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a b s t r a c t

We study the existence of solutions for the nonlinear second order elliptic system ∆u +

g(u) = f (x), where g ∈ C(RN
\ S, RN ) with S ⊂ RN bounded. Using topological degree

methods, we prove an existence result under a geometric condition on g . Moreover, we
analyze the particular case of an isolated repulsive singularity: under a Nirenberg type
condition, we prove the existence of a sequence of solutions of appropriate approximated
problems that converges to a generalized solution.
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1. Introduction

Let Ω ⊂ Rd be a smooth bounded domain. We consider the following elliptic system:
1u + g(u) = f (x) in Ω

u = const on ∂Ω
∂Ω

∂u
∂ν

dS = 0
(1)

f : Ω → RN continuous and g : RN
\S → RN continuous, with S ⊂ RN bounded.Without loss of generality wewill assume

that f :=
1

|Ω|


Ω
f (x)dx = 0. We may also refer to the constant value of u at the boundary as C .

The particular case S = {0} was extensively studied in the literature: for example, several results when d = 1 can be
found in [1–3], among other works.

The nonlocal boundary conditions in (1) have been studied by Berestycki and Brézis in [4] and also by Ortega in [5].
They arise from certain models in plasma physics: specifically, a model describing the equilibrium of a plasma confined in
a toroidal cavity, called a Tokamak machine. A detailed description of this problem can be found in the Appendix of [6].

Note that when d = 1 and Ω = (a, b), the system reads:

u′′
+ g(u) = p(t), t ∈ (a, b).
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In this framework, the boundary conditions can be interpreted as follows:

u = const on ∂Ω ⇒ u(a) = u(b);


∂Ω

∂u
∂ν

dS = 0 ⇒ u′(a) = u′(b).

Hence, for d > 1 the nonlocal boundary condition in (1) can be seen as a generalization of the well known periodic
conditions.

The case d = 1 has been studied by the authors in [7]. Using topological degree methods it was proved that if the
nonlinearity g : RN

\ {0} → RN is continuous, repulsive at the origin and bounded at infinity, and an appropriate Nirenberg
type condition [8] holds, then either the problemhas a classical solution, or else there exists a family of solutions of perturbed
problems that converges uniformly and weakly in H1 to some limit function u. Furthermore, if the singularity is strong (in
a sense that will be explained below), then u is nontrivial and it can be shown, under extra assumptions, that the problem
has always a classical solution.

In this work, we shall consider two different problems. In the next section we shall allow the (bounded) set S of
singularities to be arbitrary and focus our attention on the behavior of the nonlinear term g over the boundary of an
appropriate domain D ⊂ RN

\ S. More precisely, we shall assume the boundedness condition
(B) lim sup|u|→∞ |g(u)| < ∞

and introduce a condition of geometric nature that involves the geodesic distance on Ω , namely:
d(x, y) := inf{length(γ ) : γ ∈ C1([0, 1], Ω) : γ (0) = x, γ (1) = y}.

Indeed, we shall fix a compact neighborhood C of S and a number
r := k diamd(Ω)(∥f ∥∞ + sup

u∉C
|g(u)|), (2)

where k is a constant such that
∥∇u∥∞ ≤ k∥1u∥∞

for all u ∈ C2(Ω, RN) satisfying the nonlocal boundary conditions of (1). Then we shall assume, for a certain D ⊂

RN
\ (C + Br(0)):

(D1) For all v ∈ ∂D, 0 ∉ co(g(Br(v))), where ‘co(X)’ stands for the convex hull of a set X ⊂ RN .
(D2) deg(g,D, 0) ≠ 0.

Condition (D1) was introduced by Ruiz andWard in [9] and extended in [10] by the first author and Clapp. It generalizes
a classical condition given by Nirenberg in [8] which, in particular, implies that g cannot rotate around the origin when |u|
is large. Condition (D1) is weaker: it allows g to rotate, although not too fast since r cannot be arbitrarily small.

