the positive injectivity radius will be clear in Section 3
where we introduce the estimator proposed by Pelletier.

Let t ∈ (M, ξ) and {v1, . . . , vd} be an orthonormal basis of TtM and let Br(t) be a normal ball. The
exponential map induces a coordinate system (U, ψ) in (M, ξ) as follows. Let γ : TtM −→ R

d

be defined by

γ (v) = (z1, . . . , zd) if v =
d∑

i=1

zivi,

then U = Br(t) and ψ : Br(t) −→ R
d is given by

ψ(s) = γ ◦ (expt |Br(0t))
−1(s).

The coordinate system (U, ψ) is called a normal chart centered at t.
If s ∈ U, let us denote by {∂/∂ψ1|s, . . . , ∂/∂ψd |s} the basis of TsM induced by (U, ψ), that

is, let q ∈ Br(0t) such that expt(q) = s, then ∂/∂ψi|s is the velocity at time zero of the curve
αi(a) = expt(q + a.vi).

For any s ∈ M, the metric ξ restricted to the tangent fiber of M at s is a symmetric positive
defined bilinear form ξs : TsM × TsM −→ R. If (U, ξ) is a coordinate system in M and s ∈ U,
then let the smooth matricial map V(U,ξ) : U −→ R

d×d be given by

(V(U,ξ)(s))ij = ξs

(
∂

∂ψi

∣∣∣∣
s

,
∂

∂ψj

∣∣∣∣
s

)
.

Let t ∈ M and (U, ξ) be a normal chart centered at t. Consider the function θt : U −→ R:

θt(s) = (det(V(U,ξ)(s)))
1/2,
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4 W. Gonzalez-Manteiga et al.

which is the volume of the parallelepiped {∂/∂ψ1|s, . . . , ∂/∂ψd |s}. This function is called the
volume density function. It is not difficult to see that θt does not depend on the selection of the
normal chart and that θt(s) = θs(t), see [10], for instance.

For the Euclidean space (Rd , ξ d
e ) and for the cylinder (S1 × R, ξ 1

0 + ξ 1
e ), θt(s) = 1 for all s and

t where the function is well defined. In [10], we calculated the volume density on a sphere, in
this case,

θs(t) = | sin(dξ (s, t))|
dξ (s, t)

for t 	= s, −s and θs(s) = 1.

2.2.2 The non-parametric estimator

Let (y1, t1), . . . , (yn, tn) be iid random objects that take values on R × M. In order to estimate
r(τ ) = E(y|t = τ), Pelletier [14] proposed a non-parametric kernel-type estimator. The proposal
introduced by Pelletier was built analogous to the kernel-type estimator on (M, ξ) considering
the distance dξ on M and the volume density function of (M, ξ) in order to take into account the
curvature of the manifold. More precisely, the non-parametric estimator can be defined as

rn(t) =
n∑

i=1

wn,h(t, ti)yi (3)

with wn,h(t, ti) = θ−1
t (ti)K(dξ (t, ti)/h)/[∑n

k=1 θ−1
t (tk)K(dξ (t, tk)/h)]−1, where K : R → R is a

non-negative function, θt(s) is the volume density function on (M, ξ) and the bandwidth h is a
sequence of real positive numbers such that limn→∞ h = 0 and h < injξ M, for all n. The last
requirement on the bandwidth guarantees that Equation (3) is well defined for all t ∈ M. Pel-
letier [14] studied some properties of this estimator such as the asymptotic pointwise mean squared
error. On the other hand, Henry and Rodriguez [10] proposed a robust version that generalized
this estimator and studied some asymptotic properties.

3. Asymptotic behavior

We begin with the following assumptions required to derive the large sample properties of the
proposed estimators. In this section, we study the asymptotic behavior of the regression parameter
estimator and the non-parametric component of the model under the following conditions:

(H1) Let M0 be a compact set on M such that f is a bounded function such that inf t∈M0 f (t) =
A > 0 and inf t,s∈M0 θt(s) = B > 0.

