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Abstract
In this work we have performed state-of-the-art configuration-interaction (CI) calculations to
determine the linear and von Neumann entanglement entropies for the helium-like systems with
varying nuclear charge Z in the range Z1 10⩽ ⩽ . The focus of the work resides on determining
accurate entanglement values for 2-electron systems with the lowest computational cost through
compact CI-wave functions. Our entanglement results for the helium atom fully agree with the
results obtained with higher quality wave functions of the Kinoshita type (Dehesa [5]). We find
that the correlation energy is linearly related to the entanglement measures associated with the
linear and von Neumann entropies of the single-particle reduced density matrizes, which sheds
new light on the physical implications of entanglement in helium-like systems. Moreover, we
report CI-wave-function-based benchmark results for the entanglement values for all members of
the helium isoelectronic series with an accuracy similar to that of Kinoshita-type wave functions.
Finally, we give parametric expressions of the linear and von Neumann entanglement measures
for two-electron systems as Z varies from 1 to 10.

Keywords: quantum entanglement of helium-like systems, linear entanglement entropy, von
Neumann entanglement entropy, energy correlation versus entanglement

1. Introduction

Quantum entanglement is one of the most essential features of
quantum physics. Its central role in quantum communication
and computation technologies [1] has stimulated intense
research on the qualitative and quantitative characterization of
the entanglement properties of multi-partite quantum systems
(see for instance the comprehensive review article [2]).
Recently the study of the entanglement features exhibited by
atomic and molecular systems has been the focus of con-
siderable activity [3–8]. These developments show the rele-
vance of entanglement for the understanding of chemical
systems and processes, and in turn they suggest that entan-
glement may also have deep biological implications. A
growing number of works indicate that this is indeed the case.

In this regard we can mention studies on the biochemical
compass model for avian magnetoreception [9] and on the
light harvesting complexes which govern the photosynthesis
mechanism in plants [10].

Within the aforementioned chemistry-related lines of
research, there has been much work devoted to the study of
quantum entanglement in two-electron model atoms [4, 11–
17], helium and helium-like ions [3–8, 14, 16, 18–22]. For
instance, investigations on model atoms such as the Mosh-
insky one [4, 11–13], the Crandall atom [4, 14, 15] and the
Hooke atom [4, 16, 17] have been reported in the literature. In
atomic systems, a great deal of studies have been performed.
Osenda et al have calculated the von Neumann entanglement
entropy in spherical helium [16]. Here, by von Neumann
entanglement entropy we mean the von Neumann entropy of
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the single-particle, reduced density matrix. A similar
expression is used for the linear entropy of the single-particle
reduced density matrix. These two entropies lead to useful
entanglement indicators, as we shall discuss in the next
Section. More recently, Coe et al calculated the linear
entanglement entropy for the ground state of the natural
helium atom by use of products of hydrogenic wave functions
[14]. Manzano et al [4] and Dehesa et al [5, 6] investigated
the linear entanglement entropy of the helium ground and
some excited states using Kinoshita-type wave functions
obtaining benchmark results for these systems. In addition,
Koscik and Okopińska [19] have recently calculated the
ground-state entanglement of helium-like atoms with Z = 1–5
by use of Hylleraas-type wave functions. Lin et al [18]
employed configuration interaction wave functions by using
the B-spline basis to calculate the linear entanglement entropy
of the ground and excited states for the helium-like ions up to
Z = 15. Benenti et al [7] calculated the linear entanglement
entropy and the von Neumann entanglement entropy for the
helium atom employing configuration-interaction (CI) wave
functions constructed with Slater type orbitals (STOs). Some
previous studies have suggested a relation of correlation
energy with the von Neumann entanglement entropy. Indeed,
Esquivel et al [23] and Ramírez et al [24] examined the
implications of the Collins conjecture [25] to show numeri-
cally that for three-electron atoms and some selected small
molecules, the von Neumann entanglement entropy behaves
linearly with the correlation energy as the quality of the wave
function increases. Moreover, Huang and Kais [3] and Hofer
[8] have employed entanglement as an alternative measure of
electron correlation for helium-like systems.

The central concept to be examined in this paper is
electron entanglement in atomic systems. It is known
[3, 26, 27] that a wave function composed of a single Slater
determinant does not have quantum correlation usable as a
resource for quantum information tasks, implying that the
Hartree–Fock (HF) wave function does not represent an
entangled state, whereas the multi-determinantal wave func-
tions employed in post-HF methods are endowed with
entanglement. The latter implies that the non-local effect
linked to entanglement must be present in any post-HF wave
function independently of its quality.

