

Reprint from the Bulletin of the Belgian Mathematical Society - Simon Stevin

On a family of Hopf algebras of dimension 72

Nicolás Andruskiewitsch

Cristian Vay

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 415-443

The Bulletin of the Belgian Mathematical Society - Simon Stevin is published by The Belgian Mathematical Society, with financial support from the Universitaire Stichting van Belgie – Fondation Universitaire de Belgique and the Fonds National de la Recherche Scientifique (FNRS). It appears quarterly and is indexed and/or abstracted in Current Contents, Current Mathematical Publications, Mathematical Reviews, Science Citation Index Expanded and Zentralblatt für Mathematik.

The Bulletin of the Belgian Mathematical Society - Simon Stevin is part of Project Euclid (Cornell University Library), an aggregation of electronic journals. It is available online to subscribers to Project Euclid (http://projecteuclid.org).

For more informations about the Belgian Mathematical Society - Simon Stevin, see our web site at http://bms.ulb.ac.be

On a family of Hopf algebras of dimension 72*

Nicolás Andruskiewitsch

Cristian Vay

Abstract

We investigate a family of Hopf algebras of dimension 72 whose coradical is isomorphic to the algebra of functions on S_3 . We determine the lattice of submodules of the so-called Verma modules and as a consequence we classify all simple modules. We show that these Hopf algebras are unimodular (as well as their duals) but not quasitriangular; also, they are cocycle deformations of each other.

Introduction

The study of finite dimensional Hopf algebras over an algebraically closed field \Bbbk of characteristic 0 is split into two different classes: the class of semisimple Hopf algebras and the rest. The Lifting Method from [AS] is designed to deal with non-semisimple Hopf algebras whose coradical is a Hopf subalgebra¹. Pointed Hopf algebras, that is Hopf algebras whose coradical is a group algebra, were intensively studied by this Method. It is natural to consider next the class of Hopf algebras whose coradical is the algebra \Bbbk^G of functions on a non-abelian group *G*. This class seems to be interesting at least by the following reasons:

• The categories of Yetter-Drinfeld modules over the group algebra &G and &G, *G* a finite group, are equivalent. Thence, a lot sensible information needed for the Lifting Method (description of Yetter-Drinfeld modules, determination of finite dimensional Nichols algebras) can be translated from the pointed case to this case –or vice versa.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 415–443

^{*}This work was partially supported by ANPCyT-Foncyt, CONICET, Ministerio de Ciencia y Tecnología (Córdoba) and Secyt (UNC)

¹An adaptation to general non-semisimple Hopf algebras was recently proposed in [AC]. Received by the editors November 2011.

Communicated by M. Van den Bergh.

²⁰¹⁰ Mathematics Subject Classification : 16W30.

Key words and phrases : Representations of Hopf algebras.

• The representation theory of Hopf algebras whose coradical is the algebra of functions on a non-abelian group looks easier that the the representation theory of pointed Hopf algebras with non-abelian group, because the representation theory of \mathbb{k}^G is easier than that of *G*. Indeed, \mathbb{k}^G is a semisimple abelian algebra and we may try to imitate the rich methods in representation theory of Lie algebras, with \mathbb{k}^G playing the role of the Cartan subalgebra. We believe that the representation theory of Hopf algebras with coradical \mathbb{k}^G might be helpful to study Nichols algebras and deformations.

We have started the consideration of this class in [AV], where finite dimensional Hopf algebras whose coradical is \mathbb{k}^{S_3} were classified and, in particular, a new family of Hopf algebras of dimension 72 was defined. The purpose of the present paper is to study these Hopf algebras. We first discuss in Section 1 some general ideas about modules induced from simple \mathbb{k}^G -modules, that we call Verma modules. We introduce in Section 2 a new family of Hopf algebras, as a generalization of the construction in [AV], attached to the class of transpositions in S_n and depending on a parameter **a**.

Our main contributions are in Section 3: we determine the lattice of submodules of the various Verma modules and as a consequence we classify all simple modules over the Hopf algebras of dimension 72 introduced in [AV]. Some further information on these Hopf algebras is given in Section 4 and Section 5.

We assume that the reader has some familiarity with Yetter-Drinfeld modules and Nichols algebras $\mathcal{B}(V)$; we refer to [AS] for these matters.

Conventions

If *V* is a vector space, T(V) is the tensor algebra of *V*. If *S* is a subset of *V*, then we denote by $\langle S \rangle$ the vector subspace generated by *S*. If *A* is an algebra and *S* is a subset of *A*, then we denote by (*S*) the two-sided ideal generated by *S* and by $\Bbbk \langle S \rangle$ the subalgebra generated by *S*. If *H* is a Hopf algebra, then Δ , ϵ , *S* denote respectively the comultiplication, the counit and the antipode. We denote by \hat{R} the set of isomorphism classes of a simple *R*-modules, *R* an algebra; we identify a class in \hat{R} with a representative without further notice. If *S*, *T* and *M* are *R*-modules, we say that *M* is an extension of *T* by *S* when *M* fits into an exact sequence $0 \rightarrow S \rightarrow M \rightarrow T \rightarrow 0$.

1 Preliminaries

1.1 The induced representation

We collect well-known facts about the induced representation. Let *B* be a subalgebra of an algebra *A* and let *V* be a left *B*-module. The induced module is $\operatorname{Ind}_{B}^{A} V = A \otimes_{B} V$. The induction has the following properties:

Universal property: if W is an A-module and φ : V → W is a morphism of B-modules, then it extends to a morphism of A-modules φ̄ : Ind^A_B V →

W. Hence, there is a natural isomorphism (called Frobenius reciprocity): $\operatorname{Hom}_B(V, \operatorname{Res}_B^A W) \simeq \operatorname{Hom}_A(\operatorname{Ind}_B^A V, W)$; in categorical terms, *induction is left-adjoint to restriction*.

• Any finite dimensional simple *A*-module is a quotient of the induced module of a simple *B*-module.

Indeed, let *S* be a finite dimensional simple *A*-module and let *T* be a simple *B*-submodule of *S*. Then the induced morphism $\text{Ind}_B^A T \to S$ is surjective.

• If *B* is semisimple, then any induced module is projective.

The induction functor, being left adjoint to the restriction one, preserves projectives, and any module over a semisimple algebra is projective.

• If *A* is a free right *B*-module, say $A \simeq B^{(I)}$, then $\operatorname{Ind}_B^A V = B^{(I)} \otimes_B V = V^{(I)}$ as *B*-modules, and a fortiori as vector spaces.

We summarize these basic properties in the setting of finite dimensional Hopf algebras, where freeness over Hopf subalgebras is known [NZ]. Also, finite dimensional Hopf algebras are Frobenius, so that injective modules are projective and vice versa.

Proposition 1. Let A be a finite dimensional Hopf algebra and let B be a semisimple Hopf subalgebra.

- If $T \in \widehat{B}$, then dim $\operatorname{Ind}_{B}^{A} T = \frac{\dim T \dim A}{\dim B}$.
- Any finite dimensional simple A-module is a quotient of the induced module of a simple B-module.
- *The induced module of a finite dimensional B-module is injective and projective.*

1.2 Representation theory of Hopf algebras with coradical a dual group algebra

An optimal situation to apply the Proposition 1 is when the coradical of the finite dimensional Hopf algebra A is a Hopf subalgebra; in this case B = coradical of A is the best choice. It is tempting to say that the induced module of a simple B-module is a *Verma module* of A.

Assume now the coradical *B* of the finite dimensional Hopf algebra *A* is the algebra of functions \mathbb{k}^{G} on a finite group *G*. In this case, we have:

• Any simple *B*-module has dimension 1 and $\widehat{B} \simeq G$; for $g \in G$, the simple module \Bbbk_g has the action $f \cdot 1 = f(g)1$, $f \in \Bbbk^G$. Thus any simple *A*-module is a quotient of a Verma module $M_g := \operatorname{Ind}_{\Bbbk^G} \Bbbk_g$, for some $g \in G$.

• The ideal $A\delta_g$ is isomorphic to M_g and $A \simeq \bigoplus_{g \in G} M_g$; here δ_g is the characteristic function of the subset $\{g\}$.

• Let $g \in G$ such that δ_g is a primitive idempotent of A. Since A is Frobenius, $M_g \simeq A\delta_g$ has a unique simple submodule S and a unique maximal submodule N; M_g is the injective hull of S and the projective cover of M_g/N . See [CR, (9.9)].

• In all known cases, $\operatorname{gr} A \simeq \mathcal{B}(V) \# \mathbb{k}^G$, where *V* belongs to a concrete and short list. Hence, dim $M_g = \dim \mathcal{B}(V)$ for any $g \in G$. More than this, in all known cases we dispose of the following information:

- There exists a rack *X* and a 2-cocycle $q \in Z^2(X, \mathbb{k}^{\times})$ such that $V \simeq (\mathbb{k}X, c^q)$ as braided vector spaces, see [AG] for details.
- There exists an epimorphism of Hopf algebras $\phi : T(V) \# \mathbb{k}^G \to A$, see [AV, Subsection 2.5] for details. Note that $\phi(f \cdot x) = \operatorname{ad} f(\phi(x))$ for all $f \in \mathbb{k}^G$ and $x \in T(V)$.
- Let X be the set of words in X, identified with a basis of the tensor algebra T(V). There exists $\mathbb{B} \subset X$ such that the classes of the monomials in \mathbb{B} form a basis of $\mathcal{B}(V)$. The corresponding classes in A multiplied with the elements $\delta_g \in \mathbb{k}^G$, $g \in G$, form a basis of A.
- If $x \in X$, then there exists $g_x \in G$ such that $\delta_h \cdot x = \delta_{h,g_x} x$ for all $h \in G$. We extend this to have $g_x \in G$ for any $x \in X$.
- If $x \in X$, then $x^2 = 0$ in $\mathcal{B}(V)$ and there exists $f_x \in \mathbb{k}^G$ such that $x^2 = f_x$ in *A*.

Let $g \in G$. If $x \in \mathbb{B}$, then we denote by m_x the class of x in M_g . Hence $(m_x)_{x \in \mathbb{B}}$ is a basis of M_g . We may describe the action of A on this basis of M_g , at least when we know explicitly the relations of A and the monomials in \mathbb{B} . To start with, let $f \in \mathbb{k}^G$ and $x \in \mathbb{B}$. Then

$$f \cdot m_x = \overline{fx \otimes 1} = \overline{f_{(1)}} \cdot x f_{(2)} \otimes \overline{1} = \overline{f_{(1)}} \cdot x \otimes f_{(2)} \cdot \overline{1}$$

= $f(g_x g) m_x.$ (1)

Let now $x = x_1 \dots x_t$ be a monomial in \mathbb{B} , with $x_1, \dots, x_t \in X$. Set $y = x_2 \dots x_t$; observe that y need not be in \mathbb{B} . Then

$$x_1 \cdot m_x = \overline{x_1^2 x_2 \dots x_t \otimes 1} = \overline{f_{x_1} y \otimes 1} = f_{x_1}(g_y g) \overline{y \otimes 1}.$$
 (2)

Let now *M* be a finite dimensional *A*-module. It is convenient to consider the decomposition of *M* in isotypic components as \mathbb{k}^{G} -module: $M = \bigoplus_{g \in G} M[g]$, where $M[g] = \delta_{g} \cdot M$. Note that

$$x \cdot M[g] = M[g_x g]$$
 for all $x \in \mathbb{B}$, $g \in G$. (3)

For instance, (1) says that the isotypic components of the Verma module M_g are $M_g[h] = \langle m_x : x \in \mathbb{B}, g_x g = h \rangle$.

2 Hopf algebras related to the class of transpositions in the symmetric group

2.1 Quadratic Nichols algebras

Let $n \ge 3$; denote by \mathcal{O}_2^n the conjugacy class of (12) in \mathbb{S}_n and by sgn : $C_{\mathbb{S}_n}(12) \to \mathbb{k}$ the restriction of the sign representation of \mathbb{S}_n to the centralizer of (12). Let $V_n = M((12), \operatorname{sgn}) \in \frac{\mathbb{k}^{\mathbb{S}_n}}{\mathbb{k}^{\mathbb{S}_n}} \mathcal{YD}$; V_n has a basis $(x_{(ij)})_{(ij)\in\mathcal{O}_2^n}$ such that the action \cdot and the coaction δ are given by

$$\delta_h \cdot x_{(ij)} = \delta_{h,(ij)} x_{(ij)} \forall h \in S_n$$
 and $\delta(x_{(ij)}) = \sum_{h \in S_n} \operatorname{sgn}(h) \delta_h \otimes x_{h^{-1}(ij)h}$

Let n = 3, 4, 5. By [MS, G], we know that $\mathcal{B}(V_n)$ is quadratic and finite dimensional; actually, the ideal \mathcal{J}_n of relations of $\mathcal{B}(V_n)$ is generated by

$$x_{(ij)}^2, \tag{4}$$

$$R_{(ij)(kl)} := x_{(ij)} x_{(kl)} + x_{(kl)} x_{(ij)},$$
(5)

$$R_{(ij)(ik)} := x_{(ij)}x_{(ik)} + x_{(ik)}x_{(jk)} + x_{(jk)}x_{(ij)}$$
(6)

for $(ij), (kl), (ik) \in \mathcal{O}_2^n$ with $\#\{i, j, k, l\} = 4$.

For $n \ge 6$, we define the *quadratic Nichols algebra* \mathcal{B}_n in the same way, that is as the quotient of the tensor algebra $T(V_n)$ by the ideal generated by the quadratic relations (4), (5) and (6) for (ij), (kl), $(ik) \in \mathcal{O}_2^n$ with $\#\{i, j, k, l\} = 4$. It is however open whether:

- $\mathcal{B}(V_n)$ is quadratic, i. e. isomorphic to \mathcal{B}_n ;
- the dimension of $\mathcal{B}(V_n)$ is finite;
- the dimension of \mathcal{B}_n is finite.

