New Variants of Lepidoptericidal Toxin Genes Encoding Bacillus thuringiensis Vip3Aa Proteins

Diego H. Sauka Sonia E. Rodriguez Graciela B. Benintende
Insumos Bacterianos, Instituto de Microbiología y Zoología Agrícola (IMYZA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Argentina

Key Words

Bacillus thuringiensis • Vip3A • Polymerase chain reaction-restriction fragment length polymorphism \cdot Sequencing

Abstract

Bacillus thuringiensis is an entomopathogenic bacterium characterized by producing parasporal proteinaceous insecticidal crystal inclusions during sporulation. Many strains are capable of also expressing other insecticidal proteins called Vip during the vegetative growing phase. Particularly, Vip3A proteins have activity against certain Lepidoptera species through a unique mechanism of action which emphasized their possible use in resistance management strategies against resistant pests. The aim of the work was to develop a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method that can distinguish between vip3A genes from B. thuringiensis strains. In addition, 4 novel vip3Aa genes were cloned and sequenced. The method was originally based on amplification of a single PCR amplicon and the use of 2 restriction enzymes with recognition sites that facilitate simultaneous detection. Subsequently, a third restriction enzyme was used to distinguish between vip3A variants. Thirteen vip3Aa genes were identified in strains belonging to 10 different B. thuringiensis serovars. Three intra-

subclass variants of vip3Aa genes could be differentiated. The presented method can serve as an invaluable tool for the investigation of known and novel vip3A genes in B. thuringiensis strains. To the best of our knowledge, this is the first report where variants of a same subclass of insecticidal genes could be distinguished following PCR-RFLP.

Copyright © 2013 S. Karger AG, Basel

Introduction

The entomopathogenic bacteria Bacillus thuringiensis is characterized by its ability to produce parasporal crystalline inclusions during sporulation containing insecticidal proteins such as Cry and Cyt proteins [Sauka and Benintende, 2008]. In addition, many B. thuringiensis strains are known to produce other kinds of insecticidal proteins during the vegetative growing phase that do not form crystals which are called Vip (vegetative insecticidal proteins) [Estruch et al., 1996]. This type of proteins includes Vip1, Vip2 and Vip3. Vip1 and Vip2 are the components of binary toxins that have coleopteran specificity, whereas Vip3 proteins have activity against a wide variety of lepidopteran pests [Estruch et al., 1996; Warren, 1997]. To date, these three groups of Vip proteins can also be classified into 9 subgroups, 27 classes and 92 subclass-
© 2013 S. Karger AG, Basel
1464-1801/12/0226-0373\$38.00/0
Accessible online at:
www.karger.com/mmb

[^0]

Fig. 1. a PCR amplification with oligonucleotide primers DS3AF and DS3AR of vip3A genes in B. thuringiensis strains. Lane 1: HD-133; lane 2: HD-137; lane 3: T07001; lane 4: HD-4; lane 5: HD-110; lane 6: T05001; lane 7: HD-155; lane 8: 4AT1; lane 9: HD-542; lane 10: HD-125; lane 11: 4AO1; lane 12: 4T1; lanes 13-14: HD-1 and HD-73 used as positive and negative controls, respectively. b Representative PCR-RFLP patterns of vip3Aa, vip3Ab/vip3Aa40-41 and vip3Aa37-type genes digested with DdeI (lanes 1, 2 and 3, respectively), and vip3Aa40-41-type genes digested with FokI (lane 4). MW = Molecular weight marker with sizes indicated on the left (bp).
es according to their amino acid sequence similarity (http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/ $\mathrm{Bt} / \mathrm{vip} . h \mathrm{hml}$).

Among these proteins, Vip3A do not share homology with other known proteins and act against lepidopteran larvae through a unique mechanism of action [Bhalla et al., 2005; Estruch et al., 1996; Lee et al., 2003, 2006]. These proteins act by binding to specific receptors, different when compared to that of Cry, located in the midgut epithelium of susceptible insect species. Then, cation-specific pores are formed that disrupt ion flow in the midgut, causing paralysis and death [Lee et al., 2006]. All these factors emphasized the possible benefit of use of Vip3A in resistance management strategies against Cry proteins, since novel $v i p 3 A$ genes that are discovered from B. thuringiensis strains could be useful as biological control agent against resistant or insensitive pests [Liu et al., 2007].

Some polymerase chain reaction (PCR)-based methods have been developed to detect $v i p 3 A$ genes from B. thuringiensis strains [Asokan et al., 2012; Beard et al., 2008; Bhalla et al., 2005; Hernández-Rodriguez et al., 2009; Liu et al., 2007; Rice, 1999; Yu et al., 2011]. The present study reported a new PCR-restriction fragment length polymorphism (RFLP) method that can distinguish between known and novel vip3A genes from B. thuringiensis strains. Furthermore, 4 novel vip3Aa genes were cloned and sequenced.