The present study was designed to explore the connection
between entanglement and correlation energy measures
associated with the difference of two variational bounds. We
attempt to calculate accurate values for the ground-state
entanglement measures by means of the linear and von
Neuman entropies of the single-particle, reduced density
matrix of the helium isoelectronic series with varying nuclear
charge in the range Z1 10⩽ ⩽ . Our goal is three-fold: (i) to
determine accurate entanglement values for helium at the
lowest computational cost by use of compact CI-wave func-
tions; (ii) to parametrize these results in terms of the nuclear
charge by means of functions of the type ax ;b and (iii) to
report benchmark results of entanglement values for the
helium-like atoms from Z = 1 through Z = 10.

The structure of this work is as follows. First, in section
II, we define and justify the quantifiers of entanglement of a

system of N identical fermions which we use throughout the
work; namely, the linear and von Neumann entanglement
measures. Then, in section III, various details about the CI
methodology are described. In section IV the main results of
our work are discussed in full detail. Finally, some conclu-
sions and references are given.

2. Entanglement measures of fermionic systems

A pure state of a system constituted by N identical fermions
can be described by a single ket vector, Ψ∣ 〉, so that its
associated density matrix is ρ Ψ Ψ= ∣ 〉〈 ∣. This state is non-
entangled, i.e. separable, if it has Slater rank equal to one.
This means that it can be expressed as a single Slater deter-
minant constructed with N normalized and orthogonal single-
particle states i i N{ , 1 ,..., }∣ 〉 = . Otherwise, the state is called
an entangled state.

Note that the minimum correlations between the particles
required by the antisymmetry of the fermionic state do not
contribute to the state’s entanglement. In other words, the
fermionic entanglement is given by the quantum correlations
existing on top of these minimum correlations needed to
comply with the antisymmetric constraint on the fermionic
wave function [28, 29].

There are several measures to quantify the amount of
entanglement for a pure state Ψ∣ 〉 of a system with N identical
fermions in the literature. In this work, we focus our attention
on entanglement measures based on the linear and von
Neumann entropies.

2.1. Linear entanglement measure

Let Ψ∣ 〉 denote a pure state of N identical fermions. The
single-particle reduced density matrix, obtained by taking the
trace over N 1− particles, is then Tr ( )r N2,3 ,...,ρ Ψ Ψ= ∣ 〉〈 ∣ .
The linear entropy of rρ , given by

( )S Tr[ ] 1 (1)L r r
2ρ ρ= −

leads to a practical quantitative measure [ ]rξ ρ for the amount
of entanglement of the density matrix state rρ , namely

N S
N

N
[ ] [ ]

1
(2)L r L r

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ξ ρ ρ= − −

which is normalized to the range [0, 1]. This quantity
vanishes if and only if the state Ψ∣ 〉 has Slater rank 1 and is
therefore separable. This linear entanglement measure has
been applied to several problems, particularly in connection
with two-fermionic systems [15] and also to helium in its
ground state and some selected singlet and triplet excited
states [5, 6, 18].

Note that in the particular case of N = 2, this entangle-
ment measure can be related to the Schmidt decomposition of
pure states of two identical fermions. Moreover, the eigen-
functions of the first-order reduced density matrix rρ are
usually called natural spin orbitals (Löwdin spectral decom-
position) [30, 31]. Their corresponding eigenvalues are the
natural spin occupation numbers n i M{ ; 1, , }i = …γ , with M
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standing for the number of orbitals and γ for the α or β spin
majority channel n(0 1)i⩽ ⩽γ and n N

i i,
∑ =

γ
γ . Natural

spin orbitals are obtained by performing symmetric (ortho-
gonal) transformations on the density matrix so as to obtain its
diagonal form characterized by a spectral decomposition [30].
When computing the amount of entanglement associated with
the state of the N electrons it is convenient to normalize the
single-particle reduced density matrix rρ to 1. In that case, the
eigenvalues of rρ are n Ni iλ =γ γ . It is worth noting that
closed-shell molecular and atomic systems are commonly
represented through a M M× double occupied density matrix

r
DO( )ρ , having eigenvalues n n N( )i

DO
i i

( )λ = +α β , with

1
i

M
i

DO( )∑ λ = , where n ni i=α β. In the general case for open
shell molecular systems, e.g. radicals, the latter is not obeyed
and a particular expression for open-shell rρ could be neces-
sary, i.e. n ni i≠α β.