The main result in Section 2 reads as follows:

Theorem 1.1. Let g ∈ C(RN
\ S, RN) satisfying (B) and f ∈ C(Ω, RN) such that f = 0. Let C be a compact neighborhood of

S and let r be as in (2). If there exists a domain D ⊂ RN
\ (C + Br(0)) such that (D1) and (D2) hold, then (1) has at least one

solution u with u ∈ D and ∥u − u∥∞ ≤ r.

In Section 3we study the case inwhich S consists in a single point; without loss of generality, it may be assumed S = {0}.
We shall focus our attention on the way g behaves near the singular point. In first place, we shall assume that g is repulsive,
namely:
(Rep) There exists c > 0 such that ⟨g(u), u⟩ < 0 for 0 < |u| < c.

Furthermore, it will be assumed that g is sequentially strongly repulsive, in the following sense:
(Seq) There exists a sequence rn ↘ 0 such that.

sup
|u|=rn


g(u),

u
|u|


→ −∞ as n → ∞.

We shall proceed as follows: firstly, we shall prove existence of at least one solution of an approximated problem. Next,
we shall obtain accurate estimates and deduce the existence of a convergent sequence of these solutions.

In order to define the approximated problems, fix a sequence εn → 0 and consider the problem
1u + gn(u) = f (x) in Ω (3)

together with the nonlocal boundary conditions of (1). Although more general perturbations are admitted, for convenience
we shall define gn by

gn(u) =


g(u) |u| ≥ εn

ρn(|u|)g


εn

u
|u|


0 < |u| < εn

0 u = 0,

(4)

with ρn : [0, εn] → [0, +∞) continuous such that ρn(0) = 0, ρn(εn) = 1.
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The conditions on g shall be, as before, of geometric nature. However, a stronger assumption is needed in order to
obtain uniform estimates. A similar condition has been introduced by one of the authors and De Nápoli in [11] and has
been employed also in [7] for a system of singular periodic ordinary differential equations:

(P1) There exists a family F = {(Uj, wj)}j=1,...,J , where {Uj}j=1,...,J is an open cover of SN−1, constants cj > 0 and wj ∈ SN−1,
such that for j = 1, . . . , K :

lim sup
r→+∞

⟨g(ru), wj⟩ ≤ −cj

uniformly for u ∈ Uj.

Where SN−1 is the unit sphere of RN . On the other hand, we shall take advantage of the repulsiveness condition (Seq),
which ensures that the degree over certain small balls centered at the origin is (−1)N . Thus, (D2) shall be replaced by

(P2) There exists R0 > 0 such that deg(g, BR(0), 0) ≠ (−1)N for R ≥ R0.

We remark that, although g is not defined in 0, we may still use the expression deg(g, BR(0), 0) as a notation to refer to
the Brouwer degree deg(ĝ, BR(0), 0), where ĝ : BR(0) → RN is any continuous function such that ĝ = g on ∂BR(0).

The preceding conditions will allow us to construct a sequence {un} of solutions of the approximated problems that
converges weakly in H1 to some function u. It is easy to see that if u does not vanish on Ω , then u is a classical solution of
the problem. If u ≢ 0 but possibly vanishes in Ω , then we shall call it a generalized solution. With this idea in mind, let us
introduce a stronger repulsiveness condition:

(SR) limu→0 ⟨g(u), u⟩ = −∞.

We now state the main result of Section 3:

Theorem 1.2. Let g : RN
\ {0} → RN be continuous satisfying (B), (Rep), (Seq) and let f ∈ C(Ω, RN) with f = 0. Suppose

that (P1) and (P2) hold and let {gn} be as in (4). Then there exist {un}n solutions of (3), a positive constant r̃ such that ∥un∥∞ ≥ r̃
and a subsequence of {un} that converges weakly in H1 to some function u. If furthermore (SR) is assumed, then u is a generalized
solution of the problem.

Remark 1.3. All the preceding results can be reproduced similarly for the Neumann boundary conditions.