But we do know that the only possible finite dimensional Nichols algebras² over S_n are related to the orbit of transpositions and a pair of characters [AFGV, Th. 1.1]. Also, the Nichols algebras related to these two characters are twist-equivalent [Ve].

2.2 The parameters

We consider the set of parameters

$$\mathfrak{A}_n := \Big\{ \mathbf{a} = (a_{(ij)})_{(ij) \in \mathcal{O}_2^n} \in \mathbb{k}^{\mathcal{O}_2^n} : \sum_{(ij) \in \mathcal{O}_2^n} a_{(ij)} = 0 \Big\}.$$

²There is one exception when n = 4 that is finite dimensional and two exceptions when n = 5 and 6 that are not known.

The group $\Gamma_n := \mathbb{k}^{\times} \times \operatorname{Aut}(\mathbb{S}_n)$ acts on \mathfrak{A}_n by

$$(\mu, \theta) \triangleright \mathbf{a} = \mu(a_{\theta(ij)}), \qquad \mu \in \mathbb{k}^{\times}, \qquad \theta \in \operatorname{Aut}(\mathbb{S}_n), \qquad \mathbf{a} \in \mathfrak{A}_n.$$
 (7)

Let $[\mathbf{a}] \in \Gamma_n \setminus \mathfrak{A}_n$ be the class of \mathbf{a} under this action. Let \triangleright denote also the conjugation action of \mathbb{S}_n on itself, so that $\mathbb{S}_n < \{e\} \times \operatorname{Aut}(\mathbb{S}_n) < \Gamma_n$. Let $\mathbb{S}_n^{\mathbf{a}} = \{g \in \mathbb{S}_n | g \triangleright \mathbf{a} = \mathbf{a}\}$ be the isotropy group of \mathbf{a} under the action of \mathbb{S}_n .

We fix $\mathbf{a} \in \mathfrak{A}_n$ and introduce

$$f_{ij} = \sum_{g \in \mathbb{S}_n} (a_{(ij)} - a_{g^{-1}(ij)g}) \delta_g \in \mathbb{k}^{\mathbb{S}_n}, \qquad (ij) \in \mathcal{O}_2^n.$$
(8)

Clearly,

$$f_{ij}(ts) = f_{ij}(s) \qquad \forall t \in C_{\mathbb{S}_n}(ij), \quad s \in \mathbb{S}_n.$$
(9)

Definition 2. We say that g and $h \in S_n$ are **a**-*linked*, denoted $g \sim_{\mathbf{a}} h$, if either g = h or else there exist $(i_m j_m), \ldots, (i_1 j_1) \in \mathcal{O}_2^n$ such that

- $g = (i_m j_m) \cdots (i_1 j_1)h$,
- $f_{i_s j_s}((i_s j_s)(i_{s-1} j_{s-1}) \cdots (i_1 j_1)h) \neq 0$ for all $1 \le s \le m$.

In particular, $f_{i_1j_1}(h) \neq 0$ by (9). We claim that $\sim_{\mathbf{a}}$ is an equivalence relation. For, if *g* and $h \in \mathbb{S}_n$ are **a**-linked, then $h = (i_1j_1) \cdots (i_mj_m)g$ and

$$\begin{aligned} f_{i_s j_s}((i_s j_s)(i_{s+1} j_{s+1}) \cdots (i_m j_m)g) &= f_{i_s j_s}((i_{s-1} j_{s-1}) \cdots (i_1 j_1)h) \\ &\stackrel{(9)}{=} f_{i_s j_s}((i_s j_s)(i_{s-1} j_{s-1}) \cdots (i_1 j_1)h) \neq 0. \end{aligned}$$

In the same way, we see that if $g \sim_{\mathbf{a}} h$ and also $h \sim_{\mathbf{a}} z$, then $g \sim_{\mathbf{a}} z$.

2.3 A family of Hopf algebras

We fix $\mathbf{a} \in \mathfrak{A}_n$; recall the elements f_{ij} defined in (8). Let $\mathcal{I}_{\mathbf{a}}$ be the ideal of $T(V_n) \# \mathbb{k}^{S_n}$ generated by (5), (6) and

$$x_{(ij)}^2 - f_{ij},$$
 (10)

for all $(ij), (kl), (ik) \in \mathcal{O}_2^n$ such that $\#\{i, j, k, l\} = 4$. Then

$$\mathcal{A}_{[\mathbf{a}]} := T(V_n) \# \mathbb{k}^{S_n} / \mathcal{I}_{\mathbf{a}}$$

is a Hopf algebra, see Remark 3. Also, if $\operatorname{gr} \mathcal{A}_{[\mathbf{a}]} \simeq \mathcal{B}(V_n) \# \mathbb{k}^{S_n} \simeq \operatorname{gr} \mathcal{A}_{[\mathbf{b}]}$, then $\mathcal{A}_{[\mathbf{a}]} \simeq \mathcal{A}_{[\mathbf{b}]}$ if and only if $[\mathbf{a}] = [\mathbf{b}]$, what justifies the notation. If n = 3, then $\operatorname{gr} \mathcal{A}_{[\mathbf{a}]} \simeq \mathcal{B}(V_3) \# \mathbb{k}^{S_3}$ and $\operatorname{dim} \mathcal{A}_{[\mathbf{a}]} = 72$ [AV]; for n = 4, 5 the dimension is finite but we do not know if it is the "right" one; for $n \ge 6$, the dimension is unknown to be finite.

³It is well-known that S_n identifies with the group of inner automorphisms and that this equals Aut S_n , except for n = 6.

Remark 3. A straightforward computation shows that

$$\Delta(x_{(ij)}^2) = x_{(ij)}^2 \otimes 1 + \sum_{h \in \mathbb{S}_n} \delta_h \otimes x_{h^{-1}(ij)h}^2 \quad \text{and} \\ \Delta(f_{ij}) = f_{ij} \otimes 1 + \sum_{h \in \mathbb{S}_n} \delta_h \otimes f_{h^{-1}(i)h^{-1}(j)}.$$

Then $J = \langle x_{(ij)}^2 - f_{ij} : (ij) \in \mathcal{O}_2^n \rangle$ is a coideal. Since $f_{ij}(e) = 0$, we have that $J \subset \ker e$ and $\mathcal{S}(J) \subseteq \Bbbk^{\mathbb{S}_n} J$. Thus $\mathcal{I}_{\mathbf{a}} = (J)$ is a Hopf ideal and $\mathcal{A}_{[\mathbf{a}]}$ is a Hopf algebra quotient of $T(V_n) \# \Bbbk^{\mathbb{S}_n}$. We shall say that $\Bbbk^{\mathbb{S}_n}$ *is a subalgebra of* $\mathcal{A}_{[\mathbf{a}]}$ to express that the restriction of the projection $T(V_n) \# \Bbbk^{\mathbb{S}_n} \twoheadrightarrow \mathcal{A}_{[\mathbf{a}]}$ to $\Bbbk^{\mathbb{S}_n}$ is injective.

Let us collect a few general facts on the representation theory of $\mathcal{A}_{[a]}$.

Remark 4. Assume that \mathbb{k}^{S_n} is a subalgebra of $\mathcal{A}_{[a]}$ and let *M* be an $\mathcal{A}_{[a]}$ -module. Hence

- (a) If $(ij) \in \mathcal{O}_2^n$ satisfies $f_{ij}(h) \neq 0$, then $\rho(x_{(ij)}) : M[h] \to M[(ij)h]$ is an isomorphism.
- (b) Let $g \sim_{\mathbf{a}} h \in S_n$. Then $\rho(x_{(i_m j_m)}) \circ \cdots \circ \rho(x_{(i_1 j_1)}) : M[h] \to M[g]$ is an isomorphism.

Proof. $\rho(x_{(ij)}) : M[h] \to M[(ij)h]$ is injective and $\rho(x_{(ij)}) : M[(ij)h] \to M[h]$ is surjective, by (10). Interchanging the roles of *h* and (ij)*h*, we get (a). Now (b) follows from (a).

This Remark is particularly useful to compare Verma modules.

Proposition 5. Assume that dim $\mathcal{A}_{[\mathbf{a}]} < \infty$ and \mathbb{k}^{S_n} is a subalgebra of $\mathcal{A}_{[\mathbf{a}]}$. If g and h are \mathbf{a} -linked, then the Verma modules M_g and M_h are isomorphic.

Proof. The Verma module M_h is generated by $m_1 = 1 \otimes_{\mathbb{k}} S_n 1 \in M_h[h]$. By Remark 4 (b), there exists $m \in M_h[g]$ such that $M_h = \mathcal{A}_{[\mathbf{a}]} \cdot m$. Therefore, there is an epimorphism $M_g \twoheadrightarrow M_h$. Since $\mathcal{A}_{[\mathbf{a}]}$ is finite dimensional, all the Verma modules have the same dimension; hence $M_g \simeq M_h$.

Definition 6. We say that the parameter **a** is *generic* when any of the following equivalent conditions holds.

- (a) $a_{(ij)} \neq a_{(kl)}$ for all $(ij) \neq (kl) \in \mathcal{O}_2^n$.
- (b) $a_{(ij)} \neq a_{h \triangleright (ij)}$ for all $(ij) \in \mathcal{O}_2^n$ and all $h \in \mathbb{S}_n C_{\mathbb{S}_n}(ij)$.
- (c) $f_{ij}(h) \neq 0$ for all $(ij) \in \mathcal{O}_2^n$ and all $h \in \mathbb{S}_n C_{\mathbb{S}_n}(ij)$.

Proof. (a) \implies (b) is clear, since $(ij) \neq h \triangleright (ij)$ by the assumption on h. (b) \implies (a) follows since any $(kl) \neq (ij)$ is of the form $(kl) = h \triangleright (ij)$, for some $h \notin S_n^{(ij)}$. (b) \iff (c): given (ij), we have

$${h \in S_n : a_{(ij)} = a_{h \triangleright (ij)}} = {h \in S_n : f_{ij}(h) = 0};$$

hence, one of these sets equals $C_{S_n}(ij)$ iff the other does.

Lemma 7. Assume that **a** is generic, so that $g \sim_{\mathbf{a}} h$ for all $g, h \in S_n - \{e\}$. If \mathbb{k}^{S_n} is a subalgebra of $\mathcal{A}_{[\mathbf{a}]}$, then

- (a) If $\mathcal{A}_{[\mathbf{a}]}$ is finite dimensional, then the Verma modules M_g and M_h are isomorphic, for all $g, h \in S_n \{e\}$.
- (b) If *M* is an $\mathcal{A}_{[a]}$ -module, then dim $M[h] = \dim M[g]$ for all $g, h \in S_n \{e\}$. Thus dim $M = (n! 1) \dim M[(ij)] + \dim M[e]$.
- (c) If *M* is simple and n = 3, then dim $M[h] \le 1$ for all $h \in S_3 \{e\}$.

Proof. Let $(ij) \in S_n$ and $g \in S_n - \{e\}$.

- If g = (ik), then $g \sim_{\mathbf{a}} (ij)$, as (ik) = (ij)(jk)(ij) and **a** is generic.
- If g = (kl) with $\#\{i, j, l, k\} = 4$, then $(ij) \sim_{\mathbf{a}} (ik)$ and $(ik) \sim_{\mathbf{a}} (kl)$, hence $(ij) \sim_{\mathbf{a}} (kl)$.
- If $g = (i_1 i_2 \cdots i_r)$ is an *r*-cycle, then $g = (i_1 i_r)(i_1 i_2 \cdots i_{r-1})$. Hence $g \sim_a (ij)$ by induction on *r*.
- Let $g = g_1 \cdots g_m$ be the product of the disjoint cycles g_1, \ldots, g_m , with $m \ge 2$; say $g_1 = (i_1 \cdots i_r)$, $g_2 = (i_{r+1} \cdots i_{r+s})$ and denote $y = g_3 \cdots g_m$. Then $g = (i_1 i_{r+1})(i_1 \cdots i_{r+s})y$ and $y \in C_{S_n}(i_1 i_{r+1})$. Hence g and (ij) are linked by induction on m.

Now (a) follows from Proposition 5 and (b) from Remark 4. If n = 3 and M is simple, then dim $\mathcal{A}_{[\mathbf{a}]} = 72 > (\dim M)^2 \ge 25(\dim M[(12)])^2$ and the last assertion of the lemma follows.

The characterization of all one dimensional $\mathcal{A}_{[\mathbf{a}]}$ -modules is not difficult. Let \approx be the equivalence relation in \mathcal{O}_2^n given by $(ij) \approx (kl)$ iff $a_{(ij)} = a_{(kl)}$. Let $\mathcal{O}_2^n = \coprod_{s \in Y} \mathcal{C}_s$ be the associated partition. If $h \in S_n$, then

$$f_{ij}(h) = 0 \,\forall (ij) \in \mathcal{O}_2^n \iff h^{-1}\mathcal{C}_s h = \mathcal{C}_s \,\forall s \in \mathbf{Y} \iff h \in \mathbf{S}_n^{\mathbf{a}}. \tag{11}$$

Lemma 8. Assume that $\mathbb{k}^{\mathbb{S}_n}$ is a subalgebra of $\mathcal{A}_{[\mathbf{a}]}$ and let $h \in \mathbb{S}_n^{\mathbf{a}}$. Then \mathbb{k}_h is a $\mathcal{A}_{[\mathbf{a}]}$ -module with the action given by the algebra map $\zeta_h : \mathcal{A}_{[\mathbf{a}]} \to \mathbb{k}$,

$$\zeta_h(x_{(ij)}) = 0, \quad (ij) \in \mathcal{O}_2^n \quad and \quad \zeta_h(f) = f(h), \quad f \in \mathbb{k}^{S_n}.$$
 (12)

The one-dimensional representations of $\mathcal{A}_{[\mathbf{a}]}$ *are all of this form.*

Proof. Clearly, ζ_h satisfies the relations of $T(V_n) \# \mathbb{k}^{S_n}$, (5) and (6); (10) holds because *h* fulfills (11). Now, let *M* be a module of dimension 1. Then M = M[h] for some *h*; thus $f_{ij}(h) = 0$ for all $(ij) \in \mathcal{O}_2^n$ by Remark 4.