According to the above, the linear entropy of the single-
particle reduced density matrix r

DO( )ρ of fermionic systems
can be expressed in terms of the natural spin orbitals through
Löwdin’s spectral decomposition of the r

DO( )ρ as

( ) ( )S Tr1
1

2
1

1

2

(3)

L r
DO

r
DO

i

M

i
DO( ) ( ) 2

1

( ) 2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ∑ρ ρ λ= − = −
=

and the linear entanglement measure can be expressed as
follows:

( )N
[ ] 1

2
(4)L r

i

M

i
DO

1

( ) 2∑ξ ρ λ= −
=

2.2. Von Neumann entanglement measure

For a pure state of N identical fermions, ψ∣ 〉, the von Neu-
mann entropy of a single-particle reduced density matrix rρ ,
obtained by taking the trace over N 1− particles

Tr ( )r N2,3 ,...,ρ Ψ Ψ= ∣ 〉〈 ∣ , is given by [32]

( )S Tr[ ] ln . (5)VN r r rρ ρ ρ= −

This entropy allows us to quantify the amount of
entanglement of the N-fermionic system’s state Ψ∣ 〉:

S N[ ] [ ] ln . (6)VN r VN rξ ρ ρ= −

This entanglement measure constitutes a non-negative
quantity that vanishes if and only if the state Ψ∣ 〉 has Slater
rank one and is therefore non-entangled. The term Nln−
arises from the fact that even in the separable case, the
entropy of the reduced single-particle density matrix does not
vanish. Following the lines indicated in the previous case, for
a double occupied density matrix r

DO( )ρ we obtain the

expression

S ln
N

ln ln
N

[ ]
2 2

(7)

VN r r
DO

i

M

i
DO

i
DO( )

1

( ) ( )⎡⎣ ⎤⎦ ∑ξ ρ ρ λ λ= − = − −
=

for the von Neumann entanglement measure in terms of the
natural occupation numbers.

3. Configuration-interaction wave functions:
Methodology

The wave function which describes the state of the helium-
like atoms has been obtained by means of the CI method. In
this post-HF method, the solution of the nonrelativistic
Schrödinger equation for an N-electron system is given by a
linear combination of Slater determinants:

C C C ...

(8)

CI
HF

a

N

r

K

a
r

a
r

a b

N

r s

K

ab
rs

ab
rs

0 0 ∑∑ ∑∑Φ Φ Φ Φ∣ 〉 = ∣ 〉 + ∣ 〉 + ∣ 〉 +
< <

where iΦ∣ 〉 are successively orthonormalized L2− and S2−
symmetric projections of two-electron Slater determinants
made up of orthonormal spin orbitals. In turn, the spin orbitals
are linear combinations of STO’s (times a spherical
harmonics and a spin function).

In the expansion given by equation (8) the first term,
HF
0Φ∣ 〉, corresponds to the HF reference-state. The other terms

can be characterized by the number of spin orbitals (a b, ,...)
that are replaced with virtual orbitals (unoccupied orbitals
r s, ,...) from the HF determinant. If only one spin orbital
differs, we describe this as a single excitation determinant,

a
rΦ∣ 〉. If two spin orbitals differ, it is a double-excitation

determinant, ab
rsΦ∣ 〉, and so on. The coeficients C C C{ , , ,...}a

r
ab
rs

0

are the expansion coefficients and have been determined, as
well as the exponents in the Slater determinants, by use of
variational methods (minimizing the energy of the system).

If we include all possible excited state configurations
where one electron is promoted from the occupied to the
unoccupied orbitals, the method is called CIS; if we include
all possible single and double excitations it is CISD (CISDT,
CISDTQ, etc). If we include all possible excited state con-
figurations, the method is called full CI and the result is exact.

Full CI calculations require a high computational cost,

related to the binomial coefficient: M
N

( ) M

M N N

!

( ) ! !
= −

, where

M is the total number of spin orbitals and N the number of
electrons. Therefore, a full CI treatment is in most cases
computationally intractable. But in helium-like atoms, only
single and double excitations are possible, so we are able to
implement a full CI method. The details of the wave function
calculations can be found in [33, 34].

3
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4. Results

In previous works Manzano et al [4] and Dehesa et al [5, 6]
reported accurate values for the linear entanglement,
equation (2), of the ground state and various excited states of
helium by use of high-quality Kinoshita-type wave functions.
For the ground state of helium (E 2.903724= − a.u.), the
entanglement from the linear entropy was estimated [5] to be

0.015914 0.000044Lξ = ± . This value has been used in the
present calculations as a reference-test case in order to per-
form a sensitivity study of the basis sets. This study is done to
choose the best combination of the HF-SCF reference basis
set that, along with the complementary virtual orbitals, may
produce a compact CI wave function with which the entan-
glement value for the linear entropy matches the previous
accurate result.

4.1. Choice of basis sets for compact CI wave functions

The CI wave functions necessary for the study have been
calculated by use of ATMOL suite programs [33, 34] in order
to construct spin adapted wave functions in a multi-determi-
nantal space of compact basis sets for all members of the
helium-like series with varying nuclear charge Z. The latter
represents a formidable task in order to compute about 900
wave functions for the two-electron model systems necessary
to accomplish the study. Besides, the choice of an appropriate
basis set is not a trivial task because of the higher angular
momentum symmetries that could be employed for the orbital
configurations. Keeping that in mind, the following aspects
ought to be considered: (i) to build HF reference states for
each model system with a specific Z, varying from 1 to 10 in
steps of 0.01; (ii) to calculate CI wave functions within a
consistent basis set chosen from the HF-reference configura-
tion reported in table 1; and (iii) to enlarge the CI config-
uration space within each HF initial state to keep track of
convergence, either for the energy, the entanglement values,
or both.

