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Abstract Laboratory exposure experiments were per-

formed on the marine coastal zooplankton species Pseu-

dodiaptomus marinus—a keystone species of vast Atlantic

and Pacific marine ecosystems, tracing the accumulation of

three polycyclic aromatic hydrocarbons (PAHs): phenan-

threne, anthracene and pyrene. The experiment was

designed to study the bioconcentration of PAHs in phyto-

plankton (Rhodomonas baltica) and accumulation in

copepods (P. marinus), through two different pathways:

food and water uptake. For this purpose, water and

organism subsamples were collected, ASE (accelerated

solvent extraction) extracted, and analyzed for PAHs by

GC/MS technique. As a result, experimental bioconcen-

tration (BCF) and bioaccumulation (BAF) factors which

showed a significant correlation with the octanol–water

partition coefficient (Kow) were presented for P. marinus.

The active feeding route of exposure showed no significant

differences versus passive uptake, highlighting the impor-

tance of dietary exposure as a major pathway for POPs

accumulation in zooplankton; in particular for those which

cannot be metabolized.

Keywords Copepod � Pseudodiaptomus marinus �
Phenanthrene � Fluoranthene � Pyrene � Accumulation �
Organic compounds

Introduction

Polycyclic aromatic hydrocarbons (PAHs), are currently

considered as one of the major groups of environmental

contaminants, but unlike other harmful organic chemicals

that have been banned or regulated in terms of their dis-

charge, PAHs continue to be released into the environment

due to their widespread formation after fossil fuel burning

and leakage during petroleum recovery, transportation and

use (McCready et al. 2006; Riccardi et al. 2013; Zhu et al.

2005; Bajt 2014). In fact, their continuous release is caused

by the ongoing utilization of fossil fuels on a global basis

(Wang et al. 1999; Mandalakis et al. 2005). In addition, the

present fossil fuel industry expansion poses an increasing

risk of accidental spills to the marine environment, where

the impact on native organisms has only rarely studied

(Jensen et al. 2012).

As a general environmental pathway, PAHs entering the

water system can firstly be accumulated in fine-grained

sediments and suspended particles; they remobilize later in

the seawater and become bioavailable to local organisms

(Wetzel and Van Vleet 2004). While higher molecular

weight PAHs are relatively immobile because of their large
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molecular volumes and their extremely low volatility and

solubility, the lower molecular weight unsubstituted PAH

compounds, containing 2–3 rings such as naphthalenes,

fluorenes, phenanthrenes, and anthracenes, provide a sig-

nificant acute toxicity to some organisms.

Transport and partitioning of PAHs in the environment

are determined to a large extent by physicochemical

properties such as water solubility, vapor pressure, Henry’s

law constant, octanol–water partition coefficient (Kow), and

organic carbon partition coefficient (Koc). As for the air/

water transition, Henry’s law constant provides the parti-

tion coefficient that expresses the ratio of the concentration

of a chemical in air and water at equilibrium and is used as

an indicator of its potential to volatilize. In general, PAHs

have low water solubilities. As for the air/sediment tran-

sition, Koc indicates its potential to bind to organic carbon

in soil and sediment, while Kow is used to estimate the

potential for an organic chemical to move from water into

lipid and is frequently correlated with the bioconcentra-

tion/bioaccumulation in aquatic organisms (Barron 1990;

Mackay 1982; Hamelink et al. 1994). With regard to this

last issue, there is still a gap in the current knowledge

about the bioaccumulation of PAHs at lower trophic levels

(Meador et al. 1995). The bioaccumulation of PAHs by

zooplankton is little understood as yet. For instance, the

response of planktonic communities to petroleum hydro-

carbons and other POPs have been carried out in the field

(Mackie and Adron 1978; Middleditch et al. 1979; Ser-

razanetti et al. 1991; Kowalewska and Konat 1997, Cail-

leaud et al. 2007) and at experimental conditions (Skjoldal

et al. 1982; Stange and Swackhamer 1994; Sibley et al.