3 Simple and Verma modules over Hopf algebras with coradical \Bbbk^{S_3}

3.1 Verma modules

In this Section, we focus on the case n = 3. Let $\mathbf{a} \in \mathfrak{A}_3$. Explicitly, $\mathcal{A}_{[\mathbf{a}]}$ is the algebra $(T(V_3) \# \mathbb{k}^{S_3}) / \mathcal{I}_{\mathbf{a}}$ where $\mathcal{I}_{\mathbf{a}}$ is the ideal generated by

$$R_{(13)(23)}, \qquad R_{(23)(13)}, \qquad x_{(ij)}^2 - f_{ij}, \qquad (ij) \in \mathcal{O}_2^3, \qquad (13)$$

where

$$f_{13} = (a_{(13)} - a_{(23)})(\delta_{(12)} + \delta_{(123)}) + (a_{(13)} - a_{(12)})(\delta_{(23)} + \delta_{(132)}),$$

$$f_{23} = (a_{(23)} - a_{(12)})(\delta_{(13)} + \delta_{(123)}) + (a_{(23)} - a_{(13)})(\delta_{(12)} + \delta_{(132)}),$$
 (14)

$$f_{12} = (a_{(12)} - a_{(13)})(\delta_{(23)} + \delta_{(123)}) + (a_{(12)} - a_{(23)})(\delta_{(13)} + \delta_{(132)}).$$

We know from [AV] that $\mathcal{A}_{[\mathbf{a}]}$ is a Hopf algebra of dimension 72 and coradical isomorphic to \mathbb{k}^{S_3} , for any $\mathbf{a} \in \mathfrak{A}_3$. Furthermore, any finite dimensional non-semisimple Hopf algebra with coradical \mathbb{k}^{S_3} is isomorphic to $\mathcal{A}_{[\mathbf{a}]}$ for some $\mathbf{a} \in \mathfrak{A}_3$; $\mathcal{A}_{[\mathbf{b}]} \simeq \mathcal{A}_{[\mathbf{a}]}$ iff $[\mathbf{a}] = [\mathbf{b}]$. Let $\Omega = f_{13}((12)) - f_{13}$, that is

$$\Omega = (a_{(23)} - a_{(13)})(\delta_{(12)} - \delta_e) + (a_{(13)} - a_{(12)})(\delta_{(13)} - \delta_{(132)}) + (a_{(12)} - a_{(23)})(\delta_{(23)} - \delta_{(123)}).$$
(15)

The following formulae follow from the defining relations:

$$x_{(12)}x_{(13)}x_{(12)} = x_{(13)}x_{(12)}x_{(13)} + x_{(23)}(a_{(13)} - a_{(12)}),$$
(16)

$$x_{(23)}x_{(12)}x_{(23)} = x_{(12)}x_{(23)}x_{(12)} - x_{(13)}(a_{(23)} - a_{(12)})$$
 and (17)

$$x_{(23)}x_{(12)}x_{(13)} = x_{(13)}x_{(12)}x_{(23)} + x_{(12)}\Omega.$$
(18)

Let

$$\mathbb{B} = \begin{cases} 1, & x_{(13)}, & x_{(13)}x_{(12)}, & x_{(13)}x_{(12)}x_{(13)}, & x_{(13)}x_{(12)}x_{(23)}x_{(12)}, \\ & x_{(23)}, & x_{(12)}x_{(13)}, & x_{(12)}x_{(23)}x_{(12)}, \\ & x_{(12)}, & x_{(23)}x_{(12)}, & x_{(13)}x_{(12)}x_{(23)}, \\ & & x_{(12)}x_{(23)} \end{cases} \right\}.$$

Then $\{x\delta_g | x \in \mathbb{B}, g \in \mathbb{S}_3\}$ is a basis of $\mathcal{A}_{[\mathbf{a}]}$ [AV]. Fix $g \in G$. The classes of the monomials in \mathbb{B} form a basis of the Verma module M_g . Denote by $m_{(ij)\dots(rs)}$ the class of $x_{(ij)}\dots x_{(rs)}$; we simply set $m_{top} = m_{(13)(12)(23)(12)}$. The action of $\mathcal{A}_{[\mathbf{a}]}$ on M_g is described in this basis by the following formulae:

$$f \cdot m_1 = f(g)m_1, \qquad \qquad f \in \mathbb{k}^{S_3}; \qquad (19)$$

$$f \cdot m_{(ij)\dots(rs)} = f((ij)\dots(rs)g) m_{(ij)\dots(rs)}, \qquad f \in \mathbb{k}^{S_3}; \qquad (20)$$

$$x_{(ij)} \cdot m_1 = m_{(ij)},$$
 (ij) $\in \mathcal{O}_2^3;$ (21)

$$x_{(ij)} \cdot m_{(ij)} = f_{ij}(g)m_1,$$
 (ij) $\in \mathcal{O}_2^3;$ (22)

$$x_{(13)} \cdot m_{(23)} = -m_{(23)(12)} - m_{(12)(13)}, \tag{23}$$

$$\begin{aligned} x_{(13)} \cdot m_{(12)} &= m_{(13)(12)}, \end{aligned} \tag{24} \\ x_{(25)} \cdot m_{(25)} &= -m_{(25)(25)} - m_{(25)(25)} \end{aligned}$$

$$x_{(23)} \cdot m_{(13)} = -m_{(12)(23)} - m_{(13)(12)}, \tag{25}$$

$$x_{(23)} \cdot m_{(12)} = m_{(23)(12)}, \tag{26}$$

$$x_{(12)} \cdot m_{(13)} = m_{(12)(13)}, \tag{27}$$

$$x_{(12)} \cdot m_{(23)} = m_{(12)(23)}; \tag{28}$$

$$x_{(13)} \cdot m_{(13)(12)} = f_{13}((12)g) \, m_{(12)},\tag{29}$$

$$x_{(13)} \cdot m_{(12)(13)} = m_{(13)(12)(13)}, \tag{30}$$

$$x_{(13)} \cdot m_{(23)(12)} = -m_{(13)(12)(13)} - f_{13}((23)g) m_{(23)}$$
(31)

$$x_{(13)} \cdot m_{(12)(23)} = m_{(13)(12)(23)}; \tag{32}$$

$$x_{(23)} \cdot m_{(13)(12)} = -m_{(12)(23)(12)} - f_{12}(g)m_{(13)}, \tag{33}$$

$$x_{(23)} \cdot m_{(12)(13)} = m_{(13)(12)(23)} + \Omega(g)m_{(12)}, \tag{34}$$

$$x_{(23)} \cdot m_{(23)(12)} = f_{23}((12)g)m_{(12)}, \tag{35}$$

$$x_{(23)} \cdot m_{(12)(23)} = m_{(12)(23)(12)} - m_{(13)} f_{23}((13)), \tag{36}$$

$$x_{(12)} \cdot m_{(13)(12)} = m_{(13)(12)(13)} + m_{(23)} f_{13}((23)), \tag{37}$$

$$x_{(12)} \cdot m_{(12)(13)} = f_{12}((13)g)m_{(13)},$$
(38)

$$x_{(12)} \cdot m_{(23)(12)} = m_{(12)(23)(12)}, \tag{39}$$

$$x_{(12)} \cdot m_{(12)(23)} = f_{12}((23)g)m_{(23)}; \tag{40}$$

$$x_{(13)} \cdot m_{(13)(12)(13)} = f_{13}((12)(13)g) \, m_{(12)(13)}, \tag{41}$$

$$x_{(13)} \cdot m_{(12)(23)(12)} = m_{\text{top}},\tag{42}$$

$$x_{(13)} \cdot m_{(13)(12)(23)} = f_{13}((12)(23)g) m_{(12)(23)}, \tag{43}$$

$$x_{(23)} \cdot m_{(13)(12)(13)} = m_{top} - (f_{12}\Omega + (a_{(13)} - a_{(12)})f_{23})(g)m_1, \tag{44}$$

$$x_{(23)} \cdot m_{(12)(23)(12)} = f_{12}(g)m_{(12)(23)} + (a_{(12)} - a_{(23)})m_{(13)(12)}, \tag{45}$$

$$x_{(23)} \cdot m_{(13)(12)(23)} = f_{23}((23)(12)g)m_{(12)(13)} - \Omega(g)m_{(23)(12)}, \tag{46}$$

$$x_{(12)} \cdot m_{(13)(12)(13)} = (f_{13}(g) + f_{12}((23)))m_{(13)(12)} + f_{12}((23))m_{(12)(23)},$$
(47)

$$x_{(12)} \cdot m_{(12)(23)(12)} = f_{12}((23)(12)g) m_{(23)(12)}, \tag{48}$$

$$x_{(12)} \cdot m_{(13)(12)(23)} = -m_{top} + (f_{13}(23))f_{23} - f_{12}(13))f_{13}(g)m_1;$$
(49)

$$x_{(13)} \cdot m_{\text{top}} = f_{13}(g) \, m_{(12)(23)(12)}, \tag{50}$$

$$x_{(23)} \cdot m_{\text{top}} = f_{23}(g)m_{(13)(12)(13)} + (f_{13}(23))f_{23} + \Omega f_{12}(g)m_{(23)}, \tag{51}$$

$$x_{(12)} \cdot m_{top} = -f_{12}(g)m_{(13)(12)(23)} + (f_{13}((23))f_{23}((12)) - f_{12}((23))f_{13}((12)))(g)m_{(12)};$$
(52)

To proceed with the description of the simple modules, we split the consideration of the algebras $\mathcal{A}_{[\mathbf{a}]}$ into several cases.

- $a_{(13)} = a_{(12)} = a_{(23)}$. In this case, there is a projection $\mathcal{A}_{[\mathbf{a}]} \to \mathbb{k}^{S_3}$. It is easy to see that any simple $\mathcal{A}_{[a]}$ -module is obtained from a simple \Bbbk^{S_3} -module composing with this projection; thus, $\widehat{\mathcal{A}_{[\mathbf{a}]}} \simeq \mathbb{S}_3$.
- $a_{(13)} = a_{(12)}$ or $a_{(23)} = a_{(12)}$ or $a_{(13)} = a_{(23)}$, but not in the previous case. Up to isomorphism, cf. (7), we may assume $a_{(12)} \neq a_{(13)} = a_{(23)}$. For shortness, we shall say that **a** is *sub-generic*.
- a is generic.

In the next subsections, we investigate these two different cases. Let us consider the decomposition of the Verma module M_g in isotypic components as \mathbb{k}^{S_3} modules. The isotypic components of the Verma module M_e are

$$M_{e}[e] = \langle m_{1}, m_{top} \rangle, \qquad M_{e}[(12)] = \langle m_{(12)}, m_{(13)(12)(23)} \rangle, M_{e}[(13)] = \langle m_{(13)}, m_{(12)(23)(12)} \rangle, \qquad M_{e}[(23)] = \langle m_{(23)}, m_{(13)(12)(13)} \rangle,$$
(53)
$$M_{e}[(123)] = \langle m_{(13)(12)}, m_{(12)(23)} \rangle, \qquad M_{e}[(132)] = \langle m_{(12)(13)}, m_{(23)(12)} \rangle.$$

Let $g, h \in S_3$, $(ij) \in O_2^3$. By (20) and (3), we have

$$M_g[h] = M_e[hg^{-1}], (54)$$

It is convenient to introduce the following elements:

$$m_{\rm soc} = f_{13}((23))f_{23}((13))m_1 - m_{\rm top},\tag{56}$$

$$m_{\rm o} = m_{(13)(12)(13)} + f_{13}((23))m_{(23)}.$$
(57)

3.2 Case $a \in \mathfrak{A}_3$ generic.

To determine the simple $\mathcal{A}_{[a]}$ -modules, we just need to determine the maximal submodules of the various Verma modules. By Lemma 7 (a), we are reduced to consider the Verma modules M_e and M_g for some fixed $g \neq e$. We choose g = (13)(23); for the sake of an easy exposition, we write the elements of S_3 as products of transpositions.

We start with the following observation. Let *M* be a cyclic $\mathcal{A}_{[a]}$ -module, generated by $v \in M[(13)(23)]$. By (55) and acting by the monomials in our basis of $\mathcal{A}_{[\mathbf{a}]}$, we see that

$$M[(23)(13)] = \langle x_{(13)} x_{(23)} \cdot v, x_{(23)} x_{(12)} \cdot v, x_{(12)} x_{(13)} \cdot v \rangle.$$

This weight space is $\neq 0$ by Lemma 7 (b), and a further application of this Lemma gives the following result.

Remark 9. Let *M* be a cyclic $A_{[a]}$ -module, generated by $v \in M[(13)(23)]$. If dim M[(23)(13)] = 1, then

$$M[(23)] = \langle x_{(13)} \cdot v \rangle, \qquad \qquad M[e] = \langle x_{(12)} x_{(23)} \cdot v, x_{(13)} x_{(12)} \cdot v \rangle,$$

$$M[(12)] = \langle x_{(23)} \cdot v \rangle, \qquad M[(13)] = \langle x_{(12)} \cdot v \rangle, \tag{58}$$
$$M[(13)(23)] = \langle v \rangle, \qquad M[(23)(13)] = \langle x_{(13)} x_{(23)} \cdot v \rangle.$$

Thus, any cyclic module as in the Remark has either dimension 5, 6 or 7. Moreover, there is a simple module *L* like this; *L* has a basis $\{v_g | e \neq g \in S_3\}$ and the action is given by

$$v_g \in L[g], \qquad x_{(ij)} \cdot v_g = \begin{cases} v_{(ij)g} & \text{if } \operatorname{sgn} g = 1, \\ f_{ij}(g)v_{(ij)g} & \text{if } \operatorname{sgn} g = -1. \end{cases}$$
(59)

Let \Bbbk_e be as in Lemma 8. We shall see that *L* and \Bbbk_e are the only simple modules of $\mathcal{A}_{[\mathbf{a}]}$.