This task was achieved by tracking the value of the linear
entanglement measure as the wave function is improving (see
below). The convergence of this entanglement measure is
studied in tables 1 and 3. Some choices employed for the
construction of the HF-reference state explicitly include an

s0-STO type orbital to numerically satisfy the cusp condition
exactly [35]. Finally, our last choice for the HF orbital basis is
the one that best yields both the cusp condition and the
ground-state energy and linear entanglement measure in
helium as indicated above. Note that for all calculations full
CI wave functions are used, within the single and double
configuration space.

According to the linear entanglement values for the CI-
wave functions shown in table 1, we realize that the use of
bigger basis sets do not necessarily guarantee more accurate
results for this kind of entanglement measure with respect to
smaller basis sets. For instance, the choice of 6 orbitals for the
HF reference wave function produces a worst linear entan-
glement value than the smaller basis set with 5 orbitals. Since
the entanglement depends on the one-density matrix, it is
much more sensitive to changes in the wave function than
from the energy itself. Hence, we decided to follow the
convergence of the linear entanglement values instead of the
energy as a criterion to choose the best basis set. Although, of
course, keeping track of the energy requires much larger basis
sets, this is not the goal of our study.

In addition, we note from table 1 that the Clementi-Roetti
basis set [36] produces a linear entanglement value that is far
from the reference one. Moreover, we have observed that
compliance of the exact cusp condition conducts to much
faster convergence for the linear entanglement values and
higher accuracy. This is because we have chosen different
Ansatzs as initial HF-reference states obeying the cusp
requirement. Accordingly, in table 2 we have reported results
for the following HF− reference basis sets: s s s{ }0 2 2 ,
s s s s s{ }0 2 2 3 4 and s s s s s s{ }0 2 2 3 3 4 , which take into account the
cusp. Note that at this stage of the calculation, virtual orbitals
had not been included; then, enlarging the basis set would
improve linear entanglement values towards convergence
through new virtual orbitals. It is interesting to mention that
this observation also applies to the von Neumann entangle-
ment measure. The selection of the virtual orbitals is reflected
in table 2, where we have reported the final basis sets for the
CI wave functions that obey all requirements mentioned
above. Note that some CI wave functions reported in this
table were constructed from SCF orbitals only without any
virtual orbitals.

In table 3, we have reported the ground-state values for
the energy and for both entanglement measures (linear and
von Neumann) of helium for various choices of basis sets.
Our results show that the most appropriate basis set for this
analysis is represented by the [322] basis set, which satisfies
all requirements mentioned above. It is remarkable to observe
that although these compact basis sets were not constructed to
produce exact values for the energy of helium, they account
for 99.91% of the correlation energy in the smallest basis set.
More importantly, these basis sets do produce linear entan-
glement values that are very close to the exact one reported by
[4] (see table 3). This is supported by the fact that from the CI
methodology it is possible to control the size and the con-
vergence of the calculation which is advantageous with
respect to other strategies. Therefore we would like to
emphasize that according to our results it is not indispensable

Table 1. Entanglement of the ground state of a helium atom for
various HF Ansatzs. Basis orbitals are denoted as ln l 1− − ; so that, e.g.
s0 and s2 are the orbitals s1 and s3 , respectivelya.

Number of orbitals Basis Z( 2)Lξ =

3a {s s s0 0 0} 0.00584793

3 {s s s0 2 2} 0.00915760

5 {s s s s s0 2 2 3 4} 0.00916082

6 {s s s s s s0 2 2 3 3 4} 0.00915492

6 {s s s s s s0 0 1 1 2 2} 0.00844111

a

Clementi-Roetti basis set [36].
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to construct higher quality wave functions in order to account
for a precise value of the entanglement of helium; in other
words, the non-local character of the wave function seems to
be accounted for with compact basis sets. Perhaps a higher
degree of non-locality might be required for other properties
of the systems as they interact at larger distances, but this is
beyond the scope of the present study.

4.2. Linear and von Neumann entanglement measures for
helium-like atoms

4.2.1. Entanglement measures versus energy correlation. In
the previous section we have shown that within our present
numerical framework, the set [322] is the best choice for the
CI basis set. Linear entanglement values computed on the
concomitant helium states reproduce the results reported in
Manzano et al [4]. In this section we use this basis set to
calculate the linear and von Neumann entanglement measures
for all members of the helium isoelectronic series with

Table 2. Slater type orbital sets for various compact CI wave function. Basis orbitals are denoted as ln l 1− − ; so that e.g., s0 and s2 are the
orbitals s1 and s3 , respectivelya.