(H2) The sequence h is such that nh4 → 0 and nhd
n/log n → ∞ as n → ∞.

(H3) K : R → R is a bounded non-negative Lipschitz function of order 1, with compact sup-
port [0, 1] satisfying

∫
Rd K(‖u‖) du = 1,

∫
Rd uK(‖u‖) du = 0 and 0 <

∫
Rd ‖u‖2K(‖u‖)

du < ∞.
(H4) For any open set U0 of M such that M0 ⊂ U0, the functions g and φj for 1 ≤ j ≤ p are of

class C2 on U0.
(H5) The errors εi and ηij for 1 ≤ i ≤ n and 1 ≤ j ≤ p are independent and E|ε1|r +∑p

j=1 E|η1j|r < ∞ for r ≥ 3, σ 2
ε = var(ε1) > 0 and � = E(ηT

1 η1) is a positive definite
matrix.

We now establish the large sample properties of the estimators. Theorem 3.1 provides the
asymptotic normality of β̂ and the rate of convergence of the non-parametric estimator ĝ(t).
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Journal of Applied Statistics 5

Theorem 3.1 Under H1–H5,

(i)
√

n(β̂ − β)
D−→ N(0, σ 2

ε �−1).
(ii) supt∈M0

|ĝ(t) − g(t)| = O(h2) + O(
√

log n/nhd).

Note that this theorem is consistent with the corresponding results in the Euclidean case.

Remark 3.1 The fact that θt(t) = 1 for all t ∈ M guarantees that the bound of θ in H1 holds. The
assumptions H2 and H3 are standard when kernel estimators are considered.

In many practical problems, it is interesting to make inference on the regression parameter,
such as the construction of the confidence regions or hypothesis tests. The obtained asymptotic
distribution can be used to construct a Wald-type statistic, more precisely, to test H0 : β = β0. It
seems natural to test H0 through the Wald-type statistic:

Tn = n

σ̂ 2
ε

(β̂ − β)T�̂(β̂ − β),

where σ̂ 2
ε and �̂ are the estimates of σ 2

ε and �, respectively. For example,

σ̂ 2
ε = 1

n

n∑
i=1

(yi − xT
i β̂ − ĝ(ti))

2 and �̂ = 1

n

n∑
i=1

(xi − φ̂(t))T(xi − φ̂(t))

may be the considered estimators.
Lemma A.2 and Remark A.5 given in Appendix 1 show that �̂ and σ̂ 2

ε are consistent with �

and σ 2
ε , respectively. Therefore, under the null hypothesis, Tn

D−→ χ2
p . Thus, if we test H0 at a

significance level α, the Wald test rejects H0 when Tn > χ2
p,α , where χ2

p,α is the corresponding
1 − α quantile of the χ2

p .

4. Case studies

4.1 Selection of the smoothing parameter

An important issue in any smoothing procedure is the choice of the smoothing parameter. Under
a non-parametric regression model with carriers in an Euclidean space, that is, when (M, ξ) is
(Rd , ξ d

e ), the two commonly used approaches are L2 cross-validation and plug-in methods. In
this section, we include a cross-validation method for the choice of the bandwidth in the case of
partly linear models. The asymptotic properties of data-driven estimators require further careful
investigation and are beyond the scope of this paper.

The cross-validation method constructs an asymptotically optimal data-driven bandwidth, and
thus adaptive data-driven estimators, by minimizing

CV(h) =
n∑

i=1

[(yi − φ̂0,−i,h(ti)) − (xi − φ̂−i,h(ti))
Tβ̃]2,

where φ̂0,−i,h(t) and φ̂−i,h(t) = (φ̂1,−i,h(t), . . . , φ̂p,−i,h(t)) denote the non-parametric estimators
computed with bandwidth h using all the data expect the ith observation and β̃ minimize∑n

i=1[(yi − φ̂0,−i,h(ti)) − (xi − φ̂−i,h(ti))
Tβ]2 in β.
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6 W. Gonzalez-Manteiga et al.