It is worth observing that the passage from ODEs as in [7] to PDEs is not straightforward when one uses the approach of
Section 3. Themain difficulty in the case d > 1 consists in the fact that the Sobolev spaceH1(Ω, RN) is no longer embedded in
the space of continuous functions; thus,H1 bounds do not guarantee the existence of uniformbounds and extra assumptions
are needed in order to ensure that solutions of the approximated problems converge to a generalized solution. Also, some
of the results of [7] seem difficult to extend to the case d > 1: for example, when g = ∇G with limu→0 G(u) = +∞ it is
proved in [7] that every generalized solution is classical. It is not clear whether an analogous result may hold or not for the
case d > 1, even with stronger assumptions.

On the contrary, the proof of Theorem 1.1 is essentially the same both for the cases d = 1 and d > 1. When S = ∅, it
can be regarded as an improvement of the auxiliary result in [7] for the nonsingular case. Also, when S is a single point the
result does not depend on the fact that the singularity is repulsive, and no strong force condition is assumed.

It might be interesting to study possible generalizations to PDEs of some of the existing results for the case d = 1. For
example, the recent work [12] contains new results for the case d = N = 1 that can be extended in an appropriate way for
d > 1, although the generalization for N > 1 is not obvious. For example, Corollary 2.3 in [12] implies, in particular, the
existence of a positive solution for (1) with d = N = 1 and Ω = (0, T ), provided that

1. limu→0+ g(u) = −∞,
 1
0 g(u) du = −∞

2. 0 ≤
g(u)
u ≤


π
T

2
− ε for u ≫ 0 and some ε > 0.

Following the ideas of Theorem 1.1, it is not difficult to prove that an analogous result holds if the first condition is
replaced by

1′. g(u) ≤ 0 on (0, δ) for some δ > 0 large enough.

2. The general case. Proof of Theorem 1.1

Let U = {u ∈ C(Ω, RN) : ∥u − u∥∞ < r, u ∈ D} and consider, for λ ∈ (0, 1], the problem
1u + λĝ(u) = λf (x) in Ω

u = C on ∂Ω
∂Ω

∂u
∂ν

dS = 0,
(5)
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where ĝ : RN
→ RN is continuous and bounded with ĝ = g over D + Br(0). It is clear that if u ∈ U solves (5) for λ = 1 then

u is a solution of (1).
For the reader’s convenience, let us briefly describe how the standard continuation methods [13] can be adapted to our

problem.
Let C̃ := {u ∈ C(Ω, RN) : u = 0} and K : C̃ → C̃ be defined as a right inverse of ∆; namely, for ϕ ∈ C̃ we define u := Kϕ

as the unique solution of the linear problem
1u = ϕ in Ω

u = C on ∂Ω
∂Ω

∂u
∂ν

dS = 0,

u = 0.

(6)

The compactness of K follows from the standard Sobolev embeddings. Next, let Nu = f − ĝ(u) and define the homotopy
h(u, λ) as

h(u, λ) = u −

u + Nu + λK(Nu − Nu)


.

For λ > 0, it is easy to check that u ∈ C(Ω, RN) is a solution of (5) if and only if h(λ, u) = 0. Thus, it suffices to prove that
(5) has no solutions on ∂U for 0 < λ < 1. Indeed, in this case problem (1) has a solution on ∂U or either

deg(h(1, ·),U, 0) = deg(h(0, ·),U, 0) = deg(g,D, 0) ≠ 0.

Let u ∈ ∂U be a solution of (5), then u ∈ D and ∥u − u∥∞ ≤ r , so ĝ ◦ u = g ◦ u. As dist(u, C) ≥ r , we deduce that
u(x) ∈ RN − C and hence |g(u(x))| ≤ supz∉C |g(z)| for all x. This implies

∥∇u∥∞ ≤ k∥1u∥∞ < k(∥f ∥∞ + sup
z∉C

|g(z)|),

and thus

∥u − u∥∞ ≤ diamd(Ω)∥∇u∥∞ < r.