2004; Gerofke et al. 2005 -PCBs and other POPs; Mag-

nusson and Tiselius 2010 -PCBs/PBDE; Zhang et al. 2011-

dioxins). Concerning the interaction between PAHs and

copepods, Cailleaud et al. (2009) studied the uptake and

elimination of some of these compounds in Eurytemora

affinis under laboratory controlled conditions, while Lotufo

(1998) performed PAHs uptake and elimination experi-

ments with marine benthic copepods. In general, the scarce

literature on this issue considers that the bioaccumulation

of hydrophobic organic compounds in marine zooplankton

occurs predominantly by an uptake from water, leaving a

marginal role for uptake from diet. The present study tackles

these two major contaminant pathways in marine copepods

by investigating the ability of the marine copepod Pseudo-

diaptomus marinus to bioaccumulate a mixture of PAHs,

namely phenanthrene (PHE), fluoranthene (FLA) and pyrene

(PYR), from a water culture medium, either exposed through

water (dissolved PAHs) or through contaminated food (al-

gae). Despite the technical challenges inherent to set a

marine culture, P. marinus was chosen because of its ubiq-

uitous occurrence in several oceans (Pacific, Atlantic,

Mediterranean and North Sea) (Sabia et al. 2014, 2015).

Here, it has a key position in the food web and acts in the

removal and transfer of contaminants within food webs.

Chemicals

A PAHs solution was prepared under laboratory conditions

simulating the real PAH levels described for the Seine

estuary (Cailleaud et al. 2007), including three different

major PAH compounds that were found in the Atlantic

Ocean: phenantrene, fluoranthene and pyrene (Sigma-

Aldrich). The PAHs were dissolved in acetone that was

allowed to evaporate for 30 min in experimental bottles

before adding seawater. Deuterated internal standards,

phenanthrene-d10 and pyrene-d10 were purchased from

Protochem. HPLC grade solvents (hexane, dichlor-

omethane, methanol and acetonitrile) were purchased from

Dislab (Lens, France). No significant amount of target

Fig. 1 Experimental set up of

the different PAHs exposure

treatments, including the

generation of contaminated

algae to feed the copepod

Pseudodiaptomus marinus

during the experiments
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compounds could be detected in procedural blanks. Ultra-

pure water (Milli-Q) was produced by a Millipore appa-

ratus with 18.2 M9X/cm resistivity. Merck silica gel 60

(70–230 mesh ASTM) activated at 450 �C was heated at

120 �C for 12 h prior to use. Glassware was washed with

detergent (Decon), rinsed with ultrapure water and acetone

and was dried at 120 �C prior to use.

Copepod cultivation

Pseudodiaptomus marinus is a typical estuarine coastal

copepod, living only in shallow inshore waters, often highly

eutrophicated and is reported as herbivorous and detritivo-

rous (Uye and Kasahara 1983). This species is known to live

near the bottom during the day (Valbonesi and Harada 1980;

Fleminger and Kramer 1988; Liang and Uye 1997), feeding

on detritus through the creation of feeding currents (Uye and

Kasahara 1983), while at night, it moves along the water

column, likely exploiting different food sources (Valbonesi

and Harada 1980; Uye and Kasahara 1983). The feeding

behavior is quite similar for both adult sexes that exhibit

different swimming behaviors (Sabia et al. 2014), but is

different between the copepodite and naupliar stages (Uye

and Kasahara 1983). Pseudodiaptomus marinus is now

commonly found in several Pacific and Indian bays (e.g.,

Grindley and Grice 1969; Fleminger and Kramer 1988;

Islam and Tanaka 2009), and recently, its presence has been

recorded in the North Sea (Brylinski et al. 2012) as well as in

the Mediterranean Sea (Sabia et al. 2014, 2015).

For the purpose of this study, P. marinus was cultured in

the Marine Station of Wimereux—Laboratory of

Oceanology and Geosciences (UMR 8187 LOG), France,

where this strain is maintained since 2011. The copepods

were grown in non-food limiting conditions in constant and

optimal temperature and salinity. The protocol of main-

taining the copepods during several generations was

slightly modified from those used for the estuarine copepod

Eurytemora affinis (Souissi et al. 2010, 2015): copepod

strains were maintained in 2 L beakers in duplicate and

maintained in an incubator at constant temperature of

18 �C and a photoperiod of 12L:12D cycle (Souissi et al.

2015). In this occasion, copepods were fed every two days

using mainly Rhodomonas sp species, (Fig. 1) but P.

marinus can feed and develop very well if other microalgae

are used (e.g. Isochrysis galbana, Pavlova lutheri and

Porphyridium cruentum). The protocol of feeding cope-

pods in 2 L beakers is detailed in Souissi et al. (2010). The

sea water obtained in the Marine Station of Wimereux (see

Table 1 in Tlili et al. 2016) was used after filtration and UV

treatment to renew the strains every week. When the

density becomes high after visual check the population was

split into two beakers or transferred to a larger beaker of

5 L. For our experiments we used transparent Nalgene

bottles of 10 and 20 L to upscale copepod production.