4.2 Simulation study

To evaluate the performance of the estimation procedure, we conducted a simulation study.
We considered two models in two different Riemannian manifolds, the sphere and the cylinder
endowed with the metric induced by the canonical metric of R

3. We performed 1000 replications
of independent samples of size n = 50, 100, 150 and 200 according to the following models:

Sphere case: The variables (yi, xi, ti) for 1 ≤ i ≤ n were generated as

yi = β xi + exp {−(ti1 + 2ti2 + ti3)
2} + εi and xi = ti1 + ti2 + ti3 + ηi,

where ti = (cos(θi) cos(γi), sin(θi) cos(γi), sin(γi)) with θi and γi follow a von Mises distribution
with means 0 and π and concentration parameters 3 and 5, respectively. In this case, the functions
g(t) and φ̂(t) are equal to exp{[(1, 1, 1)Tt]2} and (1, 1, 1)Tt, respectively.

Cylinder case: The variables (yi, xi, ti) for 1 ≤ i ≤ n were generated as

yi = β xi + s2
i + sin(θi) + εi and xi = exp(θi) + ηi,

where ti = (cos(θi), sin(θi), si) with the variables θi follow a von Mises distribution with mean
π and concentration parameter 3 and the variables si are uniform in (−2, 2), that is, ti have
support in the cylinder with radius 1 and height between (−2, 2). Note that in this model, g(t) =
(eT

3 t)2 + sin(arctan(eT
2 t/eT

1 t)) and φ̂(t) = exp(arctan(eT
2 t/eT

1 t)) where ei for i = 1, 2, 3 are the
canonical vectors of R

3.
In all cases, the regression parameter β was taken to be equal to 5 and the errors εi and ηi were

iid normal with mean zero and standard deviation 1. In the smoothing procedure, the kernel was
taken as K(u) = 30 u2(1 − u)2I(0,1)(u). With respect to the selection of the smoothing parameter,
we applied the cross-validation procedure described in Section 4.1. Furthermore, to analyze the
effect of the bandwidth on the estimation procedure, we computed the estimators on a grid of
bandwidths. We considered an equispaced grid of length 10 between 0.5 and π in the sphere
case and between 1 and 2π in the cylinder case. The distance dξ for these manifolds can be
found in [10,11] and the volume density function in Section 2.2.1. Tables 1 and 2 give the mean,
standard deviation (sd), and mean square error (MSE) for the regression estimates of β and the
mean of the MSEs of the regression function g over the 1000 replications when we consider the
cross-validation procedure. Tables 3 and 4 report the MSE for the regression estimates of β and

Table 1. Performance of β̂ and ĝ in the sphere case using cross-validation.

n Mean(β̂) sd(β̂) MSE(β̂) MSE(ĝ)

50 5.1103 0.1411 0.0321 0.2102
100 5.1147 0.0993 0.0230 0.1846
150 5.1023 0.0907 0.0187 0.1709
200 5.1024 0.0807 0.0170 0.1644

Table 2. Performance of β̂ and ĝ in the cylinder case using cross-validation.

n Mean(β̂) sd(β̂) MSE(β̂) MSE(ĝ)

50 4.9836 0.0166 0.0005 0.1756
100 4.9866 0.0119 0.0003 0.1545
150 4.9873 0.0097 0.0003 0.1473
200 4.9877 0.0086 0.0002 0.1397
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Table 3. Performance of β̂ and ĝ in the sphere case for different bandwidths.