Results and Discussion

In order to identify genes within the $v i p 3 A$ gene family, a new strategy based on PCR-RFLP was used. The specific primers used for PCR hybridize in highly conserved sequences flanking a highly variable region of vip3A genes. These produced amplification in 12 B. thuringiensis strains (fig. 1). B. thuringiensis serovar kurstaki strains HD-1 and HD-73 were used as positive and negative controls, respectively. Polyacrylamide gel data confirmed that 10 strains had a vip3Aa-type RFLP pattern, with 3 main bands of 240, 233, and 111 bp when the product was digested with $D d e \mathrm{I}$ conforming to the predicted fragments of $v i p 3 A a$ genes. Two $v i p 3 A b$-type RFLP patterns were identified in B. thuringiensis serovar sumiyoshiensis 4AO1 and japonensis 4AT1, showing 3 main bands of 233, 159 and $111 / 105 \mathrm{bp}$. Moreover, a novel $v i p 3 A$-type pattern with 2 bands of 344 and 264 bp was identified in B. thuringiensis serovar entomocidus HD-110. Representative restriction patterns of $v i p 3 A$ genes are shown in figure 1.

Afterwards, vip3A genes of B. thuringiensis serovar kurstaki HD-1, entomocidus HD-110, sumiyoshiensis 4AO1 and japonensis 4AT1 were chosen for cloning and sequencing by using specific and vector primers (table 1). To our knowledge, there are no previously published studies concerning vip genes with a full description of all the primers needed for sequencing. The oligonucleotide primers, SRF and SRRI, were successfully used for the amplification of the full length of $v i p 3 A$ genes. All the

Table 1. Primers for sequencing of $v i p 3 A$ genes

$v i p 3 A$ primers ${ }^{\text {a }}$	Sequence ${ }^{\text {b }}$	$\mathrm{Tm},{ }^{\circ} \mathrm{C}^{c}$	Position ${ }^{\text {d }}$	Gene/s recognized
SRF, reg 5'	ATG AAC AWG AAT AAT ACT AAA TTA ARC RCA	52.4	1-30	vip $3 A a$, vip $3 A b$, vip $3 A d$, vip $3 A e, v i p 3 A f, v i p 3 A g$, vip $3 A h$
SRR I, reg 3'	TTA CTT AAT AGA GAC ATC GTA AAA ATG TAC	51.8	2341-2370	vip 3 Aa
SRR II, reg 3'	TTA CTT AAT TGA AAA ATC TCG GAA AKT TAT	51.7	2335-2364	vip $3 A b$, vip $3 A e$, vip $3 A g$
SRR III, reg 3'	TTA TTT AAT AGA AAC GTT TTC AAA TGA TAT	49.6	2338-2367	vip3Af
SRR IV, reg 3'	TTA TTT AAT AGA RAA ATY ATA AAA RTR TRC	47.4	$\begin{aligned} & \hline 2332-2361 \\ & 2359-2388 \end{aligned}$	vip3Ad vip3Ah
3A1F, reg 5'	ACT GAG TTA ACT GAA CTA GCG	52.0	627-648	vip $3 A a$, vip $3 A d$, vip $3 A h$
3 AlR , reg 3'	GCT GAA CGC CCG AAT AAA TTA	53.4	723-741	vip $3 A a$, vip $3 A b$, vip $3 A e$, vip $3 A f$, vip $3 A d$, vip $3 A h$
3A2F, reg 5'	GCT AAG CTA AAA C AAA ATT ATC AAG	49.3	1124-1147	vip $3 A a$, vip $3 A b$, vip $3 A e$, vip $3 A f$, vip $3 A d$, vip $3 A h$
3A2R, reg 3'	ATT TGT TCA GAT TGA TCT GGR CA	53.6	1201-1223	vip $3 A a$, vip $3 A b$, vip $3 A e$, vip $3 A f$, vip $3 A d$, vip $3 A h$
3 A 3 FI , reg 5^{\prime}	GGA ACT TAG AGG GAG AAA ACT TAG	52.7	1625-1648	vip $3 A b$, vip $3 A e$
3A3FII, reg 5^{\prime}	GGT CCA TAG AAG AGG ACA ATT TAG	52.8	1625-1648	vip $3 A a$, vip $3 A f$
3A3FIII, reg 5^{\prime}	GAA ATA TAG AAA TGG ACA CCT TAG	49.1	1625-1648	vip3Ad
3A3FIV, reg 5^{\prime}	GGA TAT TGA GGC TGA CAA CAT AG	53.1	1625-1648	vip3Ah
3 A 3 RI , reg 3'	TGT GAG AAC TCA CCA TCC TTA TG	54.3	1726-1746	vip $3 A b$, vip $3 A d$, vip $3 A e$
3A3RII, reg 3'	TGT GAW AWT CCT CCG TCC TTA TG	54.3	1726-1746	vip $3 A a$, vip $3 A f$
3A3RIII, reg 3'	TGT GAA AAT TCC CCA TCA TCT TG	53.6	1726-1746	vip 3 Ah

${ }^{\mathrm{a}}$ Reg refers to the coding strand. ${ }^{\mathrm{b}}$ Abbreviation for wobble positions: W, A/T; R, A/G; K, G/T; Y, C/T. ${ }^{\mathrm{c}}$ Tm = Melting temperature of the primer. ${ }^{\mathrm{d}}$ The A of the first ATG is numbered 1.