Generally, 4–6 weeks of culture were needed to transfer

copepods from small volume (2 L) up to 20 L. Then,

copepods can be grown during several weeks in 20 L

bottles but if the experiment required higher number of

copepods, Plexiglass tanks of 40 L were also used occa-

sionally to produce copepods. In all volumes, copepods

were fed excess of microalgae every 2 days. The water of

copepod cultures was changed regularly to avoid any

accumulation of organic matter and the increase of levels

of ammonia that can be toxic to copepods. The individuals

used for all the present experimental settings belonged to

the late copepodite and adult stages.

Generation of PAH contaminated algae

A commercial Rhodomonas baltica strain was cultured at n

phase at the Marine Station of Wimereux-France to obtain

PAHs free algae. The axenic stock cultures were routinely

maintained at two temperatures, 18 and 25 �C, at 12:12 h

light and dark (L:D) cycle in a light- and temperature-

controlled incubator for more than three dilutions in a

semicontinuous culture mode during the log phase of

growth in filtered, aged seawater. The strain of R. baltica

was maintained in the laboratory in 250 ml glass Erlen-

meyer flasks and was shaken by hand daily. The culture

was kept in an incubator (SANYO model MLR) at 18 �C
and at a photoperiod of 12L:12D cycle under a fluorescent

light with an intensity of 2500 lx. Batch cultures in 2–6 L

flasks were used to grow the microalgae used as copepod

food during the exposure experiments. The culture flasks

were filled with autoclaved seawater (salinity 33 psu) and

enriched with Conway medium. Cultures were aerated with

sterile air and incubated in the same condition as the strain

inoculum. Then, the experimental incubation with PAHs

(PHE, FLA and PYR) was conducted by transferring cells

during the log-phase into the incubation bottles to ensure

subsequent exponential growth. Cell density was main-

tained by shaking daily to ensure optically favorable con-

ditions. Subsamples for cell counts were fixed using a 5 %

formaldehyde solution and stored in the dark at 4 �C until

further analysis (Iwasawa et al. 2009). Cell counting was

performed in triplicate under an inverted microscope. Cell

density was determined using a hemocytometer (Erma,

depth 0.1 mm, Tokyo, Japan) under a compound micro-

scope (Olympus, IMT-2, Tokyo, Japan) at 1009 magnifi-

cations using the method that was previously described by

Guillard and Sieracki (2005). PAHs were spiked to the

media at the start of the incubation period and algae were

fed each 2 days with Conway medium and counted each

day in triplicate (Fig. 1). Water subsamples were collected from

each beaker immediately before the addition of R. baltica to

analyze both dissolved organic carbon and the initial
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(To) PAHs concentration. Subsequently, the water and

algae subsamples were sampled during the exponential

phase, from the 5th to the 9th day of the culture. From each

bottle, an average of 750 mL of water containing the algae

were filtered through a precombusted GF/F filter (cut off

size 0.7 um). Alternatively, algae (filters) and filtered

medium were spiked with the PAHs surrogate standards,

extracted (ASE and L/L extraction) and analyzed for PAHs

by GC/MS.

After Chan et al. (2006) the PAH percentages in the

medium and cells were calculated as follows:

% in medium = amount remaining in the medium/amountð
of PAHs addedÞ� 100%

% in cells ¼ amount accumulated in the cells/amountð
of PAHs addedÞ � 100 %

PAHs contaminated algae used as food were sampled

and filtered at the end of the log-phase, when the PAHs

adsorption to the algae was quantitatively assured and well

defined (Fig. 2).

Experimental setting for copepod exposure

These set of experiments were designed to study the PAHs

bioaccumulation by copepods, either through the media or

contaminated algal cells during the normal exponential

stage of a culture (Fig. 1). Experiments were performed as

static exposures with the organisms kept in 5 L beakers.

Copepods were stored at the optimal species temperature at

dimmed light and aeration of the volume was provided

through gentle air bubbling. The animals where fed twice

each 2 days (three times during the exposure) and the

exposure phase lasted for 5 days (120 h). Then, duplicates

of incubation bottles were prepared using 5 L glass bottles

and three conditions were set-up: control, PAH exposure

through the medium and PAH exposure through the

administration of contaminated food (algae). Copepods

were fed with either pollutant free axenic algae (‘‘dissolved

PAHs’’ condition) or PAHs contaminated algae (‘‘PAHs

contaminated food’’ condition). Water and copepods sub-

samples were collected from each beaker immediately

before the addition of the animals to investigate both DOC

and the initial (To) PAHs concentration. Subsequently,

medium and copepods were sampled at the end of the

exposure period (Tf, 5 days). Copepods were filtered

through a precombusted GF/F filter (cutoff size 0.7 lm),

after that they were spiked with PAHs subrogate standards,

ASE extracted (Accelerated Solvent Extraction) and ana-

lyzed for PAHs by GC/MS.