Bandwidths

0.5 0.793 1.087 1.380 1.674 1.967 2.261 2.554 2.848 3.141

n = 50
MSE(β̂) 0.0311 0.0248 0.0218 0.0207 0.0253 0.0256 0.0293 0.0300 0.0325 0.0337
MSE(ĝ) 0.2715 0.1698 0.1620 0.1772 0.1929 0.2038 0.2102 0.2126 0.2112 0.2130

n = 100
MSE(β̂) 0.0119 0.0116 0.0102 0.0118 0.0146 0.0164 0.0191 0.0209 0.0211 0.0233
MSE(ĝ) 0.1557 0.1134 0.1256 0.1527 0.1747 0.1861 0.1916 0.1936 0.1918 0.1891

n = 150
MSE(β̂) 0.0082 0.0071 0.0069 0.0079 0.0112 0.0143 0.0170 0.0172 0.0192 0.0202
MSE(ĝ) 0.1142 0.0932 0.1150 0.1437 0.1672 0.1792 0.1889 0.1866 0.1863 0.1832

n = 200
MSE(β̂) 0.0056 0.0052 0.0052 0.0072 0.0099 0.0127 0.0155 0.0166 0.0183 0.0196
MSE(ĝ) 0.0931 0.0820 0.1092 0.1388 0.1640 0.1768 0.1835 0.1856 0.1833 0.1818

Table 4. Performance of β̂ and ĝ in the cylinder case for different bandwidths.

Bandwidth

1 1.454 1.908 2.362 2.816 3.270 3.724 4.178 4.632 5.086

n = 50
MSE(β̂) 0.0006 0.0005 0.0005 0.0006 0.0007 0.0007 0.0007 0.0008 0.0008 0.0007
MSE(ĝ) 0.9471 0.5392 0.2428 0.1936 0.2413 0.2786 0.3049 0.3122 0.3158 0.3089

n = 50
MSE(β̂) 0.0003 0.0003 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
MSE(ĝ) 0.5914 0.4312 0.2269 0.1797 0.2283 0.2622 0.2855 0.2930 0.2935 0.2987

n = 50
MSE(β̂) 0.0002 0.0002 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
MSE(ĝ) 0.4983 0.3567 0.2214 0.1740 0.2232 0.2592 0.2822 0.2891 0.2903 0.2917

n = 50
MSE(β̂) 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
MSE(ĝ) 0.4476 0.3222 0.2191 0.1713 0.2210 0.2573 0.2786 0.2858 0.2857 0.2882

the mean of the MSEs of the regression function g over the 1000 replications for each bandwidth
considered.

From Tables 1 and 2, we can see that the estimators in the two considered schemes show a
good behavior. In both the cases, the mean of the MSEs of the parametric and non-parametric
estimators is small and reflects the good performance of the proposed estimators. As expected, it
is interesting to note that when the sample size increases, the performance of the MSEs of β and
g is even better. This effect is also summarized in Tables 3 and 4. From these tables, we can see
that the behavior of the proposed estimators is stable across the bandwidths considered, except,
as expected, when the bandwidths and the sample sizes are small.

4.3 Application to real data

In this section, we apply a partly linear model to an environmental data set in order to study
the atmospheric SO2 pollution incidents. The variables included in the study are the direction
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8 W. Gonzalez-Manteiga et al.

Figure 1. Location of Vilalba, Galicia, Spain.

and speed of the wind, temperature and the SO2 concentration in the meteorologic station at
Vilalba (Lugo in Galicia, Spain). García-Jurado [8] and Prada-Sanchez [16] applied models to
the prediction of atmospheric SO2 pollution incidents in the vicinity of the coal/oil-fired power
station at As Pontes, A Coruña, Galicia, Spain. They observed that the prediction of the SO2 time
series is challenging because they consist in near-zero values interrupted between a few days and
several weeks by episodes lasting a few hours at random in which values rise to high levels and
then fall to zero (Figure 1).

Therefore, in order for the predictions to be based on data representing a reasonably large
number of incidents, we reproduced the construction of the historical matrix introduced in [16].
For this purpose, we took as samples 1000 rows of the historical matrix that was constructed and
updated as follows.