The Verma module M_e projects onto the simple submodule \Bbbk_e , hence the kernel of this projection is a maximal submodule; explicitly this is

$$N_e = \mathcal{A}_{[\mathbf{a}]} \cdot M_e[(13)(23)] = \bigoplus_{g \sim_{\mathbf{a}}(13)(23)} M_e[g] \oplus \langle m_{\mathsf{top}} \rangle.$$

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of M_e .

Lemma 10. The submodules of M_e are

$$\langle m_{top} \rangle \subsetneq \mathcal{A}_{[\mathbf{a}]} \cdot v \subsetneq N_e \subsetneq M_e$$

for any $v \in M_e[(13)(23)] - 0$. The submodules $\mathcal{A}_{[\mathbf{a}]} \cdot v$ and $\mathcal{A}_{[\mathbf{a}]} \cdot u$ coincide iff $v \in \langle u \rangle$. The quotients $\mathcal{A}_{[\mathbf{a}]} \cdot v / \langle m_{top} \rangle$ and $N_e / \mathcal{A}_{[\mathbf{a}]} \cdot v$ are isomorphic to L; and M_e / N_e and $\langle m_{top} \rangle$ are isomorphic to \mathbb{k}_e .

Proof. By (51), (50) and (52), we have $x_{(ii)} \cdot m_{top} = 0$ for all $(ij) \in \mathcal{O}_2^3$. Let

$$v = \lambda m_{(23)(12)} + \mu m_{(12)(13)} \in M_e[(13)(23)] - 0,$$

$$w = \mu m_{(12)(23)} + (\mu - \lambda) m_{(13)(12)} \in M_e[(23)(13)].$$

Using the formulae (23) to (49), we see that $x_{(13)}x_{(23)} \cdot v$, $x_{(23)}x_{(12)} \cdot v$ and $x_{(12)}x_{(13)} \cdot v$ are non-zero multiples of w. That is, dim $(\mathcal{A}_{[\mathbf{a}]} \cdot v)[(23)(13)] = 1$. Also, $x_{(12)}x_{(23)} \cdot v = -\mu m_{top}$ and $x_{(13)}x_{(12)} \cdot v = \lambda m_{top}$. Hence

$$\left\{v, x_{(23)} \cdot v, x_{(12)} \cdot v, x_{(13)} \cdot v, w, m_{top}\right\}$$

is a basis of $\mathcal{A}_{[\mathbf{a}]} \cdot v$ by Remark 9.

Let now *N* be a (proper, non-trivial) submodule of M_e . If $N \neq \langle m_{top} \rangle$, then there exists $v \in N[(13)(23)] - 0$. Hence $\mathcal{A}_{[\mathbf{a}]} \cdot v$ is a submodule of *N* and $N[e] = \langle m_{top} \rangle$ because $m_1 \in M_e[e]$ and dim $M_e[e] = 2$. Therefore $N = \mathcal{A}_{[\mathbf{a}]} \cdot N[(13)(23)]$.

It is convenient to introduce the following $\mathcal{A}_{[a]}$ -modules which we will use in the Section 4.

Definition 11. Let $\mathbf{t} \in \mathfrak{A}_3$. We denote by $W_{\mathbf{t}}(L, \mathbb{k}_e)$ the $\mathcal{A}_{[\mathbf{a}]}$ -module with basis $\{w_g : g \in \mathbb{S}_3\}$ and action given by

$$w_g \in W_{\mathbf{t}}(L, \mathbb{k}_e)[g] \quad \text{for all } g \in \mathbb{S}_3,$$

$$x_{(ij)} \cdot w_g = \begin{cases} 0 & \text{if } g = e, \\ w_{(ij)g} & \text{if } g \neq e \text{ and } \operatorname{sgn} g = 1, \\ f_{ij}(g)w_{(ij)g} & \text{if } g \neq (ij) \text{ and } \operatorname{sgn} g = -1, \\ t_{(ij)}w_e & \text{if } g = (ij). \end{cases}$$

The well-definition of W_t follows from the next lemma.

Lemma 12. Let $\mathbf{t}, \tilde{\mathbf{t}} \in \mathfrak{A}_3$.

- (a) If $\mathbf{t} = (0, 0, 0)$, then $W_{\mathbf{t}}(L, \mathbb{k}_e) \simeq \mathbb{k}_e \oplus L$.
- (b) If $\mathbf{t} \neq (0,0,0)$, then there exists $v \in M_e[(13)(23)] 0$ such that $W_{\mathbf{t}}(L, \mathbf{k}_e) \simeq$ $\mathcal{A}_{[\mathbf{a}]} \cdot v.$
- (c) If $v \in M_e[(13)(23)] 0$, then there exists $\mathbf{t} \neq (0,0,0)$ such that $W_{\mathbf{t}}(L, \mathbf{k}_e) \simeq$ $\mathcal{A}_{[\mathbf{a}]} \cdot v.$
- (d) $W_t(L, \mathbb{k}_e)$ is an extension of L by \mathbb{k}_e .

(e)
$$W_{\mathbf{t}}(L, \mathbb{k}_e) \simeq W_{\tilde{\mathbf{t}}}(L, \mathbb{k}_e)$$
 if and only if $\mathbf{t} = \mu \tilde{\mathbf{t}}$ with $\mu \in \mathbb{k}^{\times}$.

Proof. (a) is immediate. If we prove (b), then (d) follows from Lemma 10. (b) We set $w_{(13)(23)} = t_{(13)}m_{(23)(12)} - t_{(12)}m_{(12)(13)} \in M_e[(13)(23)] - 0$,

$$w_{(23)} = x_{(13)} \cdot w_{(13)(23)}, w_{(13)} = x_{(12)} \cdot w_{(13)(23)}, w_{(12)} = x_{(23)} \cdot w_{(13)(23)}, w_{(23)(13)} = \frac{1}{f_{23}((13))} x_{(23)} x_{(12)} \cdot w_{(13)(23)} \text{ and } w_e = m_{\text{top}}.$$

By the proof of Lemma 10 and (17), we see that $W_{\mathbf{t}}(L, \mathbb{k}_e) \simeq \mathcal{A}_{[\mathbf{a}]} \cdot w_{(13)(23)}$. (c) follows from the proof of Lemma 10. (e) Let $\{\tilde{w}_g : g \in S_3\}$ be the basis of $W_{\tilde{t}}(L, \Bbbk_e)$ according to Definition 11. Let $F: W_{\mathbf{t}}(L, \mathbf{k}_e) \to W_{\mathbf{\tilde{t}}}(L, \mathbf{k}_e)$ be an isomorphism of $\mathcal{A}_{[\mathbf{a}]}$ -module. Since *F* is an isomorphism of \mathbb{k}^{S_3} -modules, there exists $\mu_g \in \mathbb{k}^{\times}$ for all $g \in S_3$ such that $F(w_g) = \mu_g \tilde{w}_g$. In particular, *F* induces an automorphism of *L*. Since *L* is simple (cf. Theorem 1), $\mu_g = \mu_L$ for all $g \neq e$. Since $F(x_{(ij)} \cdot w_{(ij)}) =$ $x_{(ij)} \cdot F(w_{(ij)})$, we see that $\mathbf{t} = \frac{\mu_L}{\mu_e} \mathbf{\tilde{t}}$. Conversely, *F* is well defined for all μ_e and μ_L such that $\mu = \frac{\mu_L}{\mu_e}$.

The Verma module $M_{(13)(23)}$ projects onto the simple module L, hence the kernel of this projection is a maximal submodule; explicitly this is

$$N_{(13)(23)} = \mathcal{A}_{[\mathbf{a}]} \cdot M_{(13)(23)}[e] = M_{(13)(23)}[e] \oplus \mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{soc}}.$$

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of $M_{(13)(23)}$. Recall m_{soc} from (56).

Lemma 13. The submodules of $M_{(13)(23)}$ are

$$\mathcal{A}_{[\mathbf{a}]} \cdot m_{\textit{soc}} \subsetneq \mathcal{A}_{[\mathbf{a}]} \cdot v \subsetneq N_{(13)(23)} \subsetneq M_{(13)(23)}$$

for all $v \in M_{(13)(23)}[e] - 0$. The submodules $\mathcal{A}_{[\mathbf{a}]} \cdot v$ and $\mathcal{A}_{[\mathbf{a}]} \cdot u$ coincide iff $v \in \langle u \rangle$. The quotients $\mathcal{A}_{[\mathbf{a}]} \cdot v / \mathcal{A}_{[\mathbf{a}]} \cdot m_{soc}$ and $N_{(13)(23)} / \mathcal{A}_{[\mathbf{a}]} \cdot v$ are isomorphic to \mathbb{k}_e ; and $M_{(13)(23)} / N_{(13)(23)}$ and $\mathcal{A}_{[\mathbf{a}]} \cdot m_{soc}$ are isomorphic to L.

Proof. Let $v = \lambda m_1 + \mu m_{top} \in M_{(13)(23)}[(13)(23)] - 0$ and $N = \mathcal{A}_{[a]} \cdot v$. Using the formulae (23) to (49), we see that

$$\begin{aligned} x_{(12)}x_{(13)} \cdot v &= \lambda m_{(12)(13)} - \mu f_{13}((23))^2 m_{(23)(12)} \text{ and} \\ x_{(23)}x_{(12)} \cdot v &= \mu f_{23}((13))^2 m_{(12)(13)} + (\lambda + 2\mu f_{13}((23))f_{23}((13)))m_{(23)(12)} \end{aligned}$$

Thus, dim N[(23)(13)] = 1 iff $\lambda + \mu f_{13}((23))f_{23}((13)) = 0$, that is iff $v \in \langle m_{soc} \rangle - 0$. In this case,

$$\left\{v, x_{(23)} \cdot v, x_{(12)} \cdot v, x_{(13)} \cdot v, x_{(12)} x_{(13)} \cdot v\right\}$$

is a basis of $\mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{soc}}$ by Remark 9.

Let now N be an arbitrary submodule of $M_{(13)(23)}$. Then $N = M_{(13)(23)}$ if dim N[(13)(23)] = 2. If dim N[(13)(23)] = 0, then $N \subset M_{(13)(23)}[e]$ by Lemma 7. But this is not possible since ker $x_{(13)} \cap \ker x_{(23)} \cap \ker x_{(12)} = 0$, what is checked using the formulae (23) to (52). It remains the case dim N[(13)(23)] = 1. By the argument at the beginning of the proof, the lemma follows.

It is convenient to introduce the following $\mathcal{A}_{[a]}$ -modules which we will use in the Section 4.

Definition 14. Let $\mathbf{t} \in \mathfrak{A}_3$. We denote by $W_{\mathbf{t}}(\mathbb{k}_e, L)$ the $\mathcal{A}_{[\mathbf{a}]}$ -module with basis $\{w_g : g \in S_3\}$ and action given by

$$w_g \in W_{\mathbf{t}}(\mathbb{k}_e, L)[g], \qquad x_{(ij)} \cdot w_g = \begin{cases} t_{(ij)}w_{(ij)} & \text{if } g = e, \\ f_{ij}(g)w_{(ij)g} & \text{if } g \neq e \text{ and } \operatorname{sgn} g = 1, \\ w_{(ij)g} & \text{if } \operatorname{sgn} g = -1. \end{cases}$$

The well-definition of $W_t(\Bbbk_e, L)$ follows from the next lemma.

Lemma 15. *Let* $\mathbf{t}, \tilde{\mathbf{t}} \in \mathfrak{A}_3$ *.*

- (*a*) If $\mathbf{t} = (0, 0, 0)$, then $W_{\mathbf{t}}(\mathbb{k}_{e}, L) \simeq L \oplus \mathbb{k}_{e}$.
- (b) If $\mathbf{t} \neq (0,0,0)$, then there exists $v \in M_{(13)(23)}[e] 0$ such that $W_{\mathbf{t}}(\mathbb{k}_e, L) \simeq \mathcal{A}_{[\mathbf{a}]} \cdot v$.
- (c) If $v \in M_{(13)(23)}[e] 0$, then there exists $\mathbf{t} \neq (0,0,0)$ such that $W_{\mathbf{t}}(\mathbb{k}_e, L) \simeq \mathcal{A}_{[\mathbf{a}]} \cdot v$.
- (*d*) $W_{\mathbf{t}}(\mathbb{k}_e, L)$ is an extension of \mathbb{k}_e by L.

(e) $W_{\mathbf{t}}(\mathbb{k}_{e}, L) \simeq W_{\tilde{\mathbf{t}}}(\mathbb{k}_{e}, L)$ if and only if $\mathbf{t} = \mu \tilde{\mathbf{t}}$ with $\mu \in \mathbb{k}^{\times}$.

Proof. (a) is immediate. If we prove (b), then (d) follows from Lemma 13.