Number of Initial Virtual
orbitals HF term orbitals
(spdf...)

[3 ]a {s s s0 0 0} —

[3] {s s s0 2 2} —

[32] {p p0 0}
[322] {p p d d0 0 0 0}
[3222] {p p d d f f0 0 0 0 0 0}
[34] {p p p p0 0 1 1}
[342] {p p p p d d0 0 1 1 0 0}
[632] {s s s p p p d d3 4 5 0 1 2 0 1}
[88642] {s s s s s p p p p p p p p d d d d d d f f f f g g3 4 5 6 7 0 0 1 1 2 2 3 3 0 0 1 1 2 2 0 0 1 1 0 1}

[5] {s s s s s0 2 2 3 4} —

[632] {s p p p d d5 0 1 2 0 1}

a

Clementi-Roetti basis set [36].

Table 3. Ground-state entanglement and energy of helium for
various basesa,b.

Basis Z( 2)Lξ = Z( 2)VNξ = Energy (a.u.)

Initial HF term s s s{ }0 0 0

[3 ]a 0.0058479310 0.0404132691 −2.87680937

Initial HF term {s s s0 2 2}

[3] 0.0091576 0.0301553873 −2.87747769
[32] 0.016570343 0.0597554046 −2.89857401
[322] 0.0164727801 0.0603217554 −2.90071387
[3222] 0.0164423655 0.060378164 −2.90121732

Initial HF term {s s s0 2 2}

[3] 0.0091576 0.0301553873 −2.87747769
[34] 0.0166231319 0.0601039078 −2.89895165
[342] 0.0165272316 0.0606673288 −2.90107225

Initial HF term {s s s0 2 2}

[632] 0.0161354407 0.0592281104 −2.90217862

Initial HF term {s s s0 2 2}

[88642] 0.0163666527 0.0604637346 −2.90237025

Initial HF term {s s s s s0 2 2 3 4}

[5] 0.00916082 0.0602693554 −2.87801774

Initial HF term {s s s s s0 2 2 3 4}

[632] 0.0164213083 0.0601239465 −2.90132275

Reference value

Manzano
et al. b

0.015914 ±
0.000044

Not available −2.90372

a

Clementi-Roetti basis set [36].
b

Manzano et al [4]; see also [5, 6].

Table 4. STO set for the compact CI wave function of helium
(Z = 2). The radial functions for the STO are given by
R r S r a( ) ( )il j jl jli∑= where S r N r e( )jl jl

n l Z r2 jl= − − − . The table is

divided into HF-SCF orbitals and the virtual ones.

j Orbital Zjl Type

1 s0 2.00000 SCF
2 s2 1.88711 SCF
3 s2 2.69410 SCF

1 p0 2.39230 V
2 p0 3.55016 V

1 d0 3.34622 V
2 d0 4.89000 V

5
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Z = 1–10 by use of the corresponding HF-reference state for
each system. In figure 1 we study the dependence of these two
entanglement measures on the nuclear charge Z. Therein, we
observe that both quantities show: (i) a qualitatively similar
decreasing behavior as the nuclear charge is increasing, which
corroborates and extends previous works [4, 19]; and (ii) for a
given Z the von Neumann value is bigger than the linear
entanglement value in all cases considered in this work.
Moreover, these two entanglement measures are linear
logarithmic functions of Z.

Let us now explore the relationship of the linear and von
Neumann entanglement measures with the correlation energy
defined as

E
E E

E
(9)corr

CI HF

CI
= −

where ECI is the true state energy given by the post-HF
method, and EHF is the (monoconfigurational) HF energy.
Note that this quantity has been renormalized in order to be

always less than one for entangled states and strictly equal to
zero for the pure state (i.e. a single determinant Slater). The
behavior of the correlation energy and the entanglement
measures in terms of the nuclear charge is shown in figure 2.
The correlation energies computed using different basis sets
are compared in figure 3.

The results summarized in figure 2 indicate that the
correlation energy and two entanglement measures show
(within the range of Z-values here considered) a linear
behavior when plotted against Z in a log-log scale. In other
words, these three quantities exhibit a power law dependence
on the nuclear charge Z. This is in agreement with previous
works which numerically support Collins’ conjecture
[23–25]. Since this observation has been considered a strong
proof of the quality of the wave functions to represent
correlation energy, we have tested the methodology employed
in the last section to double check the reliability of our basis
set choice. This is shown in figure 3, where we have plotted
the correlation energy versus Z for three different basis sets.