First, we determined the range of 2-hour means observed during the previous 2 years. Then,
we divided the non-near-zero region of this range into 10 strata containing approximately equal
numbers of values, randomly selected 100 values yl from each stratum and associated each with
the corresponding predictor values xl and tl. The 1000 (1 + p + d)-tuplets so formed made up the
1000 rows of the seed of the historical matrix. Thereafter, during on-line processing, the historical
matrix was updated whenever a non-near-zero yk occurred by identifying the stratum to which
yk belonged and substituting xk and tk for the oldest row of the historical matrix at time k − 1
belonging to this stratum.

The data were recorded daily each minute during the year 2009 and we considered a 1500-row
historical matrix. The variables that we considered in the model are given in Table 5.

Note that the variables ti = (t1i, t2i) have support in the cylinder. The maximum of the wind
speed in this case was 7.7, so we considered the variable t to belong in a cylinder of height
between 0 and 10. Therefore, we modeled the response variable using the following model:
yi = β1x1i + β2x2i + β3x3i + g(ti) + εi.

In the smoothing procedure, we considered the same kernel that we used in the simulation study
and we chose the bandwidth using a cross-validation procedure. Because of the computational
burden of the cross-validation method, and because there is really no need of using this method with
a sample as large as 1500, we also determined h by the split sample method, that is, by dividing the

Table 5. Environmental variables considered in the model.

yi SO2 emission is measured in μg/m3

x1i SO2 emission in the instant i − 30
x2i SO2 emission difference between the instants i − 35 and i − 30
x3i The temperature in ◦C
t1i Wind direction in radians from the north
t2i Wind speed in m/s
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Table 6. Estimates of the regression parameter.

β̂1 β̂2 β̂3
0.7988 0.5766 −0.0013

historical matrix into a 750-member training set with an odd index and a 750-member validation
set with an even index and taking for h the value minimizing

SV(h) =
[n/2]∑
i=1

[(y2i − φ̂0,E,h(t2i)) − (x2i − φ̂E,h(t2i))
Tβ̃]2,

where φ̂E,h(t) = (φ̂1,E,h(t), . . . , φ̂p,E,h(t)) and φ̂0,E,h(t) denote the non-parametric estimators

computed with the bandwidth h using the data with the odd index and β̃ minimize
∑[n/2]

i=1

[(y2i − φ̂0,E,h(t2i)) − (x2i − φ̂E,h(t2i))
Tβ]2 in β. In this case, the selected bandwidth was hsv = 2.1.

Table 6 reports the values of the estimates of the regression parameters. Figures 2 and 3 show the
estimates of the regression function over a grid of 1200 points in the cylinder. The graphics are
quite similar. The differences arise only in the form the function has been plotted. Figure 4 shows
the residuals versus order in each case of the non-parametric model considered. In particular,
Figure 4(a) shows the residuals x1i − φ̂1(ti) against i, Figure 4(b) and (c) the same plots related

Figure 2. Estimates of the regression function over the cylinder.

wind direction

w
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d 
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Figure 3. Estimates of the regression function projected in the plane.
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Figure 4. Residuals versus order plots: (a) x1i − φ̂1(ti) versus i, (b) x2i − φ̂2(ti) versus i, (c) x2i − φ̂2(ti)
versus i and (d) yi − φ̂0(ti) versus i.

to x2i and x3i, respectively, and Figure 4(d) yi − φ̂0(ti) against i. These plots allow us to verify the
hypothesis of independence assumed over the errors.

As mentioned in Section 3, we conducted a Wald-type test for the hypothesis H0 : β = β0. If we
consider the hypothesis H0 : β = (0.8, 0.6, 0), the test statistic Tn = 1.59 and p-value = 0.6594.
Therefore, we did not reject the null hypothesis. Thus, we can conclude that temperature does not
have a significance impact on the pollution incidents.

To evaluate the performance of the partly linear model, we considered a full non-parametric
model to explain yi based on the variables x1i, x2i and x3i through an unknown function η. In this

0.
8

0.
01

15
0.