(b) We set $w_{(13)(23)} = m_{soc} \in M_{(13)(23)}[(13)(23)]$,

$$w_{(23)} = \frac{x_{(13)} \cdot w_{(13)(23)}}{f_{13}((13)(23))}, w_{(13)} = \frac{x_{(12)} \cdot w_{(13)(23)}}{f_{12}((13)(23))}, w_{(12)} = \frac{x_{(23)} \cdot w_{(13)(23)}}{f_{23}((13)(23))}, w_{(12)} = \frac{x_{(23)} \cdot w_{(13)(23)}}{f_{23}((13)(23))}, w_{(13)} = \frac{x_{(12)} \cdot w_{(13)(23)}}{f_{23}((13)(23))}, w_{(12)} = \frac{x_{(12)} \cdot w_{(13)(23)}}{f_{23}((13)(23))}, w_{(13)} = \frac{x_{(12)} \cdot w_{(13)(23)}}{f_{23}((13)$$

 $w_{(23)(13)} = x_{(23)}x_{(12)} \cdot w_{(13)(23)}$ and $w_e = -t_{(12)}m_{(13)(12)} + t_{(13)}m_{(12)(23)} \neq 0$ Using the formulae (23) to (49), it is not difficult to see that $W_t(\mathbb{k}_e, L) \simeq \mathcal{A}_{[\mathbf{a}]} \cdot w_e$. (c) follows using the formulae (23) to (49). The proof of (e) is similar to the proof of Lemma 12 (e).

Theorem 1. Let $\mathbf{a} \in \mathfrak{A}_3$ be generic. There are exactly 2 simple $\mathcal{A}_{[\mathbf{a}]}$ modules up to isomorphism, namely \mathbb{k}_e and L. Moreover, M_e is the projective cover, and the injective hull, of \mathbb{k}_e ; also, $M_{(13)(23)}$ is the projective cover, and the injective hull, of L.

Proof. We know that \Bbbk_e and *L* are the only two simple $\mathcal{A}_{[a]}$ -modules up to isomorphism by Proposition 1 and Lemmata 7 (a), 10 and 13. Hence, a set of primitive orthogonal idempotents has at most 6 elements [CR, (6.8)]. Since the δ_g , $g \in S_3$ are orthogonal idempotents, they must be primitive. Therefore M_e and $M_{(13)(23)}$ are the projective covers (and the injective hulls) of \Bbbk_e and *L*, respectively by [CR, (9.9)], see page 418.

3.3 Case $a \in \mathfrak{A}_3$ sub-generic.

Through this subsection, we suppose that $a_{(12)} \neq a_{(13)} = a_{(23)}$. Then the equivalence classes of S_3 by \sim_a are

 $\{e\}, \{(12)\}$ and $\{(13), (23), (13)(23), (23)(13)\}.$

In fact,

- *e* and (12) belong to the isotropy group S₃^a.
- (13) = (23)(12)(23) with $f_{12}((23)) = a_{(12)} a_{(13)} \neq 0$ and $f_{23}((12)(23)) = a_{(23)} a_{(12)} \neq 0$.
- (123) = (13)(23) with $f_{13}((23)) = a_{(13)} a_{(12)} \neq 0$.
- (132) = (23)(13) with $f_{23}((13)) = a_{(23)} a_{(12)} \neq 0$.

To determine the simple $\mathcal{A}_{[a]}$ -modules, we proceed as in the subsection above; that is, we just need to determine the maximal submodules of the Verma modules M_e , $M_{(12)}$ and $M_{(13)(23)}$, see Proposition 5.

Let *M* be a cyclic $\mathcal{A}_{[a]}$ -module generated by $v \in M[(13)(23)]$. Here again, we can describe the weight spaces of *M*. By (55) and acting by the monomials in our basis, we see that

$$M[(23)(13)] = \langle x_{(13)} x_{(23)} \cdot v, x_{(23)} x_{(12)} \cdot v, x_{(12)} x_{(13)} \cdot v \rangle.$$

This weight space is $\neq 0$ by Remark 4 applied to $(13)(23) \sim_a (23)(13)$, and a further application of this Remark gives the following result.

Remark 16. Let *M* be a cyclic $\mathcal{A}_{[\mathbf{a}]}$ -module generated by $v \in M[(13)(23)]$ If dim M[(23)(13)] = 1, then

$$M[(13)] = \langle x_{(12)} \cdot v \rangle, \quad M[(23)(13)] = \langle x_{(12)} x_{(13)} \cdot v \rangle, M[(23)] = \langle x_{(13)} \cdot v \rangle, \quad M[(12)] = \langle x_{(23)} \cdot v, (x_{(13)} x_{(12)} x_{(13)}) \cdot v \rangle,$$
(60)
$$M[(13)(23)] = \langle v \rangle, \quad M[e] = \langle x_{(23)} x_{(13)} \cdot v, (x_{(12)} x_{(23)}) \cdot v, x_{(13)} x_{(12)} \cdot v \rangle.$$

There is a simple module *L* like this; $\{v_{(13)}, v_{(23)}, v_{(13)(23)}, v_{(23)(13)}\}$ is a basis of *L* and the action is given by

$$v_{g} \in L[g], \qquad x_{(ij)} \cdot v_{g} = \begin{cases} 0 & \text{if } g = (ij) \\ m_{(ij)g} & \text{if } g \neq (ij), \text{ sgn } g = -1, \\ f_{ij}(g)m_{(ij)g} & \text{if } \text{ sgn } g = 1. \end{cases}$$
(61)

Let $\Bbbk_{(12)}$ and \Bbbk_e be as in Lemma 8. We shall see that L, $\Bbbk_{(12)}$ and \Bbbk_e are the only simple modules of $\mathcal{A}_{[\mathbf{a}]}$.

The Verma module M_e projects onto the simple module k_e , hence the kernel of this projection is a maximal submodule; explicitly this is

$$N_e = \mathcal{A}_{[\mathbf{a}]} \cdot (M_e[(13)(23)] \oplus M_e[(12)])$$

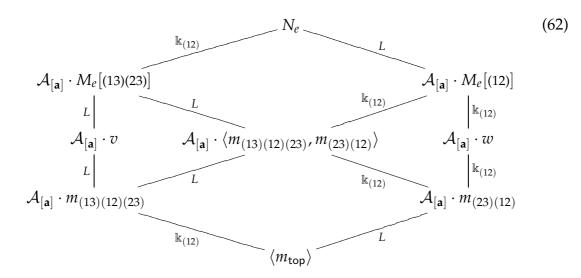
= $\oplus_{g \sim_{\mathbf{a}}(13)(23)} M_e[g] \oplus M_e[(12)] \oplus \langle m_{\mathsf{top}} \rangle$

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of M_e .

Lemma 17. The lattice of (proper, non-trivial) submodules of M_e is displayed in (62), where v and w satisfy

$$M_e[(13)(23)] = \langle v, m_{(23)(12)} \rangle, \qquad M_e[(12)] = \langle w, m_{(13)(12)(23)} \rangle.$$

The submodules $\mathcal{A}_{[\mathbf{a}]} \cdot v$ (resp. $\mathcal{A}_{[\mathbf{a}]} \cdot w$) and $\mathcal{A}_{[\mathbf{a}]} \cdot v_1$ (resp. $\mathcal{A}_{[\mathbf{a}]} \cdot w_1$) coincide iff $v \in \langle v_1 \rangle$ (resp. $w \in \langle w_1 \rangle$). The labels on the arrows indicate the quotient of the module on top by the module on the bottom.



Proof. Let

$$\begin{aligned} v &= \lambda m_{(23)(12)} + \mu m_{(12)(13)} &\in M_e[(13)(23)] - 0, \\ \tilde{v} &= \mu m_{(12)(23)} + (\mu - \lambda) m_{(13)(12)} &\in M_e[(23)(13)]. \end{aligned}$$

Using the formulae (23) to (49), we see that $x_{(23)}x_{(12)} \cdot v$ and $x_{(12)}x_{(13)} \cdot v$ are nonzero multiples of \tilde{v} . That is, dim $(\mathcal{A}_{[\mathbf{a}]} \cdot v)[(23)(13)] = 1$. Moreover, $x_{(12)}x_{(23)} \cdot v = -\mu m_{top}$ and $x_{(13)}x_{(12)} \cdot v = \lambda m_{top}$; and $x_{(23)} \cdot v$ and $(x_{(13)}x_{(12)}x_{(13)}) \cdot v$ are nonzero multiples of $\mu m_{(13)(12)(23)}$. By Remark 16, we obtain a basis for $\mathcal{A}_{[\mathbf{a}]} \cdot v$:

$$\left\{v, x_{(12)} \cdot v, x_{(13)} \cdot v, \tilde{v}, m_{\text{top}}, \mu m_{(13)(12)(23)}\right\};$$
(63)

if $\mu = 0$, we obviate the last vector.

By (51), (50) and (52), $x_{(ij)} \cdot m_{top} = 0$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$\mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{top}} = \langle m_{\mathsf{top}} \rangle$$

and $\mathcal{A}_{[\mathbf{a}]} \cdot u = \mathcal{A}_{[\mathbf{a}]} \cdot m_1 = M_e$ if $u \in M_e[e]$ is linearly independent to m_{top} .

By (43), (46) and (49), $x_{(ij)} \cdot m_{(13)(12)(23)} = -\delta_{(12)}((ij))m_{top}$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$\mathcal{A}_{[\mathbf{a}]} \cdot m_{(13)(12)(23)} = \langle m_{\text{top}}, m_{(13)(12)(23)} \rangle.$$

By (22), (24) and (26), $x_{(ij)} \cdot m_{(12)} = \delta_{(13)}((ij))m_{(13)(12)} + \delta_{(23)}((ij))m_{(23)(12)}$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$\mathcal{A}_{[\mathbf{a}]} \cdot w = \mathcal{A}_{[\mathbf{a}]} \cdot m_{(23)(12)} \oplus \langle w \rangle$$

by (63) and Remark 4, if $w \in M_e[(12)]$ is linearly independent to $m_{(13)(12)(23)}$.

Let now *N* be a (proper, non-trivial) submodule of M_e which is not $\langle m_{top} \rangle$. We set $\tilde{N} = \mathcal{A}_{[\mathbf{a}]} \cdot N[(12)] + \mathcal{A}_{[\mathbf{a}]} \cdot N[(13)(23)]$. Then $\tilde{N}[g] = N[g]$ for all $g \neq e$ by Remark 4. By the argument at the beginning of the proof, $\langle m_{top} \rangle \subset \tilde{N}$. Then $\widetilde{N}[e] = \langle m_{top} \rangle = N[e]$ because otherwise $N = M_e$. Therefore $N = \widetilde{N}$. To finish, we have to calculate the submodules of M_e generated by homogeneous subspaces of $M_e[(12)] \oplus M_e[(13)(23)]$; this follows from the argument at the beginning of the proof.

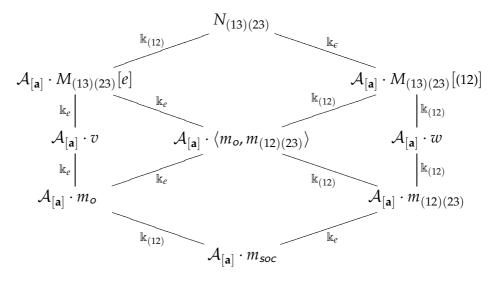
The Verma module $M_{(13)(23)}$ projects onto the simple module *L*, hence the kernel of this projection is a maximal submodule; explicitly this is

$$N_{(13)(23)} = \mathcal{A}_{[\mathbf{a}]} \cdot \left(M_{(13)(23)}[e] \oplus M_{(13)(23)}[(12)] \right)$$

= $M_{(13)(23)}[e] \oplus M_{(13)(23)}[(12)] \oplus \mathcal{A}_{[\mathbf{a}]} \cdot m_{\text{soc}}.$

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of $M_{(13)(23)}$.

Lemma 18. The lattice of (proper, non-trivial) submodules of $M_{(13)(23)}$ is



Here v and w satisfy

$$M_{(13)(23)}[e] = \langle v, m_{(12)(23)} \rangle, \quad M_{(13)(23)}[(12)] = \langle w, m_o \rangle$$

The submodules $\mathcal{A}_{[\mathbf{a}]} \cdot v$ (resp. $\mathcal{A}_{[\mathbf{a}]} \cdot w$) and $\mathcal{A}_{[\mathbf{a}]} \cdot v_1$ (resp. $\mathcal{A}_{[\mathbf{a}]} \cdot w_1$) coincide iff $v \in \langle v_1 \rangle$ (resp. $w \in \langle w_1 \rangle$). The labels on the arrows indicate the quotient of the module on top by the module on the bottom.

Proof. Let $u = \lambda m_1 + \mu m_{top} \in M_{(13)(23)}[(13)(23)] - 0$. Using the formulae (23) to (49), we see that

$$x_{(12)}x_{(13)} \cdot u = \lambda m_{(12)(13)} - \mu f_{13}((23))^2 m_{(23)(12)} \text{ and}$$

$$x_{(23)}x_{(12)} \cdot u = \mu f_{23}((13))^2 m_{(12)(13)} + (\lambda + 2\mu f_{13}((23))f_{23}((13)))m_{(23)(12)}$$

Thus, dim N[(23)(13)] = 1 iff $\lambda + \mu f_{13}((23))f_{23}((13)) = 0$, that is iff $u \in \langle m_{soc} \rangle - 0$. By Remark 16,

$$\mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{soc}} = \langle m_{\mathsf{soc}}, \, x_{(12)} \cdot m_{\mathsf{soc}}, \, x_{(13)} \cdot m_{\mathsf{soc}}, \, x_{(12)} x_{(13)} \cdot m_{\mathsf{soc}} \rangle$$

and $A_{[a]} \cdot u = A_{[a]} \cdot m_1 = M_{(13)(23)}$, if $u \in M_{(13)(23)}[(13)(23)]$ is linearly independent to m_{soc} .