Extraction procedures

After the experimental phase, each sample was kept in

clean glass bottles, capped with a Teflon-lined lid. Samples

were rapidly filtered using 0.7 lm Whatman GF/C glass

microfiber filters and both particulate and dissolved phases

were kept. While the filtered water was extracted using

liquid–liquid extraction (LLE) technique, the algae

retained in the filters were extracted using accelerated

solvent extraction (ASE 200, Dionex Corp., USA). The

applications of LLE in water and other liquid matrixes have

been widely accepted in standard methods for various

classes of organic contaminants such as PAHs, pesticides,

and PCBs analysis (Barceló 1993; USEPA 2007).

Regarding ASE, also known as pressurized liquid extrac-

tion (PLE), it is well known that remains an efficient tool

for different solid sample extraction which has received an

increasing interest because of its efficiency, facility to

implement, solvent and time saving. In addition, ASE

maintains constant extraction conditions and gives a good

repeatability by its automation (Hubert et al. 2001; Schantz

2006).

Water extraction The samples were first spiked with

internal standard (Phe-d10 and Pyr-d10) and then extracted

using LLE extraction technique. Each water subsample

(1 L) was extracted with 80 mL of dichloromethane,

repeated three times. The extracts were then pooled and

dried using Na2SO4. Finally, the extract was concentrated

Fig. 2 The percentage of

dissolved PAHs, percentage of

PAHs taken up by cells in the

Rhodomonas baltica culture

system in relation to incubation

time
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using a rotary evaporator followed by a slight stream of

nitrogen before GC–MS analysis.

Algae and copepods extraction each biomass subsam-

ple was spiked with deuterated internal standards (Phe-

d10, Pyr-d10). After a delay of equilibration, the subsam-

ples were extracted using ASE. The extraction operational

conditions were: heated: 5 min; static solvent extraction

time: 5 min (n = 2) at 100 �C; purged 3 min, 115 %

flushed, 1500 psi and dichloromethane was used as

extraction solvent. High purity nitrogen was employed as

the purge gas. Extraction procedure afforded a total vol-

ume of extract of 40 mL. The extracts were concentrated,

the solvent was exchanged to hexane, and then purified

and fractioned by liquid chromatography on a silica col-

umn to eliminate organic interferences. The elution was

performed using hexane, and then with the mixture of

hexane/dichloromethane (3/1 v/v and 1/1 v/v). The sam-

ple was concentrated using a rotary evaporator followed

by a slight stream of high purity nitrogen before GC–MS

analysis.

GC–MS analysis

The extracts were analyzed using a Varian 3900 gas

chromatograph (GC), equipped with a deactivated fused

silica guard column (5 m, 0.53 mm i.d.) and a fused silica

capillary Phenomenex XLB (60 m length, 0.25 mm i.d.,

0.25 lm film thickness), coupled with a Varian Ion Trap

Saturn 2000 mass spectrometer (MS). The carrier gas was

helium held at a constant flow rate of 1 mL/min. Samples

were injected in the splitless mode at 280 �C and the

injector was purged with helium after 1 min. Each group of

organic compounds was analyzed separately. The transfer

line and the ion trap were, respectively, held at 260 and

220 �C. Each contaminant was identified based on the

retention time and the mass spectrum from chromatogram

of standard solutions acquired in full scan mode. Quan-

tification was then performed in the single ion storage (SIS)

mode for better selectivity. Response factors were deter-

mined relative to the deuterated internal standards response

and to standard mixtures. Deuterated standards were cho-

sen to better fit to the properties of each group of con-

taminants. Quality assurance procedural blanks for water,

filters, glass materials and solvents were conducted

throughout all the experiment. The effectiveness of the

different analytical procedures was evaluated by analyzing

NIST Reference Material (SRM 1944 and 2978 for PAHs).

The mean recoveries for PAHs compared with the certified

concentrations were in the range of 90–110 %. The limits

of detection for PHE, FLA, and PYR were 0.86, 1.23 and

1.12 lg/L, respectively; whereas the corresponding limits

of quantification were 2.87, 4.08 and 3.72 lg/L,

respectively.