01
10

0.
01

05

0.
6

0.
4

0.
2

0.
0

0 1 2

(a) (b)

bandwidth bandwidth
3 4 0 2 4 6 8 10

Figure 5. Comparison of the errors: the dotted line corresponds to the full non-parametric model and the
dashed line to the partly linear model. The vertical lines correspond to the optimal bandwidths in each model.
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case, we used the Nadaraya–Watson estimator with a quadratic kernel. In the smoothing procedure,
as the matrix of the bandwidth, we considered a multiple of the identity matrix. We compared
the prediction error for both the models computing, in the case of the full non-parametric model,
EP(h) = ∑[n/2]

i=1 [(y2i − η̂(x1,2i, x2,2i, x3,2i))]2 for a grid of 100 equispaced bandwidths between 0.1
and 4. For the partly linear model, we computed SV(h) for the same grid of bandwidth. As can
see from Figure 5(a), the partly linear model has a better predictive power than the full non-
parametric model. The comparison of the errors in the figure seems to be in a different scale
and the proposed method seems to be insensitive with respect to the bandwidth. Figure 5(b)
shows only the prediction error of the proposed estimators. Here, we can see that the behavior
for small values of bandwidth seems to be more unstable but better than that observed for the full
non-parametric model.
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12 W. Gonzalez-Manteiga et al.

Appendix 1

Lemma A.1 Let φ̃j(t) = φj(t) − ∑n
i=1 wn,h(t, ti)xij for 1 ≤ j ≤ p and φ̃0(t) = φ0(t) − ∑n

i=1 wn,h

(t, ti)yi. Under H1–H4, we have that

sup
t∈M0

|γ̃ (t)| = O(h2) + O

(√
log n

nhd

)
a.s.,

where γ̃ ∈ {φ̃j; 0 ≤ j ≤ p}.

Proof of Lemma A.1 Let γ ∈ {φj; 0 ≤ j ≤ p}. To fix the idea, we consider γ = φj(t) for 1 ≤
j ≤ p, the case j = 0 is similar, then

γ̃ (t) = φj(t) −
n∑

i=1

wn,h(t, ti)xij

= (1/nhd)
∑n

i=1(1/θt(ti))K(dξ (t, ti)/h)(φj(t) − xij)

(1/nhd)
∑n

i=1(1/θt(ti))K(dξ (t, ti)/h)
.

By H1, inf t∈M(1/hd)E((1/θt(t1))K(dξ (t, t1)/h)) ≥ A > 0 and the strong uniform consistency
of f̂n(t) = (nhd)−1 ∑n

k=1 θ−1
t (tk) K(dξ (t, tk)/h) obtained in [11], we can concentrate only the

numerator of γ̃ (t).
Using the results obtained in [11,14], we have that

sup
t∈M0

∣∣∣∣∣E
(

1

nhd

n∑
i=1

1

θt(ti)
K

(
dξ (t, ti)

h

)
(φj(t) − xij)

)∣∣∣∣∣ = O(h2), (A1)

sup
t∈M0

∣∣∣∣∣var

(
1

nhd

n∑
i=1

1

θt(ti)
K

(
dξ (t, ti)

h

)
xij

)∣∣∣∣∣ = O(nhd). (A2)

Finally, the proof follows analogous to the proof of Lemma 3.1 reported in [7]. �

Lemma A.2 Under H1–H4, we have that n−1 ∑n
i=1 x̃T

i x̃i
p−→ �, where x̃i = xi − φ̂(ti).

Proof of Lemma A.2 The elements l and s of n−1 ∑n
i=1 x̃T

i x̃i can be written as(
n−1

n∑
i=1

x̃T
i x̃i

)
ls

= n−1

(
n∑

i=1

ηilηis +
n∑

i=1

φ̃l(ti)ηis +
n∑

i=1

φ̃s(ti)ηil +
n∑

i=1

φ̃l(ti)φ̃s(ti)

)
,

where φ̃j(t) = φj(t) − φ̂j(t). We need to show that all terms except the first term converge to zero.

Applying the strong law of large numbers, we get that n−1 ∑n
i=1 ηilηis

p−→ �ls.