By the formulae (23) to (52), if $u \in (M_{(13)(23)}[e] \oplus M_{(13)(23)}[(12)]) - 0$, then $0 \neq \langle x_{(13)} \cdot u, x_{(23)} \cdot u \rangle \subset \mathcal{A}_{[a]} \cdot m_{soc}$. Therefore

$$\mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{soc}} \subset \mathcal{A}_{[\mathbf{a}]} \cdot u$$

by Remark 4. Also, if *v* and *w* satisfy $M_{(13)(23)}[e] = \langle v, m_{(12)(23)} \rangle$ and $M_{(13)(23)}[(12)] = \langle w, m_o \rangle$, then

$$\langle x_{(12)} \cdot v \rangle = \langle m_{o} \rangle$$
 and $\langle x_{(12)} \cdot w \rangle = \langle m_{(12)(23)} \rangle$.

Let now *N* be a (proper, non-trivial) submodule of $M_{(13)(23)}$ which is not $\mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{soc}}$. We set $\tilde{N} = \mathcal{A}_{[\mathbf{a}]} \cdot N[e] + \mathcal{A}_{[\mathbf{a}]} \cdot N[(12)]$. Then $\tilde{N}[g] = N[g]$ for g = e, (12) by Remark 4. By the argument at the beginning of the proof, $\mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{soc}} \subset \tilde{N}$. Then $\bigoplus_{g \sim \mathbf{a}(13)(23)} N[g] = \mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{soc}} = \bigoplus_{g \sim \mathbf{a}(13)(23)} \tilde{N}[g]$ because otherwise $N = M_{(13)(23)}$. Therefore $N = \tilde{N}$. To finish, we have to calculate the submodules of $M_{(13)(23)}$ generated by homogeneous subspaces of $M_{(13)(23)}[(12)] \oplus M_{(13)(23)}[e]$; this follows from the argument at the beginning of the proof.

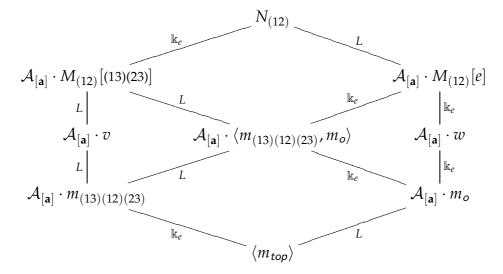
The Verma module $M_{(12)}$ projects onto the simple module $\Bbbk_{(12)}$, hence the kernel of this projection is a maximal submodule; explicitly this is

$$N_{(12)} = \mathcal{A}_{[\mathbf{a}]} \cdot \left(M_{(12)}[(13)(23)] \oplus M_{(12)}[e] \right)$$

= $\oplus_{g \sim_{\mathbf{a}}(13)(23)} M_{(12)}[g] \oplus M_{(12)}[e] \oplus \langle m_{\mathsf{top}} \rangle$

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of $M_{(12)}$.

Lemma 19. The lattice of (proper, non-trivial) submodules of $M_{(12)}$ is



Here v and w satisfy

 $M_{(12)}[(13)(23)] = \langle v, m_o \rangle, \quad M_{(12)}[e] = \langle w, m_{(13)(12)(23)} \rangle.$

The submodules $\mathcal{A}_{[\mathbf{a}]} \cdot v$ (resp. $\mathcal{A}_{[\mathbf{a}]} \cdot w$) and $\mathcal{A}_{[\mathbf{a}]} \cdot v_1$ (resp. $\mathcal{A}_{[\mathbf{a}]} \cdot w_1$) coincide iff $v \in \langle v_1 \rangle$ (resp. $w \in \langle w_1 \rangle$). The labels on the arrows indicate the quotient of the module on top by the module on the bottom.

Proof. Let $v = \lambda m_{(23)} + \mu m_{(13)(12)(13)} \in M_{(12)}[(13)(23)]$ be a non-zero element. By Remark 16 and using the formulae (23) to (52), we see that

$$\begin{aligned} (\mathcal{A}_{[\mathbf{a}]} \cdot v)[(13)(23)] &= \langle v \rangle, \\ (\mathcal{A}_{[\mathbf{a}]} \cdot v)[(13)] &= \langle (f_{13}((23))\mu - \lambda)m_{(12)(23)} - \mu f_{13}((23))m_{(13)(12)} \rangle, \\ (\mathcal{A}_{[\mathbf{a}]} \cdot v)[(23)] &= \langle (f_{13}((23))\mu - \lambda)m_{(12)(13)} - \lambda m_{(23)(12)} \rangle, \\ (\mathcal{A}_{[\mathbf{a}]} \cdot v)[(23)(13)] &= \langle (f_{13}((23))\mu - \lambda)f_{23}((13))m_{(13)} + \lambda m_{(12)(23)(12)} \rangle, \\ (\mathcal{A}_{[\mathbf{a}]} \cdot v)[(12)] &= \langle m_{top} \rangle \text{ and} \\ (\mathcal{A}_{[\mathbf{a}]} \cdot v)[e] &= \langle (f_{13}((23))\mu - \lambda)m_{(13)(12)(23)} \rangle. \end{aligned}$$

$$(64)$$

By (51), (50) and (52), $x_{(ij)} \cdot m_{top} = 0$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$\mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{top}} = \langle m_{\mathsf{top}} \rangle$$

and $\mathcal{A}_{[a]} \cdot u = \mathcal{A}_{[a]} \cdot m_1 = M_e$, if $u \in M_{(12)}[(12)]$ is linearly independent to m_{top} . By (43), (46) and (49), $x_{(ij)} \cdot m_{(13)(12)(23)} = -\delta_{(12)}((ij))m_{top}$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$\mathcal{A}_{[\mathbf{a}]} \cdot m_{(13)(12)(23)} = \langle m_{\text{top}}, m_{(13)(12)(23)} \rangle.$$

By (22), (24) and (26), $x_{(ij)} \cdot m_{(12)} = \delta_{(13)}((ij))m_{(13)(12)} + \delta_{(23)}((ij))m_{(23)(12)}$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$\mathcal{A}_{[\mathbf{a}]} \cdot w = \mathcal{A}_{[\mathbf{a}]} \cdot m_{\mathsf{o}} \oplus \langle w
angle$$

by (64) and Remark 4, if $w \in M_{(12)}[e]$ is linearly independent to $m_{(13)(12)(23)}$.

Let now *N* be a (proper, non-trivial) submodule of $M_{(12)}$ which is not $\langle m_{top} \rangle$. We set $\tilde{N} = \mathcal{A}_{[a]} \cdot N[e] + \mathcal{A}_{[a]} \cdot N[(13)(23)]$. Then $\tilde{N}[g] = N[g]$ for all $g \neq (12)$ by Remark 4. By the argument at the beginning of the proof, $\langle m_{top} \rangle \subset \tilde{N}$. Then $N[(12)] = \langle m_{top} \rangle = \tilde{N}[(12)]$ because otherwise $N = M_{(12)}$. Therefore $N = \tilde{N}$. To finish, we have to calculate the submodules of $M_{(12)}$ generated by homogeneous subspaces of $M_{(12)}[(13)(23)] \oplus M_{(12)}[e]$; this follows from the argument at the beginning of the proof.

As a consequence, we obtain the simples modules in the sub-generic case. The proof of the next theorem runs in the same way as that of Theorem 1.

Theorem 2. Let $\mathbf{a} \in \mathfrak{A}_3$ with $a_{(12)} \neq a_{(13)} = a_{(23)}$. There are exactly 3 simple $\mathcal{A}_{[\mathbf{a}]}$ modules up to isomorphism, namely \Bbbk_e , $\Bbbk_{(12)}$ and L. Moreover, M_e is the projective cover, and the injective hull, of \Bbbk_e ; $M_{(12)}$ is the projective cover, and the injective hull, of $\Bbbk_{(12)}$; and $M_{(13)(23)}$ is the projective cover, and the injective hull, of L.

Proof. We know that \Bbbk_e , $\Bbbk_{(12)}$ and *L* are the only two simple $\mathcal{A}_{[\mathbf{a}]}$ -modules up to isomorphism by Proposition 1 and Lemmata 17, 18 and 19. Hence, a set of primitive orthogonal idempotents has at most 6 elements [CR, (6.8)]. Since the δ_g , $g \in \mathbb{S}_3$ are orthogonal idempotents, they must be primitive. Therefore M_e , $M_{(12)}$ and $M_{(13)(23)}$ are respectively the projective covers (and the injective hulls) of \Bbbk_e , $\Bbbk_{(12)}$ and *L* by [CR, (9.9)], see page 418.

4 Representation type of $\mathcal{A}_{[a]}$

In this section, we assume that n = 3 as in the preceding one. We will determine the $\mathcal{A}_{[\mathbf{a}]}$ -modules which are extensions of simple $\mathcal{A}_{[\mathbf{a}]}$ -modules. As a consequence, we will show that $\mathcal{A}_{[\mathbf{a}]}$ is not of finite representation type for all $\mathbf{a} \in \mathfrak{A}_3$.

4.1 Extensions of simple modules

By the following lemma, we are reduced to consider only submodules of the Verma modules for to determine the extensions of simple $\mathcal{A}_{[a]}$ -modules. Then we shall split the consideration into three different cases like Section 3 and use the lemmata there.

Lemma 20. Let $\mathbf{a} \in \mathfrak{A}_3$ be non-zero. Let S and T be simple $\mathcal{A}_{[\mathbf{a}]}$ -modules and M be an extension of T by S. Hence either $M \simeq S \oplus T$ as $\mathcal{A}_{[\mathbf{a}]}$ -modules or M is an indecomposable submodule of the Verma module which is the injective hull of S.

Proof. If there exists a proper submodule *N* of *M* which is not *S*, then $M \simeq S \oplus T$ as $\mathcal{A}_{[\mathbf{a}]}$ -modules. In fact, $N \cap S$ is either 0 or *S* because *S* is simple. Let π be as in (65). Since *T* is simple, $\pi_{|N} : N \to T$ results an epimorphism. Therefore $M \simeq S \oplus T$ since dim $N = \dim(N \cap S) + \dim T$.

Let M_S be the Verma module which is the injective hull of S. Then we have the following commutative diagram

$$0 \longrightarrow S \xrightarrow{i} M \xrightarrow{\pi} T \longrightarrow 0$$

$$(65)$$

$$M_{S}$$

Therefore either $M \simeq S \oplus T$ as $\mathcal{A}_{[a]}$ -modules or f is injective. If f is injective, then M results indecomposable by Lemmata 10 and 13 in the generic case, and by Lemmata 17, 18 and 19 in the sub-generic case.

Recall the modules $W_t(L, \Bbbk_e)$ and $W_t(\Bbbk_e, L)$ from Definitions 11 and 14. The next results follow from Lemmata 10, 13, 17, 18 and 19 by Lemma 20.

Lemma 21. Let $\mathbf{a} \in \mathfrak{A}_3$ be generic. Let S and T be simple $\mathcal{A}_{[\mathbf{a}]}$ -modules and M be an extension of T by S.

- (a) If $S \simeq T$, then $M \simeq S \oplus S$.
- (b) If $S \simeq \Bbbk_e$ and $T \simeq L$, then $M \simeq W_t(L, \Bbbk_e)$ for some $t \in \mathfrak{A}_3$.
- (c) If $S \simeq L$ and $T \simeq \Bbbk_e$, then $M \simeq W_t(\Bbbk_e, L)$ for some $t \in \mathfrak{A}_3$.

Lemma 22. Let $\mathbf{a} \in \mathfrak{A}_3$ with $a_{(12)} \neq a_{(13)} = a_{(23)}$. Let *S* and *T* be simple $\mathcal{A}_{[\mathbf{a}]}$ -modules and *M* be an extension of *T* by *S*.

- (a) If $S \simeq T$, then $M \simeq S \oplus S$.
- (b) If $S \simeq \Bbbk_e$ and $T \simeq \Bbbk_{(12)}$, then $M \simeq \mathcal{A}_{[\mathbf{a}]} \cdot m_{(13)(12)(23)} \subset M_e$.

- (c) If $S \simeq \Bbbk_{(12)}$ and $T \simeq \Bbbk_e$, then $M \simeq \mathcal{A}_{[\mathbf{a}]} \cdot m_{(13)(12)(23)} \subset M_{(12)}$.
- (d) If $S \simeq \Bbbk_e$ and $T \simeq L$, then $M \simeq \mathcal{A}_{[\mathbf{a}]} \cdot m_{(23)(12)} \subset M_e$.
- (e) If $S \simeq L$ and $T \simeq \mathbb{k}_e$, then $M \simeq \mathcal{A}_{[\mathbf{a}]} \cdot m_{(12)(23)} \subset M_{(13)(23)}$.
- (f) If $S \simeq \Bbbk_{(12)}$ and $T \simeq L$, then $M \simeq \mathcal{A}_{[\mathbf{a}]} \cdot m_o \subset M_{(12)}$.
- (g) If $S \simeq L$ and $T \simeq \Bbbk_{(12)}$, then $M \simeq \mathcal{A}_{[\mathbf{a}]} \cdot m_o \subset M_{(13)(23)}$.

Lemma 23. Let \Bbbk_g and \Bbbk_h be one-dimensional simple $\mathcal{A}_{[(0,0,0)]}$ -modules and M be an extension of \Bbbk_h by \Bbbk_g . Hence

- (a) If sgn $g = \operatorname{sgn} h$, then $M \simeq \Bbbk_g \oplus \Bbbk_h$.
- (b) If sgn $g \neq$ sgn h and M is not isomorphic to $\mathbb{k}_g \oplus \mathbb{k}_h$, then g = (st)h for a unique $(st) \in \mathcal{O}_3^2$ and M has a basis $\{w_g, w_h\}$ such that $\langle w_g \rangle \simeq \mathbb{k}_g$ as $\mathcal{A}_{[\mathbf{a}]}$ -modules, $w_h \in M[h]$ and $x_{(ij)}w_h = \delta_{(ij),(st)}w_g$.

Proof. $M = M[g] \oplus M[h]$ as \mathbb{k}^{S_3} -modules and $M[g] \simeq \mathbb{k}_g$ as $\mathcal{A}_{[\mathbf{a}]}$ -modules. Since $x_{(ij)} \cdot M[h] \subset M[(ij)h]$, the lemma follows.