Figure 1. Variation of the linear entanglement, Lξ (dots), and von Neumann entanglement, VNξ (stars), of ground-state helium-like atoms with
the nuclear charge Z [1, 10].∈

Figure 2. Dependence of the correlation energy, Ecorr (dots), and entanglement (stars) of the ground-state helium-like atoms on the nuclear
charge Z [1, 10]∈ . The linear entanglement measure, Lξ , and the von Neumann entanglement measure, VNξ , are given on the left and right
pictures, respectively.
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4.2.2. Z-parametrization of entanglement: ξ Zð Þ. In this
subsection we provide a parametrization for the dependence
of the entropic measures on the nuclear charge Z. We have
found it useful to present benchmark results for the behavior
of entanglement as Z varies continuously from Z = 1 to
Z = 10. They are given in figure 4 by means of the following
parametric expression

Z aZ Z( ) , [1, 10] (10)bξ = ∈

where the fitting parameters a and b are given in table 5 for
both entanglement measures. Also reported in the table is the
value of the residual sum of squares, RSS, as an indicator of
the goodness of the parametrization [37].

In figure 4 we observe again the monotonic decreasing
behavior of the two entanglement measures as a function of Z,
showing that the entanglement phenomenon is more impor-
tant for lower values of Z, i.e. for smaller atoms.

To end this section, let us consider the determination of
the minimum (critical) nuclear charge Zc required to bind N

electrons (and, therefore, to give rise to an N-electrons atom),
which has been the subject of intense theoretical work since
the 1960 s [38–43]. For helium-like atoms, this value has
been found to be Z 0.911246c ≈ , which was obtained by use
of perturbation theory and it should be considered the exact
one for the helium series [38, 39, 42]. Although the
calculation of this value is not one of the goals of our study
we have found that, by use of compact CI wave functions, a
value of Z 0.84c ≈ was obtained. Of course, this result is not
very accurate because we did not employ very large basis
sets, a goal that is beyond the scope of this study.

5. Conclusions

In this work we have shown that entanglement for ground-
state helium-like atoms can be accounted for by wave func-
tions obtained with a compact CI basis. In this way we are
able to match the very accurate ground state value calculated
for helium through a more demanding computational meth-
odology (high-quality Kinoshita-type wave functions). The
CI wave functions obtained in this work are more tractable
from a convergence point of view which allows for the eva-
luation of reliable wave function properties.

On the other hand, we have shown that energy correla-
tion is linearly related to the entanglement measures asso-
ciated with the linear and the von Neumann entropies. In this
way we obtained a strightforward connection between an
information-related kinematic property of the atomic states

Figure 3. Correlation energy, Ecorr, of the ground-state helium-like
atoms as a function of the nuclear charge Z [1, 10]∈ for the
following basis sets: [322] (stars), [632] (dots), and [88642]
(triangles).

Figure 4. Entanglement fitting of the linear, Z( )Lξ , and von Neumann, Z( )VNξ , measures in terms of the nuclear charge, Z, for helium-like
atoms. The red line represents the parametrization given by equation (10).

Table 5. Entanglement parameters for Z( )Lξ and Z( )VNξ in
equation (10) for helium-like atoms.

Parameters Lξ VNξ

a 0.0922141 ± 0.0001389 0.241959 ± 0.0001762
b −2.45654 ± 0.004226 −1.98125 ± 0.001565

RSS 0.000229126 0.000475027
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(i.e. entanglement) and an energy-related quantity determined
by the atomic Hamiltonian. Moreover, we have reported
benchmark results for the entanglement values for all mem-
bers of the helium isoelectronic series with an accuracy
similar to that of Kinoshita-type wave functions.

Finally, we have given parametric expressions of the
linear and von Neumann entanglement measures as Z varies
from Z = 1 to Z = 10, demonstrating numerically that
entanglement is an atomic physical feature directly related to
the size of the atom which behaves in a decreasing monotonic
manner.

We hope that this work will promote the calculations of
accurate quantum entanglement values by FCI methods for
atoms with three and more electrons, specially taking into
account that current ab initio quantum chemical packages are
able to solve very large secular equations.

Acknowledgments

We acknowledge financial support through Mexican grants
from CONACyT (grant number CB-2009-01/132224) and
Spanish grants FIS2014-54497P, FIS2014-59311-P,
FIS2011-24540, FQM-7276, FQM-207, FQM-020 and FQM-
239. Sheila López Rosa wishes to thank Fellowship Program
‘Estancias de movilidad José Castillejo para jóvenes doctores
(MECD)’ for the finantial support of her research stay at
UAM (Universidad Autónoma Metropolitana) de Iztapalapa
(México), as well as Rodolfo O Esquivel for their kind hos-
pitality during this stay. We thank Moyocoyani Molina-
Espíritu for fruitful discussions.