Table 2. Expected restriction fragment sizes of digested $v i p 3 A$ genes

Gene	Fragment size (bp) with:		
	Dde I	Fok I	Alu I
vip3Aa	$240,233,111,24$		
vip3Aa37	344,264		
vip3Aa40-41	$233,159,111,105$	439,169	
vip3Ab	$233,159,111,105$	608	
vip3Ad	$264,122,111,111$		
vip3Ae	608		$260,198,77,58,58,15$
vip3Af	$264,233,111$	$190,159,77,70,58,39,15$	
vip3Ag	$264,233,111$		
vip3Ah	497,111		

obtained sequences have in common that they were 2,370 nucleotides long, encoding 790 amino acid residues. The genes from these strains were named vip3Aa33, vip3Aa37, $v i p 3 A a 40$ and vip3Aa41, respectively, by the Bt Pesticidal Crystal Protein Nomenclature Committee (http://www. lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/).

The nucleotide sequence of the gene vip3Aa33 from serovar kurstaki HD-1 strain was identical to vip3Aa7, 9, 10, 12, 15 and 21. A substitution at position 891 of C for G (transversion) was found to be present in the almost identical gene vip3Aa37 from serovar entomocidus HD-110 strain. This point mutation constituted a silent mutation
that did not result in amino acid substitutions, but generated a new DdeI restriction site. Consequently, this new restriction site produced a novel RFLP pattern totally different to that of the other $v i p 3 A$ genes (table 2). On the other hand, nucleotide sequences of $v i p 3 A$ genes from serovar japonensis 4AT1 and sumiyoshiensis 4AO1 strains showed to be the most different in comparison to other $v i p 3 A a$ genes. They seem to be more similar to $v i p 3 A b, d$, e, f, g and h, and sequence data revealed that they were not $v i p 3 A b$ genes either as suggested by $D d e I$ restriction analysis. The restriction analysis for identification of vip3A genes was originally designed as a 2 -step process. As was

Table 3. The $v i p 3 A$ gene content of exotic B. thuringiensis strains

B. thuringiensis strain	Source	Gene subclass	B. thuringiensis strain	Source	Gene subclass
aizawai HD-133	USDA	vip 3 Aa	kenyae HD-5	USDA	-
aizawai HD-137	USDA	vip 3 Aa	kim 4BP1	BGSC	-
aizawai T07001	Pasteur	vip3Aa	konkukian 4AH1	BGSC	-
alesti HD-4	USDA	vip 3 Aa	kumamotoensis 4W1	BGSC	-
argentinensis 4BV1	BGSC	-	kurstaki HD-1	USDA	vip 3 Aa
asturiensis 4BQ1	BGSC	-	kurstaki HD-73	USDA	-
azorensis 4CB1	BGSC	-	kyushuensis 4U1	BGSC	-
balearica 4BK1	BGSC	-	leesis 4AK1	BGSC	-
cameroun 4AF1	BGSC	-	medellin B-23135	USDA	-
canadensis 4H2	BGSC	-	monterrey 4AJ1	BGSC	-
chanpaisis 4BH1	BGSC	-	morrisoni T08003	Pasteur	-
colmeri 4X1	BGSC	-	morrisoni 4AB1	BGSC	-
dakota 4R1	BGSC	-	morrisoni 4K1	BGSC	-
darmstadiensis 4M1	BGSC	-	morrisoni 4K3	BGSC	-
darmstadiensis 4M2	BGSC	-	тији 4BL1	BGSC	-
entomocidus HD-110	USDA	vip3Aa37	navarrensis 4BM1	BGSC	-
entomocidus 4I1	BGSC	-	neoleonensis 4BE1	BGSC	-
entomocidus 4I3	BGSC	-	nigeriensis 4AZ1	BGSC	-
finitimus HD-3	USDA	-	novosibirsk 4AX1	BGSC	-
fukuokaensis 4AP1	BGSC	-	ostriniae 4Z1	BGSC	-
galleriae T05001	Pasteur	vip3Aa	oswaldocruzi 4AS1	BGSC	-
galleriae HD-155	USDA	vip3Aa	pakistani 4P1	BGSC	-
graciosensis 4CD1	BGSC	-	palmanyolensis 4BS1	BGSC	-
higo 4AU1	BGSC	-	pingluonsis 4BX1	BGSC	-
huazhongensis 4BD1	BGSC	-	pirenaica 4BU1	BGSC	-
iberica 4BW1	BGSC	-	poloniensis 4BR1	BGSC	-
indiana 4S2	BGSC	-	pulsiensis 4CC1	BGSC	-
israelensis HD-500	USDA	-	rongseni 4BT1	BGSC	-
israelensis HD-567	USDA	-	roskildiensis 4BG1	BGSC	-
israelensis HD-522	UNAM	-	seoulensis 4AQ1	BGSC	-
israelensis IPS-82	CINVESTAV	-	shanongiensis 4AN1	USDA	-
israelensis T014001	Pasteur	-	silo 4AG1	BGSC	-
japonensis 4AT1	BGSC	vip3Aa40	sylvestriensis 4BY1	BGSC	-
jegathesan B-23141	BGSC	-	sotto HD-6	USDA	-
jinghongiensis 4AR1	BGSC	-	sooncheon 4BB1	BGSC	-
tenebrionis DSM2803	CINVESTAV	-	sumiyoshiensis 4AO1	BGSC	vip3Aa41
thompsoni HD-542	USDA	vip3Aa	vazensis 4CE1	BGSC	-
thuringiensis HD-2	USDA		wratislaviensis 4BJ1	BGSC	-
thuringiensis T01001	Pasteur	-	wuhanensis 4T1	BGSC	vip 3 Aa
thuringiensis T01026	Pasteur	-	xiaguangiensis 4BN1	BGSC	-
tochigiensis 4Y1	BGSC	-	yosoo 4CA1	BGSC	-
tohukensis 4V1	BGSC	-	yunnanensis 4AM1	BGSC	-
tolworthi HD-125	USDA	vip3Aa	zhaodongensis 4BZ1	BGSC	-
toumanoffi 4N1	BGSC	-			