4.2 Representation type

We summarize some facts about the representation type of an algebra.

Let *R* be an algebra and $\{S_1, ..., S_t\}$ be a complete list of non-isomorphic simple *R*-modules. The *separated quiver of R* is constructed as follows. The set of vertices is $\{S_1, ..., S_t, S'_1, ..., S'_t\}$ and we write dim $\text{Ext}^1_R(S_i, S_j)$ arrows from S_i to S'_j , cf. [ARS, p. 350]. Let us denote by Γ_R the underlying graph of the separated quiver of *R*.

A characterization of the hereditary algebras of finite and tame representation type is well-known, see for example [DR2]. As a consequence, the next well-known result is obtained. If *R* is of finite representation type, then it is Theorem D of [DR1] or Theorem X.2.6 of [ARS]. The proof given in [ARS] adapts immediately to the case when *R* is of tame representation type.

Theorem 3. Let *R* be a finite dimensional algebra with radical square zero. Then *R* is of finite (resp. tame) representation type if and only if Γ_R is a finite (resp. affine) disjoint union of Dynkin diagrams.

In order to use the above theorem, we know that

Remark 24. If \mathfrak{r} is the radical of *R*, then the separated quiver of *R* is equal to the separated quiver of R/\mathfrak{r}^2 , see for example [GI, Lemma 4.5].

We obtain the following result by combining Corollary VI.1.5 and Proposition VI.1.6 of [ARS].

Proposition 25. Let *R* be an artin algebra, χ an infinite cardinal and assume there are χ non-isomorphic indecomposable modules of length *n*. Then *R* is not of finite representation type.

Here is the announced result.

Proposition 26. $\mathcal{A}_{[(0,0,0)]}$ is of wild representation type. If $\mathbf{a} \in \mathfrak{A}_3$ is non-zero, then $\mathcal{A}_{[\mathbf{a}]}$ is not of finite representation type.

Proof. If $\mathbf{a} \in \mathfrak{A}_3$ is generic, we can apply Proposition 25 by Lemma 12 and Lemma 15. Hence $\mathcal{A}_{[\mathbf{a}]}$ is not of finite representation type for all $\mathbf{a} \in \mathfrak{A}_3$ generic.

Let $\mathbf{a} \in \mathfrak{A}_3$ be sub-generic or zero. Then dim $\operatorname{Ext}^1_{\mathcal{A}_{[\mathbf{a}]}}(T,S) = 0$ if $S \simeq T$ by Lemma 22 and 23, and dim $\operatorname{Ext}^1_{\mathcal{A}_{[\mathbf{a}]}}(T,S) = 1$ in otherwise. In fact, suppose that $a_{(12)} \neq a_{(13)} = a_{(23)}, S \simeq \Bbbk_e$ and $T \simeq L$. By Lemma 18 and Theorem 2, *L* admits a projective resolution of the form

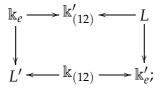
$$\dots \longrightarrow P^2 \longrightarrow M_e \oplus M_{(12)} \xrightarrow{F} M_{(13)(23)} \longrightarrow L \longrightarrow 0,$$

where *F* is defined by $F_{|M_e}(m_1) = v$ and $F_{|M_{(12)}}(m_1) = w$; here *v* and *w* satisfy $M_{(13)(23)}[e] = \langle v, m_{(12)(23)} \rangle, M_{(13)(23)}[(12)] = \langle w, m_o \rangle$. Then

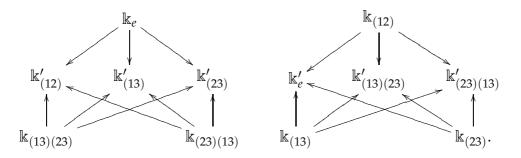
$$0 \longrightarrow \operatorname{Hom}_{\mathcal{A}_{[\mathbf{a}]}}(M_{(13)(23)}, \mathbb{k}_{e}) \xrightarrow{\partial_{0}} \operatorname{Hom}_{\mathcal{A}_{[\mathbf{a}]}}(M_{e} \oplus M_{(12)}, \mathbb{k}_{e}) \xrightarrow{\partial_{1}} \dots$$

and $\operatorname{Ext}_{\mathcal{A}_{[\mathbf{a}]}}^{1}(L, \mathbb{k}_{e}) = \operatorname{ker} \partial_{1} / \operatorname{Im} \partial_{0}$. Since M_{h} is generated by $m_{1} \in M_{h}[h]$ for all $h \in S_{3}$, $\operatorname{Hom}_{\mathcal{A}_{[\mathbf{a}]}}(M_{(13)(23)}, \mathbb{k}_{e}) = 0$ and $\dim \operatorname{Hom}_{\mathcal{A}_{[\mathbf{a}]}}(M_{e} \oplus M_{(12)}, \mathbb{k}_{e}) = 1$. By Lemma 22, we know that there exists a non-trivial extension of L by \mathbb{k}_{e} and therefore $\dim \operatorname{Ext}_{\mathcal{A}_{[\mathbf{a}]}}^{1}(L, \mathbb{k}_{e}) = 1$ because it is non-zero. For other S and T and for the case $\mathbf{a} = (0, 0, 0)$, the proof is similar.

Hence if $\mathbf{a} \in \mathcal{A}_{[\mathbf{a}]}$ is sub-generic and $a_{(12)} \neq a_{(13)} = a_{(23)}$, the separated quiver of $\mathcal{A}_{[\mathbf{a}]}$ is



and the separated quiver of $\mathcal{A}_{[(0,0,0)]}$ is



Therefore the lemma follows from Theorem 3 and Remark 24.

Remark 27. Let $\mathbf{a} \in \mathfrak{A}_3$ be generic. It is not difficult to prove that the separated quiver of $\mathcal{A}_{[\mathbf{a}]}$ is

$$\Bbbk_{e} \Longrightarrow L' \qquad \qquad L \Longrightarrow \Bbbk'_{e}.$$

5 On the structure of $\mathcal{A}_{[a]}$

In this section, we assume that n = 3 as in the preceding one.

5.1 Cocycle deformations

We show in this subsection that the algebras $\mathcal{A}_{[a]}$ are cocycle deformation of each other. For this, we first recall the following theorem due to Masuoka.

If *K* is a Hopf subalgebra of a Hopf algebra *H* and *J* is a Hopf ideal of *K*, then the two-sided ideal (J) of *H* is in fact a Hopf ideal of *H*.

Theorem 4. [*M*, Thm. 2], [BDR, Thm. 3.4]. Suppose that K is Hopf subalgebra of a Hopf algebra H. Let I, J be Hopf ideal of K. If there is an algebra map ψ from K to k such that

- $J = \psi \rightharpoonup I \leftarrow \psi^{-1}$ and
- $H/(\psi \rightarrow I)$ is nonzero,

then $H/(\psi \rightarrow I)$ is a (H/(I), H/(J))-biGalois object and so the quotient Hopf algebras H/(I), H/(J) are monoidally Morita-Takeuchi equivalent. If H/(I) and H/(J) are finite dimensional, then H/(I) and H/(J) are cocycle deformations of each other.

We will need the following lemma to apply the Masuoka's theorem.

Lemma 28. If W is a vector space and U is a vector subspace of $W^{\otimes n}$, then the subalgebra of T(W) generated by U is isomorphic to T(U).

Proof. It is enough to prove the lemma for $U = W^{\otimes n}$. Fix n and let $(x_i)_{i \in I}$ be a basis of W. Then $\mathbf{B} = \{X_{\mathbf{i}} = x_{i_1} \cdots x_{i_n} : \mathbf{i} = (i_1, ..., i_n) \in I^n\}$ forms a basis of $W^{\otimes n}$. Since the $X_{\mathbf{i}}$'s are all homogeneous elements of the same degree in T(W), we only have to prove that $\{X_{\mathbf{i}_1} \cdots X_{\mathbf{i}_m} : \mathbf{i}_1, ..., \mathbf{i}_m \in I^n\}$ is linearly independent in T(W) for all $m \ge 1$ and this is true because \mathbf{B} is a basis of monomials of the same degree.

Here is the announced result. Observe that this gives an alternative proof to the fact that dim $A_{[a]} = 72$, proved in [AV] using the Diamond Lemma.

Proposition 29. For all $\mathbf{a} \in \mathfrak{A}_3$, $\mathcal{A}_{[\mathbf{a}]}$ is a Hopf algebra monoidally Morita-Takeuchi equivalent to $\mathcal{B}(V_3) \# \mathbb{k}^{\mathbb{S}_3}$.

Proof. To start with, we consider the algebra $\mathcal{K}_{\mathbf{a}} := T(V_3) \# \mathbb{k}^{S_3} / \mathcal{J}_{\mathbf{a}}$, $\mathbf{a} \in \mathfrak{A}_3$, where $\mathcal{J}_{\mathbf{a}}$ is the ideal generated by

$$R_{(13)(23)}, R_{(23)(13)}$$
 and $x_{(ij)}^2 + \sum_{g \in \mathbb{S}_3} a_{g^{-1}(ij)g} \delta_g, \quad (ij) \in \mathcal{O}_2^3.$ (66)

Let $M_3 = \mathbb{k}^{S_3}$ with the regular representation. For all $\mathbf{a} \in \mathfrak{A}_3$, M_3 is an $\mathcal{K}_{\mathbf{a}}$ -module with action given by

$$x_{(ij)} \cdot m_g = \begin{cases} m_{(ij)g} & \text{if } \operatorname{sgn} g = -1, \\ -a_{g^{-1}(ij)g} m_{(ij)g} & \text{if } \operatorname{sgn} g = 1. \end{cases}$$

We have to check that the relations defining \mathcal{K}_{a} hold in the action. Then

$$\delta_h(x_{(ij)} \cdot m_g) = \delta_h(\lambda_g m_{(ij)g}) = \lambda_g \delta_h((ij)g) m_{(ij)g} = \lambda_g \delta_{(ij)h}(g) m_{(ij)g}$$
$$= x_{(ij)} \cdot (\delta_{(ij)h} \cdot m_g)$$

with $\lambda_g \in \mathbb{k}$ according to the definition of the action. Note that

$$x_{(ij)} \cdot (x_{(ik)} \cdot m_g) = \begin{cases} -a_{g^{-1}(ik)(ij)(ik)g} m_{(ij)(ik)g} & \text{if } \operatorname{sgn} g = -1, \\ -a_{g^{-1}(ik)g} m_{(ij)(ik)g} & \text{if } \operatorname{sgn} g = 1. \end{cases}$$

In any case, we have that $x_{(ij)}^2 \cdot m_g = -a_{g^{-1}(ij)g} m_g$ and

$$R_{(ij)(ik)} \cdot m_g = -(\sum_{(st) \in \mathcal{O}_2^3} a_{g^{-1}(st)g}) m_{(ij)(ik)g} = 0.$$

Let $W = \langle R_{(13)(23)}, R_{(23)(13)}, x_{(ij)}^2 : (ij) \in \mathcal{O}_2^3 \rangle$ and *K* be the subalgebra of $T(V_3)$ generated by *W*; *K* is a braided Hopf subalgebra because *W* is a Yetter-Drinfeld submodule contained in $\mathcal{P}(T(V_3))$ the primitive elements of $T(V_3)$. Then $K \# \Bbbk^{S_3}$ is a Hopf subalgebra of $T(V_3) \# \Bbbk^{S_3}$. For each $\mathbf{a} \in \mathfrak{A}_3$, by Lemma 28 we can define the algebra morphism $\psi = \psi_K \otimes \epsilon : K \# \Bbbk^{S_3} \to \Bbbk$ where

$$\psi_{K|W[g]} = 0$$
 if $g \neq e$ and $\psi_K(x_{(ij)}^2) = -a_{(ij)} \forall (ij) \in \mathcal{O}_2^3$.

If *J* denotes the ideal of $K\#\Bbbk^{S_3}$ generated by the generator of *K*, then $\psi^{-1} \rightarrow J \leftarrow \psi$ is the ideal generated by the generators of \mathcal{I}_a . In fact, $\psi^{-1} = \psi \circ S$ is the inverse element of ψ in the convolution group $\operatorname{Alg}(K\#\Bbbk^{S_3},\Bbbk)$, $\mathcal{S}(W)[g] \subset (K\#\Bbbk^{S_3})[g^{-1}]$ and $\mathcal{S}(x^2_{(ij)}) = -\sum_{h \in S_3} \delta_{h^{-1}} x^2_{h^{-1}(ij)h}$. Then our claim follows if we apply $\psi \otimes \operatorname{id} \otimes \psi^{-1}$ to $(\Delta \otimes \operatorname{id})\Delta(x^2_{(ij)}) =$

$$= x_{(ij)}^2 \otimes 1 \otimes 1 + \sum_{h \in \mathbb{S}_3} \delta_h \otimes x_{h^{-1}(ij)h}^2 \otimes 1 + \sum_{h,g \in \mathbb{S}_3} \delta_h \otimes \delta_g \otimes x_{g^{-1}h^{-1}(ij)hg}^2$$

and $(\Delta \otimes \operatorname{id})\Delta(x) = x \otimes 1 \otimes 1 + x_{-1} \otimes x_0 \otimes 1 + x_{-2} \otimes x_{-1} \otimes x_0$ for $g \neq e$ and $x \in W[g]$; note that also $x_0 \in W[g]$.