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and
Quantum Information (Cambridge: Cambridge University
Press)

[2] Amico L, Fazio R, Osterloh A and Vedral V 2008
Entanglement in many-body systems Rev. Mod. Phys.
80 517

[3] Kais S 2007 Entanglement, electron correlation and density
matrices Adv. Chem. Phys. 134 493

[4] Manzano D, Plastino A R, Dehesa J S and Koga T 2010
Quantum entanglement in two-electron atomic models
J. Phys. A 43 275301

[5] Dehesa J S, Koga T, Yáñez R J, Plastino A R and Esquivel R O
2012 Quantum entanglement in helium J. Phys. B 45
015504

[6] Dehesa J S, Koga T, Yáñez R J, Plastino A R and Esquivel R O
2012 Corrigendum: Quantum entanglement in helium
J. Phys. B 45 239501

[7] Benenti G, Siccardi S and Strini G 2013 Entanglement in
helium Eur. Phys. J. D 67 1

[8] Hofer T S 2013 On the basis set convergence of electron-
electron entanglement measures: helium-like systems Front.
Chem. 1 24

[9] Gauger E M, Rieper E, Morton J J L, Benjamin S C and
Vedral V 2011 Sustained quantum coherence and
entanglement in the avian compass Phys. Rev. Lett. 106
040503

[10] Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010
Quantum entanglement in photosynthetic light-harvesting
complexes Nature Phys. 6 462

[11] Amovilli C and March N H 2004 Quantum information: Jaynes
and Shannon entropies in a two-electron entangled artificial
atom Phys. Rev. A 69 054302

[12] Amovilli C and March N H 2003 Exact density matrix for a
two-electron model atom and approximate proposals for
realistic two-electron systems Phys. Rev. A 67 022509

[13] Nagy A and Pipek J 2010 Approximations for the interparticle
interaction energy in an exactly solvable two-electron model
atom Phys. Rev. A 81 014501

[14] Coe J P and D’Amico I K 2010 The entanglement of few-
particle systems when using the local-density approximation
J. Phys. Conf. Ser 254 012010

[15] Yáñez R J, Plastino A R and Dehesa J S 2010 Quantum
entanglement in a soluble two-electron model atom Eur.
Phys. J. D 56 141

[16] Osenda O and Serra P 2012 Entanglement in Hooks law atoms:
an effect of the dimensionality of the space Few-Body Syst.
52 189

[17] Kościk P and Hassanabadi H 2012 Few-Body Syst. 52 189
[18] Lin Y C, Lin C Y and Ho Y K 2013 Spatial entanglement in

two-electron atomic systems Phys. Rev. A 87 022316
[19] Koscik P and Okopińska A 2014 Entanglement Entropies in

the Ground States of Helium-Like Atoms Few-Body Syst.
55 1151

[20] Kościk P and Okopińska A 2010 Two-electron entanglement
in elliptically deformed quantum dots Phys. Lett. A
374 3841

[21] Kościk P 2011 Two-electron entanglement in a two-
dimensional isotropic harmonic trap: radial
correlation effects in the low density limit Phys. Lett. A
375 458

[22] Kościk P and Okopińska A 2013 Correlation effects in the
N-particle Moshinsky model Few-Body Syst. 54 1637

[23] Esquivel R O, Rodriguez A L, Sagar R P, Ho M and
Smith V H Jr 1996 Physical interpretation of information
entropy: numerical evidence of the Collins conjecture Phys.
Rev. A 54 259

[24] Ramírez J C, Soriano C, Esquivel R O, Sagar R P, Ho M and
Smith V H Jr 1997 Jaynes information entropy of small
molecules: numerical evidence of the Collins conjecture
Phys. Rev. A 56 4477

[25] Collins D M 1993 Entropy maximations on electron-density
Z. Naturforsch. 48 68

[26] Ghirardi G and Marinatto L 2004 General criterion for the
entanglement of two indistinguishable particles Phys. Rev. A
70 012109

[27] Wang H and Kais S 2007 Quantum entanglement and electron
correlation in molecular systems Isr. J. Chem. 47 59

[28] Naudts J and Verhulst T 2007 Ensemble-averaged
entanglement of two-particle states in Fock space Phys. Rev.
A 75 062104

[29] Ghirardi G 2002 Entanglement and properties of composite
quantum systems: a conceptual and mathematical analysis
J. Stat. Phys. 108 40

[30] Löwdin P O 1955 Quantum theory of many-particle systems: I.
Physical interpretations by means of density matrices,
natural spin-orbitals, and convergence problems in the
method of configurational interaction Phys. Rev. 97
1474

[31] Löwdin P O 1970 On the nonorthogonality problem Adv.
Quantum Chem. 5 185

[32] von Neumann J 1955 Mathematical Foundations of Quantum
Mechanics (Princeton: Princeton University)