Equilibrium partitioning and Bioaccumulation

Factors (BAFs)

The equilibrium partitioning (EqP) theory applied to PAHs

assumes the equilibrium of their concentrations between

the dissolved and particulate phases (Weber and Gould

1966; Hamelink et al. 1971; Burgess et al. 2003). This

concept can be expressed as follows:

Kp = Cp/Cd; ð1Þ

where Kp is the partition coefficient (L/kg) of a PAH

between particulate (Cp) and dissolved phases. In this case,

PAHs will preferably adsorb to the organic matter coating

the particles; then, the partition coefficient can be often

normalized by the particulate organic carbon concentration

(foc, kg organic carbon/kg sediment) resulting in the

organic carbon normalized partition coefficient Koc (in L/

kg organic carbon), where:

Koc = Kp/foc: ð2Þ

To efficiently predict the relationship between environ-

mental concentrations and expected tissue PAH’s burden,

Bioconcentration/bioaccumulation factors are used com-

monly (Gobas 2000; Mackay and Fraser 2000). For the

present study, bioconcentration factor (BCF) was defined

as:

BCF = Ct/Cw; ð3Þ

where Ct was the PAHs concentration in the copepods and

Cw was the dissolved concentration, while bioaccumulation

factor (BAF) was defined as:

BAF = Ct/Ca; ð4Þ

where Ct was the concentration in the copepods (biomass)

and Ca was the concentration in the algae (food). All

concentrations were calculated as dry weight.

Results and discussion

Considering the PAHs water exposure experiments, the

BCF (120 h) of phenanthrene in P. marinus was 6362

(SD = 3549). For fluoranthene, the BCF was 18,774

(SD = 6958) while for pyrene 53,022 (SD = 14,229),

Table 1. There is a significant correlation between BCFs

and Kow values (p\ 0.01; slope = 1.50), Fig. 3. In the

case of PAH’s food exposure experiments, the BAF

(120 h) for phenanthrene was 7234 (SD = 1852), 13,439

(SD = 3234) for fluoranthene and finally 89,854

(SD = 35,920) for pyrene, Table 1. In this case, there is

also a significant correlation between BAFs and Kow values

(p\ 0.01; slope = 1.75), Fig. 3. This is consistent with

other studies that have reported a near 1:1 relationship for
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BCF/BAF-Kow in zooplankton. For example, Berrojalbiz

et al. (2009) performed 40 h experiments measuring PAHs

concentrations in samples of Paracartia grani and found a

linear correlation between BCF and Kow for these com-

pounds (slope = 1.52 and 1.27). In addition, Fisk mea-

sured HCH and PCB concentrations in samples of the

Arctic marine copepod Calanus hyperboreus (Fisk et al.

2001) and described a significant linear correlation

between BAF and Kow (slope = 0.72) while Hoekstra et al.

(2002) found a similar relationship between BAF and Kow

of different organochlorine contaminants (slope = 1.04) in

Calanus hyperboreus.

BAF expressed bioaccumulation is only attributable to

food uptake. Hence, it can be assumed that the active

feeding process at 120 h achieves similar PAHs bioac-

cumulation levels than those predicted by the literature

equilibrium partitioning and have no appreciable differ-

ences to the BCFs (t test, p\ 0.05). As pointed out by

Berrojalbiz et al. (2009), the lack of significantly higher

BAF than BCF values does not mean that PAH could not

be transferred from food to the organism, but that depu-

ration and other elimination processes can be fast enough

in a way that the final PAH levels in the organism are

dominated by water-zooplankton partitioning and/or

metabolism. Then, bioavailability, degradation and

excretion of PAHs should be further considered and

discussed.

Bioavailability has been emphasized as a main factor

leading to lower BAF values compared to organic com-

pounds’ theoretical Kow (Landrum 1989; van Hattum et al.

1998). In fact, hydrophobic compounds tend to adsorb to

surfaces such as the walls of experimental beakers, possi-

bly leading to a reduction in the bioavailable fraction of the

compound. In the present experiment, the initial concen-

trations of phenanthrene, fluoranthene, pyrene and the

dissolved organic carbon (DOC) were similar in the

experimental setup, discarding these factors as reducers of

PAHs bioavailability. Furthermore, bioavailability could

also be lowered by the presence of particles since high Kow

PAHs readily bind to particles (Means et al. 1980; Jensen

et al. 2012). In our experimental setting, this factor has

been controlled by using the same filtered seawater (filtered

in series mode, starting with sand filters and ending with

1 lm filters). Then, the order of bioaccumulation found

(pyrene[ fluoranthene[ phenanthrene) over the 120 h

exposure period considering both exposure ways (food and

water, Table 1) is, therefore, not attributable to potential

differences in the bioavailability of these compounds.