- = No positive PCR signal obtained with primers DS3AF/DS3AR.
shown, the PCR product is first digested with DdeI and if necessary with AluI (table 2). Based on these sequences and using in silico restriction analysis with FokI as a second step first, we could experimentally differentiate later $v i p 3 A a 40-41$ genes from $v i p 3 A b$ genes.

The nucleotide sequence of vip3Aa40 from serovar japonensis 4AT1 and vip3Aa41 from serovar sumiyoshiensis 4AO1 shared the highest similarity (98 and 97\%) with the vip3Aa19 (DQ241674) gene. The deduced Vip3Aa40 protein sequence was compared with other

Table 4. The differences of amino acid residues among Vip3Aa40 and 41 compared to Vip3Aa19

Protein	Amino acid residue														
	3	9	16	244	355	396	442	470	498	543	546	547	553	571	584
Vip3Aa40	K	S	F	F	H	M	S	K	E	N	G	E	I	R	F
Vip3Aa41	M	S	L	L	H	M	S	K	E	N	G	E	I	R	S
Vip3Aa19	K	N	F	F	Y	T	F	N	G	S	E	D	K	K	F
	611	627	663	681	685	686	695	704	706	722	726	755	760	761	780
Vip3Aa40	N	E	T	V	I	R	N	G	N	N	T	I	L	L	L
Vip3Aa41	N	E	T	V	I	R	Y	G	N	N	T	1	G	G	L
Vip3Aa19	D	K	I	T	T	S	N	R	I	Y	S	M	F	E	I

Vip3 proteins, and showed the highest sequence similarity shared with Vip3Aa41 (99\%). They differed at 5 amino acid residues: Met (3) for Lys, Leu (16) for Phe, Leu (244) for Phe, Ser (584) for Phe and Tyr (695) for Asn. Both sequences shared high similarity with Vip3Aa19 (97 and 96%, respectively). There were different amino acid residues between these 3 deduced proteins (table 4).

Some previous reports have shown that changes in amino acid residues in Vip3A proteins could affect their insecticidal activity [Doss et al., 2002; Estruch et al., 1996; Liu et al., 2007; Selvapandiyan et al., 2001]. Some of the differences in 19 residues between Vip3Aa19 and Vip3Aall were important for lack of toxicity of Vip3Aa19 against Plutella xylostella [Liu et al., 2007]. Moreover, differences in 2 residues between Vip3Aa9 and Vip3Aa1 proteins, and in only 1 residue between Vip3Aa9 and Vip3Aa10 proteins, showed to be involved in the ineffectiveness of Vip3Aa9 protein against Agrotis ipsilon [Doss et al., 2002; Estruch et al., 1996; Selvapandiyan et al., 2001]. Further studies are needed to express vip3Aa40 and vip3Aa41 genes, and to determine toxicity of their products against certain lepidopteran pest that have shown to be insensitive or poorly sensitive to other known Vip3A proteins.