Hence, u ∈ ∂D. Moreover, it follows from the mean value theorem for vector integrals that
1

|Ω|


Ω

g(u(x)) dx ∈ co(g(u(Ω))) ⊂ co(g(Br(u))).

On the other hand, simple integration shows that
Ω

g(u(x)) dx = 0,

so 0 ∈ co(g(Br(u))), a contradiction. �

Remark 2.1. In this framework, takingS = ∅weobtain themain result in [9] for the nonsingular case, conveniently adapted
to our problem.

It is worth noticing that the previous result can be extended for g sublinear, that is:

lim
|u|→∞

g(u)
|u|

= 0.

Indeed, for any given ε > 0, there exist a constant Mε,C such that

|g(u)| ≤ ε|u| + Mε,C ∀u ∈ RN
\ C.

Thus, if u is a solution of problem (1), then

∥∇u∥∞ ≤ k∥1u∥∞ ≤ k

∥f ∥∞ + ε∥u∥∞ + Mε,C


and hence

∥∇u∥∞ ≤ k

∥f ∥∞ + Mε,C + ε(diamd(Ω)∥∇u∥∞ + |u|)


.

Suppose that |u| = R < αKdiamd(Ω) for some constants α > 1, K > 0. If ∥∇u∥ ≥ K , then:

K (1 − kεdiamd(Ω)(1 + α)) ≤ k

∥f ∥∞ + Mε,C


.

Consequently, taking

ε <
1

kdiamd(Ω)(1 + α)
, K >

k

∥f ∥∞ + Mε,C


1 − kεdiamd(Ω)(1 + α)

, r := Kdiamd(Ω), (7)

it follows that any solution u such that |u| = R < αr satisfies:

∥∇u∥∞ < K , ∥u − u∥∞ < r.
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Then we have:

Corollary 2.2. Let g ∈ C(RN
\ S, RN) be sublinear and f ∈ C(Ω, RN) such that f = 0. Let C be a compact neighborhood of S

and assume that for some α, ε, K and r satisfying (7), there exists a set D ⊂ Bαr(0) \ (C + Br(0)) ⊂ RN such that (D1) and (D2)

hold. Then (1) has at least one solution u with u ∈ D and ∥u − u∥∞ ≤ r.

Let us show an example that illustrates the possibility of obtaining multiple solutions. For convenience, let us call
Bρ := Bρ(0) = {u ∈ RN

: |u| < ρ}.

Example 2.3. Let A : RN
→ RN be continuous and bounded, a = ∥A∥∞ and b > 0. Define g(u) =

A(u)
|u|(b−|u|) , so S = {0}∪∂Bb.

Let η > 0 and consider the following compact set:

C = Bη ∪

Bb+η \ Bb−η


.

Hence, RN
\ C = (Bb−η \ Bη) ∪ (RN

\ Bb+η). From the previous computations, the following estimate holds:

∥∇u∥∞ ≤ K := k


∥f ∥∞ +
a

η(b + η)


.

Thus,

r = diamd(Ω)k


∥f ∥∞ +
a

η(b + η)


.

If also b > 2(r + η), then we might be able to obtain two disjoint sets D1,D2
⊂ RN

\ (C + Br) such that:

D1
⊂ Bb−η−r \ Bη+r , D2

⊂ RN
\ Bb+η+r

leading to two different solutions u1, u2 with u1 ∈ D1 and u2 ∈ D2 respectively.
In order to apply our previous result, observe that condition (D1) requires η + 2r < b − η − 2r , that is: b > 4r + 2η.
For example, let T > 0 be large enough and define g : Bb+T \ S → RN by

g(u) :=
(|u| − x1)(|u| − x2) u

|u|(|u| − b)

for some numbers x1, x2 > 0. The numerator of this function can be extended continuously to RN
\S in such a way that a ≤

(b+T )3. Taking diam(Ω) small enough, the preceding inequalities for r are satisfied, so wemay fix x1 ∈ (η+2r, b−η−2r)
and x2 ∈ (b + η + 2r, b + T − 2r).