[33] Bunge C F 2006 Selected configuration interaction with
truncation energy error and application to the Ne atom
J. Chem. Phys. 125 014107

8

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 175002 S López-Rosa et al

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1002/9780470106600.ch18
http://dx.doi.org/10.1088/1751-8113/43/27/275301
http://dx.doi.org/10.1088/0953-4075/45/1/015504
http://dx.doi.org/10.1088/0953-4075/45/1/015504
http://dx.doi.org/10.1088/0953-4075/45/1/015504
http://dx.doi.org/10.1140/epjd/e2013-40080-y
http://dx.doi.org/10.3389/fchem.2013.00024
http://dx.doi.org/10.1103/PhysRevLett.106.040503
http://dx.doi.org/10.1103/PhysRevLett.106.040503
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1103/PhysRevA.69.054302
http://dx.doi.org/10.1103/PhysRevA.67.022509
http://dx.doi.org/10.1103/PhysRevA.81.014501
http://dx.doi.org/10.1088/1742-6596/254/1/012010
http://dx.doi.org/10.1140/epjd/e2009-00270-x
http://dx.doi.org/10.1007/s00601-011-0241-x
http://dx.doi.org/10.1007/s00601-011-0241-x
http://dx.doi.org/10.1103/PhysRevA.87.022316
http://dx.doi.org/10.1007/s00601-014-0902-7
http://dx.doi.org/10.1016/j.physleta.2010.07.054
http://dx.doi.org/10.1016/j.physleta.2010.12.035
http://dx.doi.org/10.1007/s00601-012-0546-4
http://dx.doi.org/10.1103/PhysRevA.54.259
http://dx.doi.org/10.1103/PhysRevA.56.4477
http://dx.doi.org/10.1515/zna-1993-1-218
http://dx.doi.org/10.1103/PhysRevA.70.012109
http://dx.doi.org/10.1560/IJC.47.1.59
http://dx.doi.org/10.1103/PhysRevA.75.062104
http://dx.doi.org/10.1023/A:1015439502289
http://dx.doi.org/10.1103/PhysRev.97.1474
http://dx.doi.org/10.1103/PhysRev.97.1474
http://dx.doi.org/10.1016/S0065-3276(08)60339-1
http://dx.doi.org/10.1063/1.2207620


[34] Almora-Diaz C X and Bunge C F 2010 Nonrelativistic CI
calculations for B+, B, and B− ground states Int. J. Quant.
Chem. 110 2982

[35] Steiner E 1963 Charge densities in atoms J. Chem. Phys.
39 2365

[36] Clementi E and Roetti C 1974 Roothaan-Hartree–Fock atomic
wavefuntions At. Data Nucl. Data Tables 14 177

[37] For a set of data x y{ , }i i and its fitting function f(x), the RSS is

given by RRS y f x[ ( )]
i

n

i i
2∑= −

[38] Brändas E and Goscinski O 1970 Critical point, singularities
and extrapolations in the helium iso-electronic sequence Int.
J. Quant. Chem. 4 574

[39] Stillinger F H 1966 Ground-state energy of two-electron atoms
J. Chem. Phys. 45 3623

[40] Stillinger F H and Stillinger D K 1974 Nonlinear variational study
of perturbation theory for atoms and ions Phys. Rev. A 10 1109

[41] Baker J D, Freund D E, Hill R N and Morgan J D III 1990
Radius of convergence and analytic behavior of the Z1
expansion Phys. Rev. A 41 1247

[42] Sergeev A V and Kais S 1999 Critical nuclear charges for
N-electron atoms Int. J. Quant. Chem. 75 533

[43] Lin Y C and Ho Y K 2013 Quantum entanglement for two
electrons in the excited states of helium-like systems
arXiv:1307.5532

9

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 175002 S López-Rosa et al

http://dx.doi.org/10.1002/qua.22835
http://dx.doi.org/10.1063/1.1701443
http://dx.doi.org/10.1016/S0092-640X(74)80016-1
http://dx.doi.org/10.1002/qua.560040604
http://dx.doi.org/10.1063/1.1727380
http://dx.doi.org/10.1103/PhysRevA.10.1109
http://dx.doi.org/10.1103/PhysRevA.41.1247
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<533::AID-QUA18>3.0.CO;2-O
http://arXiv.org/abs/1307.5532

	1. Introduction
	2. Entanglement measures of fermionic systems
	2.1. Linear entanglement measure
	2.2. Von Neumann entanglement measure

	3. Configuration-interaction wave functions: Methodology
	4. Results
	4.1. Choice of basis sets for compact CI wave functions
	4.2. Linear and von Neumann entanglement measures for helium-like atoms
	4.2.1. Entanglement measures versus energy correlation
	4.2.2. Z-parametrization of entanglement: &#x003BE;(Z)


	5. Conclusions
	Acknowledgments
	References