The vip $3 A$ gene content of B. thuringiensis strains is listed in table 3 . We did not find any strain that harbored vip $3 A b$, vip $3 A d$, vip $3 A e$, vip $3 A f$, vip $3 A g$, vip $3 A h$ or combinations between any one of this class of genes.

It is known that $v i p 3 A a$ genes are widely distributed among B. thuringiensis [Bhalla et al., 2005; HernándezRodriguez et al., 2009; Yu et al., 2011]. To the best of our knowledge, just one study has reported the detection of $v i p 3 A$ genes of strains representing different serovars of standard B. thuringiensis [Bhalla et al., 2005]. These in-
vestigators analyzed 24 B. thuringiensis strains obtained from Bacillus Genetic Stock Center (USA).

The B. thuringiensis serovar thompsoni HD-542 was reported to lack a vip gene [Bhalla et al., 2005], but here we showed that it harbors a $v i p 3 A a$ gene. This discrepancy could be due to the primers used in that study, which were designed based on the nucleotide sequence of $v i p 3 A a 1$ only and did not recognize the vip3Aa gene of this strain. In contrast, the serovar pakistani HD-395 $(=4 \mathrm{P} 1)$ strain was reported to contain a vip3A gene [Bhalla et al., 2005], but here we could not confirm the presence of this class of genes in this strain.

We identified vip $3 A a$ genes in serovar kurstaki HD-1, alesti HD-4 and wuhanensis HD-525 strains. In that previous work, these B. thuringiensis strains produced PCR products that detected a vip3 gene [Bhalla et al., 2005].

A strain from the mosquitocidal serovar israelensis was reported to contain a vip $3 A$ gene [Bhalla et al., 2005], but here we showed the lack of this class of genes in strains belonging to this serovar and in others with recognized toxicity for mosquitoes such as kyushuensis, medellin, morrisoni, neoleonensis and jegathesan serovars.

The differences between Vip3Aa40 and 41 and the Vip3A proteins are spread throughout the sequence, but the C-terminal end of Vip3A40 and 41 is highly conserved in comparison with the other Vip3Aa proteins and has been reported to be crucial for resistance to proteases [Estruch et al., 1996]. On the other hand, the N-terminal end of Vip3A40 and 41 is highly conserved, but in comparison with other non-Vip3Aa-type proteins.

The N-terminus of the putative signal sequence of Vip3Aa40 and 41 is, with the exception of some amino acids, identical to that of Vip3A toxins except for other

Fig. 2. Alignment of the Vip3Aa40 and 41 sequences with the sequence of a representative of each subclass of Vip3A toxins. Asterisks below the sequences indicate conserved amino acids. The black boxes indicate regions described in the text. The black box labeled S indicates the signal peptide sequence, the one labeled P indicates the proteolytic processing sites characterized in Vip3Aa and the box labeled I indicates the beginning of the $66-\mathrm{kDa}$ insecticidal fragment characterized in Vip3Aa.

S
Vip3Aa1 1 MNKNNTKLSIRALPSFIDYFNGIYGFAIGIKDI RNMIFKIDIGGDLTLDEILKNQQLLND 60 Vip3Aa19 Vip3Aa40 Vip3Aa41 Vip3Af Vip3Ae Vip3Ag Vip3Ab Vip3Ad Vip3Ah

P I

Vip3Aa1 181 EKFEELTFATET SSKVKR GSPADILEELTELTELAKSVIKNDVDGFEFYLNTFHDVMVG 240 Vip3Aa19 181 EKFEELTFATET SSKVKK GSPADIL ELTELTELAKSVIKNDVDGFEFYLNTFHDVMVG 240 Vip3Aa40 181 EKFEELTFATETTLKVKKA SSPADIL \mathcal{E} ELTELTELAKSVIKNDVDGFEFYLNTFHDVMVG 240 Vip3Aa41 181 EKFEELTFATEITLKVKKASSPADIL EELTELTELAKSVIKNDVDGFEFYLNIFHDVMVG 240 Vip3Af 181 EKFEELTFATEITLKVKRASSPADIL ELTELTELAKSVIKNDVDGFEFYLNTFHDVMVG 240 Vip3Ae 181 EKFEELTFATEITLKVKE GSPADIL EELTELTELAKSVIKNEVDGFEFYLNTFHDVMVG 240 Vip3Ag 181 EKFEDLTFATETILKVKKR SSPADIL ELTELTELAKSVIKNDVDGFEFYLNTFHDVMVG 240 Vip3Ab 181 EKFEELTFATE1TLKVKK SSPADIL EELTELTELAKSVTKNDVDGFEFYLNTFHDVMVG 240 Vip3Ad 181 EKFEELTFATETILKVKK SPPADIL ELTELTELAKSVIKNDVDGFEFYLNTFHDVMVG 240