Thus, all the assumptions are satisfied forD1 andD2; hence, by Theorem1.1we deduce the existence of classical solutions
u1

≠ u2 of problem (1) such that ui ∈ Di, for i = 1, 2.

Remark 2.4. This example shows that if the assumptions of Theorem 1.1 are verified, then the distance between different
connected components of S cannot be too small.

3. The case S = {0}

Before giving a proof of Theorem 1.2, let us make some comments on the concept of generalized solution. Let un be a
weak solution of (3) such that un → uweakly in H1. From the equality

Ω

1unϕ +


Ω

gn(un)ϕ =


Ω

f ϕ ∀ϕ ∈ H

we deduce that the operator A : H → RN given by

Aϕ = lim
n→∞


Ω

gn(un)ϕ

is well defined and continuous, that is: A ∈ H−1. In fact,

Aϕ =


Ω

f ϕdx +


j=1

∇uj
∇ϕjdx

so we may regard it as a pair (f , ∇u) ∈ H−1, namely

Aϕ := (f , ∇u)[ϕ].

Thus, we are able to define the operator G : H → H−1 by

G(u) := (f , ∇u); i.e. G(u)[ϕ] = Aϕ. (8)
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Remark 3.1. As shown in [7], it is always possible to find approximations in such a way that u ≡ 0, this is why we need to
exclude this case in the definition of generalized solution. Indeed, for λ > 0 let Gλ be the Green function associated to the
operator −1u + λu for the nonlocal boundary conditions. Let c(λ) := supx∈Ω ∥Gλ(x, ·)∥L1 , then c(λ) is well defined and
tends to 0 as λ → +∞. Next, define gn in such a way that

gn(u) =


g(u) if |u| ≥

2
n

−λnu if |u| ≤
1
n
,

with λn satisfying c(λn)∥f ∥∞ ≤
1
n for all n. Let un be the unique solution of the linear problem 1u − λnu = f satisfying the

nonlocal boundary conditions, then

|un(x)| =


Ω

Gλn(x, y)f (y) dy
 ≤ c(λn)∥f ∥∞ ≤

1
n
.

Thus, un is a solution of (3) and un → 0 uniformly.

Also, observe that if u does not vanish in Ω then for any ϕ ∈ H then

G(u)[ϕ] = Aϕ = lim
n→∞


Ω

gn(un)ϕdx =


Ω

g(u)ϕdx.

So a generalized solution can be regarded as a nontrivial distributional solution of the equation

1u + G(u) = f .

In order to prove Theorem 1.2, let us state an existence result for the approximated problems:

Proposition 3.2. Let Ω ⊂ Rd a bounded C2 domain. Let g : RN
\ {0} → RN be continuous satisfying (B), (Rep), (Seq) and let

f ∈ C(Ω, RN) with f = 0. Suppose that (P1) and (P2) hold and let {gn} be as in (4). Then there exist {un}n solutions of (3) and a
constant r̃ > 0 such that ∥un∥∞ ≥ r̃ .

Proof. Fix r̃ > 0 such that
g(u),

u
|u|


+ ∥f ∥L∞ < 0 for u ∈ RN

: |u| = r̃ (9)

and n0 ∈ N such that gn ≡ g in RN
\ Br̃ for n ≥ n0. As before, we shall apply the continuation method, now over the set

U := {u ∈ C(Ω, RN) : r̃ < ∥u∥∞ < R}

for some R > r̃ to be specified.
Suppose that for some λ ∈ (0, 1) there exists u ∈ ∂U a solution of (5) with ĝ = gn.
If ∥u∥∞ = r̃ , then we may fix x0 such that ∥u∥∞ = |u(x0)| = r̃ and define φ(x) :=

|u(x)|2

2 .
As gn(u(x0)) = g(u(x0)), if x0 ∈ Ω then it is seen that

1φ(x0) = |∇u(x0)|2 + ⟨u(x0), 1u(x0)⟩ ≥ ⟨u(x0), λ(f (x0) − g(u(x0)))⟩

= λ


⟨u(x0), f (x0)⟩ − |u(x0)|


g(u(x0)),

u(x0)
|u(x0)|


≥ λr̃


−∥f ∥∞ −


g(u(x0)),

u(x0)
|u(x0)|


> 0,

a contradiction.
If x0 ∈ ∂Ω , then r̃ = |C |. Moreover,

∂Ω

∂φ

∂ν
dS =


∂Ω


u,

∂u
∂ν


dS =


C,


∂Ω

∂u
∂ν

dS


= 0. (10)