Active uptake via food vs. water exposure

In this study, results showed similar copepod bioaccumu-

lation yields for PAHs food exposure (contaminated algae)

than for PAHs from water (dissolved PAHs, Fig. 4).

Table 1 Bioaccumulation (BAFs) and bioconcentration (BCFs) factors at 120 h for Pseudodiaptomus marinus exposed to phenanthrene,

fluoranthene and pyrene and the respective log values

log Kow
a BAF120 h log BAF log BAF/log Kow BCF120 h log BCF log BCF/log Kow

Phenanthrene 4.57 7234 3.86 0.84 6362 3.80 0.83

Fluoranthene 4.9 13,439 4.13 0.84 18,774 4.27 0.87

Pyrene 5.18 89,854 4.95 0.95 53,022 4.72 0.91

The log octanol–water partitioning coefficient (log Kow) for PAHs is given as well as the relative proportion between log BAF/BCF (empirical)

and log Kow. BAF refers to the bioaccumulation factor between copepods and food (algae) while BCF refers to the relationship of copepods and

dissolved PAHs

Chiou et al. (1998)

Fig. 3 Bioconcentration factors

(BCF) for treatments with

Pseudodiptomus marinus on its

own and bioaccumulation factor

(BAF) for treatment made with

P. marinus in the presence of

Rhodomonas baltica for each

PAH related to the octanol–

water partitioning coefficient

(Kow)
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Despite different experimental procedures, were similar

results obtained in previous research. For instance, Mag-

nusson et al. (2007) examined the uptake of PCB in

Calanus finmarchicus, obtaining log bioaccumulation fac-

tors (BAFs) that exceeded their corresponding log Kow

values for ‘‘fed’’ vs. ‘‘overwintering’’ copepods. In con-

trast, the BAF determined for active but unfed copepods

was lower than their corresponding log Kow, thus sug-

gesting that the food uptake process favors the uptake of

contaminants here. In a similar study of various PCB

congeners, Magnusson and Tiselius (2010) observed a

higher bioaccumulation in fed organisms relative to passive

partitioning in Acartia clausi; however, this can be valid

only for extremely recalcitrant compound like PCBs. In the

case of PAHs –which are able to be at least partially

metabolized—Berrojalbiz et al. (2009) observed no sig-

nificant differences in experimental BAF values between

food uptake and water treated copepods exposed to various

PAHs of the same concentrations. Further, a study on Mysis

relicta concluded that ‘‘feeding’’ lowered the accumulation

of Benz[a]pyrene (a PAH) but increased hexachloro-

biphenyl accumulation (a PCB), a compound which this

species cannot metabolize (Landrum et al. 1992). As noted

by Jensen et al. (2012), regarding bioaccumulation cope-

pods may not behave like mysids. However, these studies

outline the role of dietary exposure as a pathway which

favors the accumulation of recalcitrant organic compounds.

Hence, the ‘‘feeding mode’’ plus the ‘‘exposure pathway’’

and the suitability of the compound to undergo metabo-

lization shall not be undervalued when comparing BCF

values.

In summary, this study shows that zooplankton plays a

critical role for the cycling of PAHs and its fate: if PAHs

are diffusively accumulated, PAHs would stay in the water

column following P. marinus cycle while if ingested they

will end up at as fecal pellets commonly accumulating at

the sea bottom in shallow waters. This process will ulti-

mately depend on the trophic status of zooplankton, an

issue that will require further research in the future.

Concluding remarks

The present outcome reveals new baseline information

regarding PAHs bioaccumulation forP.marinus—including

empirical BAF and BCF values for the selected compounds.

When examined in context with other studies, there is evi-

dence that active and feeding P. marinus bioaccumulate

PAHs either through contaminated food or from the medium.

PAHs that are accumulated by dietary intake can undergo

metabolization. The recorded BAF and BCFs would have

useful implications for future environmental risk assess-

ments involving P. marinus, and represent new baseline

information able to support future analyses on the fate and

behavior of PAHs inputs, crude oil spills or accidental

releases into the ocean, particularly the North Sea and/or

Atlantic and Pacific waters where this species is endemic.
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