The ideal $\psi^{-1} \rightarrow J$ is generated by

$$R_{(13)(23)}, R_{(23)(13)}$$
 and $x_{(ij)}^2 + \sum_{g \in \mathbb{S}_3} a_{g^{-1}(ij)g} \delta_g \quad \forall (ij) \in \mathcal{O}_2^3.$

Now $\mathcal{K}_{\mathbf{a}} = T(V_3) \# \mathbb{k}^{\mathbb{S}_3} / \langle \psi^{-1} \rightharpoonup J \rangle \neq 0$ because it has a non-zero quotient in End(M_3). Hence $\mathcal{A}_{[\mathbf{a}]}$ is monoidally Morita-Takeuchi equivalent to $\mathcal{B}(V_3) \# \mathbb{k}^{\mathbb{S}_3}$, by Theorem 4.

5.2 Hopf subalgebras and integrals of $A_{[a]}$

We collect some information about $\mathcal{A}_{[a]}$. Let

$$\chi = \sum_{g \in \mathbf{S}_3} \mathrm{sgn}(g) \delta_g, \quad y = \sum_{(ij) \in \mathcal{O}_2^3} x_{(ij)}.$$

It is easy to see that χ is a group-like element and that $y \in \mathcal{P}_{1,\chi}(\mathcal{A}_{[a]})$.

Proposition 30. *Let* $\mathbf{a} \in \mathfrak{A}_3$ *. Then*

- (a) $G(\mathcal{A}_{[\mathbf{a}]}) = \{1, \chi\}.$
- (b) $\mathcal{P}_{1,\chi}(\mathcal{A}_{[\mathbf{a}]}) = \langle 1 \chi, y \rangle.$
- (c) $\Bbbk \langle \chi, y \rangle$ is isomorphic to the 4-dimensional Sweedler Hopf algebra.
- (d) The Hopf subalgebras of $\mathcal{A}_{[\mathbf{a}]}$ are $\mathbb{k}^{\mathbb{S}_3}$, $\mathbb{k}\langle \chi \rangle$ and $\mathbb{k}\langle \chi, y \rangle$.
- (e) $S^2(a) = \chi a \chi^{-1}$ for all $a \in \mathcal{A}_{[a]}$.
- (f) The space of left integrals is $\langle m_{top} \delta_e \rangle$; $\mathcal{A}_{[\mathbf{a}]}$ is unimodular.
- (g) $(\mathcal{A}_{[\mathbf{a}]})^*$ is unimodular.
- (h) $\mathcal{A}_{[\mathbf{a}]}$ is not a quasitriangular Hopf algebra.

Proof. We know that the coradical $(\mathcal{A}_{[\mathbf{a}]})_0$ of $\mathcal{A}_{[\mathbf{a}]}$ is isomorphic to \mathbb{k}^{S_3} by [AV]. Since $G(\mathcal{A}_{[\mathbf{a}]}) \subset (\mathcal{A}_{[\mathbf{a}]})_0$, (a) follows.

(b) Recall that $V_3 = M((12), \text{sgn}) \in \frac{\mathbb{k}^{S_3}}{\mathbb{k}^{S_3}}\mathcal{YD}$, see Subsection 2.1. Then $\mathcal{P}_{1,\chi}(\mathcal{A}_{[\mathbf{a}]})/\langle 1-\chi \rangle$ is isomorphic to the isotypic component of the comodule V_3 of type χ . That is, if $z = \sum_{(ij) \in \mathcal{O}_2^3} \lambda_{(ij)} x_{(ij)} \in (V_3)_{\chi}$, then

$$\delta(z) = \sum_{h \in G, (ij) \in \mathcal{O}_2^3} \operatorname{sgn}(h) \lambda_{(ij)} \delta_h \otimes x_{h^{-1}(ij)h} = \chi \otimes z.$$

Evaluating at $g \otimes id$ for any $g \in S_3$, we see that $\lambda_{(ij)} = \lambda_{(12)}$ for all $(ij) \in \mathcal{O}_2^n$. Then $z = \lambda_{(12)}y$. The proof of (c) is now evident.

(d) Let *A* be a Hopf subalgebra of $\mathcal{A}_{[\mathbf{a}]}$. Then $A_0 = A \cap (\mathcal{A}_{[\mathbf{a}]})_0 \subseteq \mathbb{k}^{S_3}$ by [Mo, Lemma 5.2.12]. Hence A_0 is either $\mathbb{k}\langle\chi\rangle$ or else \mathbb{k}^{S_3} . If $A_0 = \mathbb{k}\langle\chi\rangle$, then *A* is a pointed Hopf algebra with group $\mathbb{Z}/2$. Hence *A* is either $\mathbb{k}\langle\chi\rangle$ or else $\mathbb{k}\langle\chi,y\rangle$ by (b) and [N] or [CD]⁴. If $A_0 = \mathbb{k}^{S_3}$, then *A* is either \mathbb{k}^{S_3} or else $A = \mathcal{A}_{[\mathbf{a}]}$ by [AV].

To prove (e), just note that $\chi x_{(ij)} \chi^{-1} = -x_{(ij)}$.

(f) follows from Subsections 3.2 and 3.3. Let Λ be a non-zero left integral of $\mathcal{A}_{[a]}$. By Lemma 8, the distinguished group-like element of $(\mathcal{A}_{[a]})^*$ is ζ_h for some

⁴The classification of all finite dimensional pointed Hopf algebras with group $\mathbb{Z}/2$ also follows easily performing the Lifting method [AS].

 $h \in \mathbb{S}_{3}^{\mathbf{a}}$, hence $\Lambda \delta_{h} = \zeta_{h}(\delta_{h})\Lambda = \Lambda$. Let us consider $\mathcal{A}_{[\mathbf{a}]}$ as a left $\mathbb{k}^{S_{3}}$ -module via the left adjoint action, see page 418. Let $\Lambda_{g} \in (\mathcal{A}_{[\mathbf{a}]})[g]$ such that $\Lambda = \sum_{g \in \mathbb{S}_{3}} \Lambda_{g}$. Then $\Lambda = \delta_{e}\Lambda = \sum_{s,t \in \mathbb{S}_{3}} \operatorname{ad} \delta_{s}(\Lambda_{t})\delta_{s^{-1}}\delta_{h} = \Lambda_{h^{-1}}\delta_{h}$. Since $M_{h} \simeq \mathcal{A}_{[\mathbf{a}]}\delta_{h}$, we can use the lemmata of the Section 3 to compute Λ .

If **a** is generic, then h = e by Theorem 1. Since $x_{(ij)}\Lambda = 0$ for all $(ij) \in S_3$, $\Lambda = m_{top}\delta_e$ by Lemma 10.

If **a** is sub-generic, we assume that $a_{(12)} \neq a_{(13)} = a_{(23)}$, then either $\Lambda = \Lambda_e \delta_e$ or $\Lambda_{(12)}\delta_{(12)}$ by Theorem 2. Since $x_{(ij)}\Lambda = 0$ for all $(ij) \in S_3$, $\Lambda = m_{top}\delta_e$ by Lemma 17 and Lemma 19.

(g) By (e), $S^4 = id$. By Radford's formula for the antipode and (f), the distinguished group-like element of $\mathcal{A}_{[a]}$ is central, hence trivial. Therefore, $(\mathcal{A}_{[a]})^*$ is unimodular.

(h) If there exists $R \in \mathcal{A}_{[a]} \otimes \mathcal{A}_{[a]}$ such that $(\mathcal{A}_{[a]}, R)$ is a quasitriangular Hopf algebra, then $(\mathcal{A}_{[a]}, R)$ has a unique minimal subquasitriangular Hopf algebra (A_R, R) by [R]. We shall show that such a Hopf subalgebra does not exist using (d) and therefore $\mathcal{A}_{[a]}$ is not a quasitriangular Hopf algebra.

By [R, Prop. 2, Thm. 1] we know that there exist Hopf subalgebras *H* and *B* of $\mathcal{A}_{[\mathbf{a}]}$ such that $A_R = HB$ and an isomorphism of Hopf algebras $H^{*cop} \to B$. Then $A_R \neq \mathcal{A}_{[\mathbf{a}]}$. In fact, let $M(d, \Bbbk)$ denote the matrix algebra over \Bbbk of dimension d^2 . Then the coradical of $(\mathcal{A}_{[\mathbf{a}]})^*$ is isomorphic to

- \Bbbk^6 if $\mathbf{a} = (0, 0, 0)$.
- $\mathbb{k} \oplus M(5, \mathbb{k})^*$ if **a** is generic by Theorem 1.
- $\mathbb{k}^2 \oplus M(4, \mathbb{k})^*$ if **a** is sub-generic by Theorem 2.

Since $(\mathcal{A}_{[\mathbf{a}]})_0 \simeq \mathbb{k}^{S_3}$, $\mathcal{A}_{[\mathbf{a}]}$ is not isomorphic to $(\mathcal{A}_{[\mathbf{a}]})^{*cop}$ for all $\mathbf{a} \in \mathfrak{A}_3$. Clearly, A_R cannot be \mathbb{k}^{S_3} . Since $\mathcal{A}_{[\mathbf{a}]}$ is not cocommutative, R cannot be $1 \otimes 1$. The quasitriangular structures on $\mathbb{k}\langle \chi \rangle$ and $\mathbb{k}\langle \chi, y \rangle$ are well known, see for example [R]. Then it remains the case $A_R \subseteq \mathbb{k}\langle \chi, y \rangle$ with $R = R_0 + R_\alpha$ where $R_0 = \frac{1}{2}(1 \otimes 1 + 1 \otimes \chi + \chi \otimes 1 - \chi \otimes \chi)$ and $R_\alpha = \frac{\alpha}{2}(y \otimes y + y \otimes \chi y + \chi y \otimes \chi y - \chi y \otimes y)$ for some $\alpha \in \mathbb{k}$. Since $\Delta(\delta_g)^{cop}R = R\Delta(\delta_g)$ for all $g \in S_3$, then

$$\Delta(\delta_g)^{\operatorname{cop}} R_0 = R_0 \Delta(\delta_g) = \Delta(\delta_g) R_0 \quad \text{in } \mathbb{k}^{\mathbb{S}_3};$$

but this is not possible because $R_0^2 = 1 \otimes 1$ and k^{S_3} is not cocommutative.

Acknowledgements

Part of the work of C. V. was done as a fellow of the Erasmus Mundus programme of the EU in the University of Antwerp. He thanks Prof. Fred Van Oystaeyen for his warm hospitality and help.

References

- [AC] N. ANDRUSKIEWITSCH AND J. CUADRA, On the structure of (co-Frobenius) Hopf algebras. J. Noncommut. Geom., to appear.
- [AFGV] N. ANDRUSKIEWITSCH, F. FANTINO, M. GRAÑA AND L. VENDRAMIN, *Finite-dimensional pointed Hopf algebras with alternating groups are trivial*, Ann. Mat. Pura Appl. **190** (2011), 225-245.
- [AG] N. ANDRUSKIEWITSCH AND M. GRAÑA, From racks to pointed Hopf algebras, Adv. Math. **178** (2003), 177 243.
- [ARS] M. AUSLANDER, I. REITEN AND S. SMALO, *Representation theory of Artin algebras.* Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge (1995).
- [AS] N. ANDRUSKIEWITSCH AND H.-J. SCHNEIDER, *Pointed Hopf Algebras*, in "New directions in Hopf algebras", 1–68, Math. Sci. Res. Inst. Publ. **43**, Cambridge Univ. Press, Cambridge, 2002.
- [AV] N. ANDRUSKIEWITSCH AND C. VAY, Finite dimensional Hopf algebras over the dual group algebra of the symmetric group in three letters, Commun. Algebra, **39** (2011), No. 12, 4507-4517.
- [BDR] M. BEATTIE, S. DĂSCĂLESCU AND Ş. RAIANU, *Lifting of Nichols algebras* of type B₂, Israel J. Math. **132** (2002), 1-28.
- [CD] S. CAENEPEEL AND S. DĂSCĂLESCU, *On pointed Hopf algebras of dimension* 2^{*n*}, Bull. London Math. Soc. **31** (1999), 17-24.
- [CR] C. W. CURTIS AND I. REINER, Methods of representation theory with applications to finite groups and orders. Volume 1. Wiley Classics Library. (1990).
- [DR1] V. DLAB AND C. M. RINGEL, On algebras of finite representation type, J. Algebra **33** (1975), 306-394.
- [DR2] V. DLAB AND C. M. RINGEL, *Indecomposable representations of graphs and algebras*, Mem. Amer. Math. Soc. **6** (1976), no. 173, v+57 pp.
- [G] M. GRAÑA, Zoo of finite-dimensional Nichols algebras of non-abelian group type, available at http://mate.dm.uba.ar/~matiasg/zoo.html.
- [GI] A. GARCÍA IGLESIAS, *Representations of pointed Hopf algebras over* S₃, Revista de la Unión Matemática Argentina **51** (2010), no. 1, 51-77.
- [M] A. MASUOKA, *Defending the negated Kaplansky conjecture*, Proc. Amer. Math. Soc. **129** (2001), no. 11, 3185-3192.
- [Mo] S. MONTGOMERY, Hopf Algebras and their Actions on Rings, CBMS Reg. Conf. Ser. Math. 82, *Amer. Math. Soc.* (1993).

[MS]	A. MILINSKI AND HJ. SCHNEIDER, <i>Pointed indecomposable Hopf algebras over Coxeter groups</i> , Contemp. Math. 267 (2000), 215-236.
[N]	W. D. NICHOLS, <i>Bialgebras of type one</i> , Comm. Algebra 6 (1978), 1521-1552.
[NZ]	W. D. NICHOLS AND M.B. ZOELLER, <i>Hopf algebra freeness theorem</i> , Amer. J. Math. 111 (1989), 381–385.
[R]	D. RADFORD, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), 285-315.
[Ve]	L. VENDRAMIN, <i>Nichols algebras associated to the transpositions of the sym-</i> <i>metric group are twist-equivalent</i> , Proc. Amer. Math. Soc., to appear.

FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, República Argentina. email:andrus@famaf.unc.edu.ar, vay@famaf.unc.edu.ar