From the continuity of φ, arguing as before we deduce that, 1φ > 0 in B2δ(x0) ∩ Ω for some δ > 0.
From the standard regularity theory, it follows that u ∈ C2(Ω)∩C1(Ω). Moreover, wemay consider a C2 domainΩ0 ⊂ Ω

such that Bδ ∩ Ω ⊂ Ω0 and Ω0 ⊂ B2δ ∩ Ω; then φ(x0) > φ(x) for every x ∈ Ω0, and from Hopf’s Lemma we obtain

∂φ

∂ν
(x0) > 0.

As u ≡ const on the boundary, it follows that |u(x)| ≡ r̃ and so ∂φ

∂ν
(x) > 0 for each x ∈ ∂Ω . This contradicts (10) and

thus ∥u∥∞ = R.
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Also, ∥u − u∥∞ < r , then from condition (P1) we deduce (D1) by putting D = BR(0) when R is sufficiently large. Indeed,
assume that (P1) holds and fix a positive constant c < cj for all j and R0 such that

⟨g(Ru), wj⟩ < −c, for all u ∈ Uj, R ≥ R0.

In particular, for |v| = R with R > R0 + r large enough, there exists an index j ∈ {1, . . . , J} such that if z ∈ Br(v) then
z
|z| ∈ Uj, and hence ⟨g(z), wj⟩ ≤ −c. In other words, there exists a hyperplane separating 0 and g(Br(v)). Thus, condition
(D1) holds for D = BR(0). Then, using the same arguments as in Theorem 1.1, it follows that ∥u∥∞ < R. Finally, observe that
the repulsiveness condition implies that deg(gn, Br̃(0), 0) = (−1)N . Using the excision property of the degree, condition
(P2) ensures that the degree deg(gn,U ∩ RN , 0) ≠ 0 and so completes the proof. �

The following lemma shows that the solutions of the perturbed problems are also bounded for the H1 norm.

Lemma 3.3. In the situation of Proposition 3.2, there exists a constant C independent of n such that ∥un∥H1 ≤ C for all n.

Proof. As 1un + gn(un) = f (x) in Ω and let us call Cn Let us call Cn the constant value that correspond to un ≡ Cn on ∂Ω ,
we may multiply by un − Cn and integrate to obtain:

Ω

⟨1un + gn(un), un − Cn⟩ dx =


Ω

⟨p, un − Cn⟩ dx.

Integrating by parts, the left hand side is equal to:

−


Ω

|∇un|
2 dx +


∂Ω


∂un

∂ν
, un − Cn


dS +


Ω

⟨gn(un), un − Cn⟩ dx.

As un ≡ Cn on ∂Ω , it follows that

∥∇un∥
2
L2 =


Ω

⟨gn(un), un − Cn⟩ dx −


Ω

⟨p, un − Cn⟩ dx.

Now, taking absolute value and using the Cauchy–Schwarz inequality, we get

∥∇un∥
2
L2 ≤


Ω

⟨gn(un), un − Cn⟩ dx
+ ∥p∥L2∥un − Cn∥L2 .