P
Vip3Aa1 421 VITKIDFTKKMKTLRYEVIANFYDSSTGE DLNKKKVESS ${ }^{2}$ AEYRTLSANDDGVYMPLGV 480 Vip3Aa19 421 VITKIDFTKKMKTLRYEVIANFYDSSTGE DLNKKKVESS \ddagger AEYRTLSANDDGVYMPLGV 480 Vip3Aa40 421 VITKIDFTKKMKTLRYEVIANSYDSSTGE DLNKKKVESS 1 AEYRTLSAKDDGVYMPLGV 480 Vip3Aa41 421 VITKIDFTKKMKTLRYEVIANSYDSSTGE: DLNKKKVESSIAEYRTLSAKDDGVYMPLGV 480 Vip3Af 421 VITKIDFTKKMKILRYEVTANFYDSSTGE DLNKKKVESS \ddagger AEYRTLSANDDGVYMPLGV 480 Vip3Ae 421 VITKLTFTKKMNSLRYEATANFYDSSTGM DLNKTKVESS \ddagger AEYSRLSASNDGVYMPLGL 480 vip3Ag 421 VITKITFTKKMNSLRYEATANFYDSSIGDJDLNKIKVESSIAEYSTLSASTDGVYTPLGI 480 Vip3Ab 421 VITKIDFTKKMKTLRYEVIANSYDSSTGE DLNKKKVESS AEYRTLSANNDGVYMPLGV 480 Vip3Ad 421 VITKIAFTKKMNSLRYEATANFYDSSTGDJ DLNKTKVESS \ddagger AEYSMLKASDDEVYMPLGL 480 Vip3Ah 421 VITEIIFTKKKNSLRYEVIANYYEFSSGD. DLNKKLVKSSSIAEYSTLSVSNDAIYMPLGV 480

Vip3Aa and Vip3Ah sequences (fig. 2). Although different, these sequences have the high asparagine content that characterizes the N -terminal end of signal sequences in Bacillus [Pugsley, 1993; Rang et al., 2005]. The last 17 amino acids of the signal sequence are identical in all Vip3A sequences (fig. 2). The complete putative signal sequences of Vip3Aa40 and 41 are therefore MNKNNTKLSARALPSFIDYFNGIYGFATGIKDI and MNMNNTKLSARALPSLIDYFNGIYGFATGIKDI, respectively.

It is known that Vip3Aa proteins are processed at two lysine-rich sites [Estruch et al., 1996, 1998]. The first processing site is located in Vip3Aa at Lys 198 in the sequence 192-SSKVKK-199 (fig. 2). This region is significantly different in Vip3Aa40 and 41, in which it is replaced by the sequence 192 -TLKVKK-199 being also highly similar to other non-Vip3Aa-type proteins (fig. 2). The $66-\mathrm{kDa}$ insecticidal moiety of Vip3Aa starts at Gly 200 and contains the sequence 199-GSPADIL-207 [Estruch et al., 1998]. The corresponding region in Vip3Aa40 and 41 proteins
is 199-SSPADIL-207 (fig. 2). The substitution of Ser (200) for Gly is also conserved in other non-Vip3Aa-type proteins. The second processing site in Vip3Aa is located at amino acid 455 and results in the release of a $33-\mathrm{kDa}$ fragment ranging from residue 200 to residue 455 [Estruch et al., 1998]. In Vip3Aa proteins, the sequence of this second processing site is DLNKKKVESS, DLNKTKVESS or DLNKKLVKSS (fig. 2). In this case, Vip3Aa40 and 41 contains the sequence DLNKKKVESS which is present in most of the Vip3A proteins.

Vip3Aa40 and 41 contain the same 3 Cys residues in the proteins as most of the Vip3A proteins, except Vip3Aa14 (just 2) and Vip3Ad, g and h (the 3 Cys plus another at the C-terminus). It is likely that some of these cysteines are involved in disulfide bridges and may play a role in the stability of Vip3A proteins.

PCR-RFLP is important to identify the existence of known insecticidal genes and detect novel ones in B. thuringiensis strains. Novel insecticidal genes were dis-
covered by this method, e.g. the novel cryliel from B. thuringiensis isolate Btc007 [Song et al., 2003]. Even though a PCR-RFLP method can be considered old, as shown through the course of this study, we conclude that it is still useful for the identification of novel genes. This is the first study where variants of the same subclass of insecticidal genes could be distinguished. As seen in table 2, vip3Aa37, vip3Aa40-41 and the rest of vip3Aa genes could be differentiated using $D d e I$ restriction analysis.

Experimental Procedures

B. thuringiensis Strains

Eighty-seven B. thuringiensis strains were kindly provided by different institutions around the world (table 3).