By Lemma A.1, the fact that n−1 ∑n
i=1 η2

il

p−→ �ll and using the Cauchy–Schwarz inequality,
we get the result. �

Lemma A.3 Under H1–H3, we have that supt∈M max1≤j≤n |wn,h(t, tj)| = O((nhd)−1).

Proof of Lemma A.3 Note that

wn,h(t, tj) = (1/nhd)(1/θt(tj))K(dξ (t, tj)/h)[(1/hd)E((1/θt(t1))K(dξ (t, t1)/h))]−1

(1/nhd)
∑n

i=1(1/θt(ti))K(dξ (t, ti)/h)[(1/hd)E((1/θt(t1))K(dξ (t, t1)/h))]−1
.
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According to Henry and Rodriguez [11], we have that

sup
t∈M

∣∣∣∣∣ 1

nhd

n∑
i=1

1

θt(ti)
K

(
dξ (t, ti)

h

) [
1

hd
E

(
1

θt(t1)
K

(
dξ (t, t1)

h

))]−1

− 1

∣∣∣∣∣ = o(1) a.s., (A3)

inf
t∈M

1

hd
E

(
1

θt(t1)
K

(
dξ (t, t1)

h

))
≥ A > 0. (A4)

Then, by Equations (A3) and (A4) and the boundedness of K and θt , the lemma holds. �

Remark A.4 Note that by Lemmas A.1 and A.3 and using Lemma A.1 reported in [12], we have
that

max
1≤i≤n

∣∣∣∣∣γ (ti) −
n∑

k=1

wn,h(ti, tk)γ (tk)

∣∣∣∣∣ = O(h2) + O

(√
log n

nhd

)
a.s.

for any γ ∈ {φj; 0 ≤ j ≤ p}.

Proof of Theorem 3.1 (i) We can write
√

n(β̂ − β) = (n−1 ∑n
i=1 x̃T

i x̃i)
−1n−1/2[A1n − A2n +

A3n], where

A1n =
n∑

i=1

x̃ig
∗(ti), A2n =

n∑
i=1

x̃i

(
n∑

i=1

wn,h(ti, tj)εj

)
, A3n =

n∑
i=1

x̃iεi,

and g∗(t) = g(t) − ∑n
i=1 wn,h(t, ti)g(ti). Using Lemmas A.1–A.3, the asymptotic behavior of

A1n, A2n and A3n can be obtained in the same way as in [2].
Specifically, considering the assumptions imposed on h, we can obtain

A1n = O(nh4 + h−d log2 n) + O(n1/2h2 log n + h−d/2 log2 n) + O(n1/2h2h−d/2 log n)

+ O(h−d log2 n) = o(n1/2),

A2n = O(n1/2h2h−d/2 log n + h−d log2 n) + O(h−d/2 log2 n) + O(h−d log2 n)

= o(n1/2)

and

A3n = O(n1/2h2 log n) + O(h−d/2 log2 n) +
n∑

i=1

ηiεi + O(h−d/2 log2 n)

=
n∑

i=1

ηiεi + o(n1/2).

Finally, the central limit theorem gives the desired result.
(ii) Note that ĝ(t) − g(t) = φ̂0(t) − φ0(t) + (φ̂(t) − φ̂(t))Tβ̂ + φ̂(t)T(β̂ − β). Therefore,

Lemma A.1 and part (i) of this theorem allow us to complete the proof. �

Remark A.5 Finally, we note that Lemma A.1 and Theorem 3.1 state the consistency of the
estimator σ̂ 2

ε of σ 2
ε defined in Section 3. More precisely, note that

σ̂ 2
ε = 1

n

n∑
i=1

(εi + xT
i (β − β̂) + g(ti) − ĝ(ti))

2.

Thus, if we distribute the terms, all of them converge to zero by Lemma A.1 and Theorem 3.1
except (1/n)

∑n
i=1 ε2

i , since by the strong law of large numbers, it converges to σ 2
ε .
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