Let c be the constant in condition (Rep) and write:
Ω

⟨gn(un), un − Cn⟩ dx
 ≤


{|un|<c}

⟨gn(un), un − Cn⟩ dx
+ 

{|un|≥c}
⟨gn(un), un − Cn⟩ dx

 .
Fix n0 ∈ N such that 1

n < c for every n ≥ n0, then gn(un(x)) = g(un(x)) if |un(x)| > c > 1
n and hence on the one hand

{|un|≥c}
⟨gn(un), un − Cn⟩ dx

 ≤ |Ω|
1/2γc∥un − Cn∥L2 ,

where γc := sup|u|>c |g(u)| and, on the other hand, condition (Rep) implies that

|un|<c ⟨gn(un), un⟩ dx ≤ 0, so

{|un|<c}
⟨gn(un), un − Cn⟩ dx ≤ −


{|un|<c}

⟨gn(un), Cn⟩ dx.

Moreover, as


Ω
gn(un) dx = 0, we deduce that

{|un|<c}
⟨gn(un), un − Cn⟩ dx ≤


Cn,


{|un|≥c}

gn(un)


dx ≤ |Ω|

1/2γc |Cn|.

Gathering all together,
Ω

⟨gn(un), un − Cn⟩ dx
 ≤ |Ω|

1/2γc

∥un − Cn∥L2 + |Cn|


.

Thus,

∥∇un∥
2
L2 ≤ C1∥un − Cn∥L2 + C2|Cn|

for some constants C1, C2. Using Poincaré inequality, we deduce the existence of a constant C such that

∥∇un∥
2
L2 ≤ C|Cn|
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and hence

∥un − Cn∥
2
H1 ≤ A + B|Cn| for some A, B > 0.

Suppose that |Cn| is unbounded, then taking a subsequence (still denoted Cn) we may assume that |Cn| → +∞, Cn
|Cn|

→

η ∈ SN−1. From the inequalityun − Cn
√

|Cn|

2
H1

≤
A

|Cn|
+ B ∀n ≥ n0,

we may take again a subsequence and thus assume that un−Cn√
|Cn|

converges almost everywhere and weakly in H1 to some
w ∈ H1.

Let ε > 0 and fixM large enough so that |Ω \ ΩM | < ε, where

ΩM := {x ∈ Ω : |w(x)| ≤ M}.

Then un−Cn
|Cn|

→ 0 and un
|un|

→ η almost everywhere in ΩM .
Fix Uk ⊂ SN−1 as in (P1) such that η ∈ Uk, then writing

⟨g(un(x)), wk⟩ =


g


|un(x)|
un(x)
|un(x)|


, wk


we deduce that

lim sup
n→∞

⟨g(un(x)), wk⟩ ≤ −ck

a.e. in ΩM . Thus we obtain, from Fatou’s Lemma:

lim sup
n→∞


ΩM

⟨g(un(x)), wk⟩ dx ≤


ΩM

lim sup
n→∞

⟨g(un(x)), wk⟩ dx ≤ −ck|ΩM |.

Wemay assume thatM ≥ c , then taking ε <
ck|Ω|

γc
we conclude:

lim sup
n→∞


Ω

⟨g(un(x)), wk⟩ dx ≤ −ck|ΩM | + lim sup
n→∞


Ω\ΩM

⟨g(un(x)), wk⟩ dx

≤ −ck|ΩM | + γc |Ω \ ΩM | < 0,

which contradicts the fact that


Ω
g(un(x)) dx = 0. �

Proof of Theorem 1.2. From the preceding results, there exists a sequence (still denoted {un}) of solutions of the
approximated problems converging a.e. and weakly in H1 to some function u, and also such that ∥un∥∞ ≥ r̃ . It remains
to prove that if (SR) holds then u ≢ 0.

Suppose that u ≡ 0, then from (3) we obtain
Ω

⟨1un(x), un(x)⟩ + ⟨g(un(x)), un(x)⟩ dx =


Ω

⟨p(x), un(x)⟩ dx → 0

as n → ∞. Moreover,
Ω

⟨1un(x), un(x)⟩ dx = −


Ω

|∇un(x)|2 dx

is bounded, and from (SR) an Fatou’s Lemma we obtain

lim sup
n→∞


Ω

⟨g(un(x)), un(x)⟩ dx ≤


Ω

lim sup
n→∞

⟨g(un(x)), un(x)⟩ dx = −∞

a contradiction. �
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