Detection of vip3A Genes

Novel primers for the specific detection of $v i p 3 A$ genes were designed following a previously described methodology [Sauka et al., 2006, 2007]. Primers used for amplification of a $608-\mathrm{bp}$ DNA fragment of vip $3 A a$, vip $3 A b$, vip $3 A d$, vip $3 A e$, vip $3 A f$, vip $1 A g$ and vip1Ah genes were as follows: DS3AF (forward; 5^{\prime}-GTG AAA ACA AGT GGC AGT G-3') and DS3AR (reverse; 5^{\prime}-TCC GCT TCA CTT GAT TCT ACT-3').

The DNA templates for PCR were obtained as previously described [Sauka et al., 2006]. Five microliters of supernatant was used in each reaction. All the reactions were performed with a final volume of $25 \mu \mathrm{l}$ containing final concentrations of 50 mM $\mathrm{KCl}, 2.0 \mathrm{~mm} \mathrm{MgCl} 2,10 \mathrm{~mm}$ Tris- $\mathrm{HCl}(\mathrm{pH} 8.3$), $200 \mu \mathrm{M}$ of each deoxynucleoside triphosphate (dATP, dTTP, dGTP, and dCTP), 16 pmol of each primer, and 2.5 U of Taq polymerase (Invitrogen). The PCR amplification consisted of DNA denaturation at $94^{\circ} \mathrm{C}$ for 2 min followed by 25 cycles of amplification with a thermocycler (Eppendorf Mastercycler gradient). Each cycle consisted of a denaturation step at $94^{\circ} \mathrm{C}$ for 1 min , an annealing step at $49^{\circ} \mathrm{C}$ for 45 s , and a chain elongation step at $72^{\circ} \mathrm{C}$ for 45 s . The final elongation step was extended for an additional 5 min . Finally, $10 \mu \mathrm{l}$ PCR product was analyzed by 1.5% agarose gel electrophoresis.

Identification of vip3A Genes

For the identification of different $v i p 3 A$ genes, 10μ l of positive PCR product was digested with 2.5 U DdeI according to manufacturer's instructions (Promega, Madison, Wisc., USA), analyzed by 12% polyacrylamide gel electrophoresis and stained with ethidium bromide. If necessary, samples were digested with 2.5 U FokI or AluI. Expected restriction fragment sizes of known and novel vip $3 A$ genes were determined by in silico digestion of their available sequences on the B. thuringiensis toxin nomenclature website (http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/ $\mathrm{Bt} /$) with the software 'RestrictionMapper' (http://www.restrictionmapper.org/) (table 2).

Amplification, Cloning and Nucleotide Sequencing of

 Full-Length vip3A GenesPrimers used for the amplification of the whole open reading of vip3A genes (table 1) were designed following a previously described methodology [Sauka et al., 2006, 2007]. The forward primer is class specific and was designed to begin at the ATG initiation codon. The reverse primers were designed from sequences at the 3 ' end of all vip $3 A$ genes. Manual 'hot start' PCR was performed with a final volume of $50 \mu \mathrm{l}$ containing $50 \mathrm{mM} \mathrm{KCl}, 20$ mm Tris- HCl (pH 8.4), 200 mm of each deoxynucleoside triphosphate (dATP, dTTP, dGTP, and dCTP), 1 mm of each primer and 2 mm MgCl 2 . The PCR amplification consisted of an initial denaturation step of 2 min at $94^{\circ} \mathrm{C}$, followed by 29 cycles of 5 s at $95^{\circ} \mathrm{C}$, 20 s at $47^{\circ} \mathrm{C}, 4 \mathrm{~min}$ at $68^{\circ} \mathrm{C}$ and a final elongation step of 5 min at $68^{\circ} \mathrm{C}$ in a thermocycler (Eppendorf Mastercycler gradient). Five units of Taq DNA polymerase (Invitrogen) were added after the first denaturation step. Finally, the PCR product was analyzed by 1.0% agarose gel electrophoresis stained with ethidium bromide. The PCR product of 4 B. thuringiensis strains were purified from the agarose gel matrix using Wizard SV Gel and PCR Clean-Up System (Promega), cloned in pGEM-T Easy vector (Promega) and then transformed into competent Escherichia coli JM109 strain following the manufacturer protocols. Fifteen white colonies were selected on X-gal IPTG containing selective LB agar plates. Verifying whether the clones contained inserts was accomplished by PCR of recombinant plasmid DNA using vector primer SP6 and T7. Afterwards, the vip $3 A$ gene of each clone was identified by the PCR-RFLP method described above. Three clones harboring vip3A genes were sequenced in both directions by primer walking using vector (SP6 and T7) and specific primers detailed in table 1 in the 'Unidad de Genómica' (INTA, Argentina).

Sequence Comparisons

These vip3A nucleotide sequences and their translations into amino acid sequences (with the ExPASy translate tool; http:// www.expasy.org/tools/dna.html) were aligned separately with ClustalW [Thompson et al., 1994]. The deposited sequences in GenBank of all vip3A genes were accessed through the B. thuringiensis toxin nomenclature website and used as references.

Nucleotide Sequence Accession Numbers

The DNA nucleotide sequences of $v i p 3 A$ genes from B. thuringiensis serovar entomocidus HD-110, japonensis 4AT1, sumiyoshiensis 4AO1 and kurstaki HD-1 have been deposited in the GenBank databases (http://www.ncbi.nlm.nih.gov) under the accession numbers HM132041, HM132042, HM132043 and GU073128, respectively.

Acknowledgements

Diego H. Sauka holds a research career award from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

References

Asokan R, Swamy H, Arora D: Screening, diversity and partial sequence comparison of vegetative insecticidal protein (vip3A) genes in the local isolates of Bacillus thuringiensis Berliner. Curr Microbiol 2012;64:365-370.
Beard C, Court L, Boets A, Mourant R, Van Rie J, Akhurst R: Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection. Curr Microbiol 2008;57:195-199.
Bhalla R, Dalal M, Panguluri S, Jagadish B, Mandaokar A, Singh A, Kumar P: Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 2005; 243:467-472.
Doss V, Kumar K, Jayakumar R, Sekar V: Cloning and expression of the vegetative insecticidal protein (vip3V) gene of Bacillus thuringiensis in Escherichia coli. Protein Expr Purif 2002;26:82-88.
Estruch J, Koziel M, Yu C, Desai N, Nye G, Warren G: Plant pest control. Patent WO 9844137. 1998.

Estruch J, Warren G, Mullins M, Nye G, Craig J, Koziel M: Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 1996;93: 5389-5394.
Hernández-Rodríguez C, Boets A, Van Rie J, Ferré J: Screening and identification of vip genes in Bacillus thuringiensis strains. J Appl Microbiol 2009;107:219-225.

Lee M, Miles P, Chen J: Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem Biophys Res Commun 2006;339:1043-1047.
Lee M, Walters F, Hart H, Palekar N, Chen J: The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cryl Ab delta-endotoxin. Appl Environ Microbiol 2003;69:4648-4657.
Liu J, Song F, Zhang J, Liu R, He K, Tan J, Huang D: Identification of vip3A-type genes from Bacillus thuringiensis strains and characterization of a novel vip3A-type gene. Lett Appl Microbiol 2007;45:432-438.
Pugsley A: The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 1993;57:50-108.
Rang C, Gil P, Neisner N, Van Rie J, Frutos R: Novel Vip3-related protein from Bacillus thuringiensis. Appl Environ Microbiol 2005; 71:6276-6281.
Rice W: Specific primers for the detection of vip3A insecticidal gene within a Bacillus thuringiensis collection. Lett Appl Microbiol 1999;28:378-382.
Sauka D, Amadio A, Zandomeni R, Benintende G: Strategy for amplification and sequencing of insecticidal cry1A genes from Bacillus thuringiensis. Antonie Van Leeuwenhoek 2007;91:423-430.
Sauka D, Benintende G: Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests. Rev Argent Microbiol 2008;40:124-140.

Sauka D, Cozzi J, Benintende G: Detection and identification of cry1I genes in Bacillus thuringiensis using polymerase chain reaction and restriction length polymorphism analysis. Curr Microbiol 2006;52:60-63.
Selvapandiyan A, Arora N, Rajagopal R, Jalali S, Venkatesan T, Singh S, Bhatnagar R: Toxicity analysis of N - and C-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis. Appl Environ Microbiol 2001; 67:5855-5858.
Song F, Zhang J, Gu A, Wu Y, Han L, He K, Chen Z, Yao J, Hu Y, Li G, Huang D: Identification of crylI-type genes from Bacillus thuringiensis strains and characterization of a novel crylI-type gene. Appl Environ Microbiol 2003;69:5207-5211.
Thompson J, Higgins D, Gibson T: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-4680.
Warren G: Vegetative insecticidal proteins: novel proteins for control of corn pests; in Carozzi N , Koziel M (eds): Advances in Insect Control: The Role of Transgenic Plants. London, Taylor and Francis Ltd, 1997, pp 109121.

Yu X, Zheng A, Zhu J, Wang S, Wang L, Deng Q, Li S, Liu H, Li P: Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China. Curr Microbiol 2011;62:752-757.

[^0]: Diego H. Sauka
 Insumos Bacterianos, Instituto de Microbiología y Zoología Agrícola (IMYZA) Instituto Nacional de Tecnología Agropecuaria (INTA)
 De los Reseros y Las Cabañas s/nro. C.C. 25, Castelar 1712 (Argentina)
 E-Mail dsauka@cnia.inta.gov.ar

