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Abstract

The paper deals with the asymptotic behavior of solutions to a non-local diffu-
sion equation, ut = J ∗u −u := Lu, in an exterior domain,Ω , which excludes one
or several holes, and with zero Dirichlet data on R

N \Ω . When the space dimension
is three or more this behavior is given by a multiple of the fundamental solution of
the heat equation away from the holes. On the other hand, if the solution is scaled
according to its decay factor, close to the holes it behaves like a function that is
L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The
height of such a function at infinity is determined through a matching procedure
with the multiple of the fundamental solution of the heat equation representing the
outer behavior. The inner and the outer behaviors can be presented in a unified way
through a suitable global approximation.

1. Introduction

Let H ⊂ R
N , N � 3, be a bounded open set with smooth boundary and let

Ω = R
N \ H. We do not assume H = Ωc to be connected, so it may represent

one or several holes in an otherwise homogeneous medium. Our goal is to study
the large-time behavior of the solution to the nonlocal heat equation in that exterior
domain with zero data on the boundary, namely,

⎧
⎪⎪⎨

⎪⎪⎩

∂t u(x, t) =
∫

RN
J (x − y)

(
u(y, t)− u(x, t)

)
dy in Ω × (0,∞),

u(x, t) = 0 in H × (0,∞),

u(x, 0) = u0(x) in R
N ,

(1)

with a kernel J that is assumed to be a nonnegative continuous function with unit
integral.



Carmen Cortázar et al.

We will restrict ourselves to the case where J is smooth, radially symmet-
ric, with a compact support contained in the unit ball centered at the origin and
J (0) > 0. However, results similar to those we obtain here should hold for more
general kernels.

The hypotheses on the initial data, u0, are that they are nonnegative, bounded,
integrable, and identically zero in the hole H. We also assume, without loss of
generality, that 0 ∈ H.

Evolution problems with this type of diffusion have been widely considered in
the literature, since they can be used to model the dispersal of a species by taking
into account long-range effects [5,8,11]. It has also been proposed as a model for
phase transitions [3,4], and, quite recently, for image enhancement [12].

The nonlocal equation in (1) has been the subject of many recent works in
the case where the spatial domain is R

N , and also when it is a smooth bounded
domain and is complemented by a suitable Dirichlet or Neumann type boundary
condition, see the recent monograph [1] and the references therein. However, to
our knowledge, this is the first time that an exterior domain has been considered.

When there are no holes, H = ∅, mass is conserved,
∫

RN u(x, t) dx =∫

RN u0(x) dx , and the solution to (1) behaves for large times as the solution v
to the local heat equation with diffusivity

α := 1

2N

∫

RN
|z|2 J (z) dz (2)

and the same initial data [9,15]. More precisely,

lim
t→∞ t N/2 max

x∈RN
|u(x, t)− v(x, t)| = 0. (3)

Hence the asymptotic behavior of u can be described in terms of the fundamental
solution of the heat equation with diffusivity α, Γα . This solution has a self-similar
structure,

Γα(x, t) = t−N/2Uα
( x

t1/2

)
, Uα(y) = (4πα)−N/2e− |y|2

4α .

Therefore, in self-similar variables we have convergence towards the stationary
profile MUα , where M = ∫

RN u0(x) dx , that is,

lim
t→∞ max

y∈RN
|t N/2u(yt1/2, t)− MUα(y)| = 0. (4)

Thus, there is an asymptotic symmetrization: whether the initial datum is radial or
not, the large time behavior of u is given by a radial profile, which, of course, has
the same mass as the datum.

In the presence of holes the situation is very different. On one hand, mass is not
conserved. On the other hand, the presence of the hole breaks (in general) the sym-
metry of the spatial domain, and an asymptotic symmetrization is no longer possible.
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Nevertheless, when N � 3 we still have a conservation law,
∫

RN u(x, t)φ(x) dx =∫

RN u0(x)φ(x) dx , with φ the unique solution to
⎧
⎪⎨

⎪⎩

J ∗ φ = φ in Ω,

φ = 0 in H,
φ(x) → 1 as |x | → ∞.

(5)

Moreover, there is a non-trivial asymptotic mass which coincides with the conserved
quantity M∗ = ∫

RN u0(x)φ(x) dx . Besides, if we stand far away from the holes,
they will be seen as just one point, and we may still expect some symmetrization.
Indeed, we will prove that

lim
t→∞ t N/2u(yt1/2, t) = M∗Uα(y) uniformly in |y| � δ > 0.

The only effect of the holes in this outer limit is the loss of mass. However, close
to the holes, in the inner limit, their effects are much more important. On compact
sets solutions still decay as O(t−N/2). If we scale the solutions accordingly, we get
that the new variable w(x, t) = t N/2u(x, t) satisfies

∂tw = J ∗ w − w + N

2

w

t
.

Thus, we expect w to converge to an L-harmonic function Φ with zero ‘boundary
data’,

LΦ := J ∗Φ −Φ = 0, x ∈ Ω, Φ = 0, x ∈ H.

This problem does not have uniqueness. However, a unique solution can be deter-
mined by prescribing the value at infinity. Indeed, if Φ → C∗ as |x | → ∞, then
Φ = C∗φ.

In order to select the right constant C∗ characterizing the asymptotic limit of
w, we need some extra information. This will come from the outer limit, following
a typical matched asymptotics procedure. Let us explain in some detail how this is
done.

In view of the asymptotic behavior of φ, we can describe the outer limit in the
alternative form

lim
t→∞ t N/2 sup{|u(x, t)− M∗φ(x)Γα(x, t)| : |x | � δ

√
t} = 0 for all δ > 0.

In addition, since limt→∞ t N/2Γα(x, t) = (4πα)−N/2 uniformly on compact sets,
the expected inner limit can be written as

t N/2|u(x, t)− C∗(4πα)N/2φ(x)Γα(x, t)| → 0 as t → ∞
uniformly in compact sets. We will prove that we can go beyond compact sets, and
that this limit holds uniformly in a set of the form |x | � δ̄t1/2 for some δ̄ > 0.
More precisely, there exists δ̄ > 0 such that

lim
t→∞ t N/2 sup{|u(x, t)− C∗(4πα)N/2φ(x)Γα(x, t)| : |x | � δ̄

√
t, x ∈ Ω} = 0.
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Hence, the inner and the outer developments overlap, and they can be matched,
leading to

C∗ = M∗(4πα)−N/2.

Notice that we have been able to describe the inner and the outer behavior in a
unified way. Hence we may gather the two results into a single theorem.

Theorem 1. Let N � 3, u0 ∈ L1(RN ) ∩ L∞(RN ), u0 � 0 and M∗ =∫

RN u0(x)φ(x) dx. Then,

t N/2|u(x, t)− M∗φ(x)Γα(x, t)| → 0 as t → ∞ uniformly in R
N . (6)

Remark 1. Let ρ = inf{R : supp J ⊂ B(0; R)}. The set Ω + B(0; ρ/2) has
only one unbounded component, U . Though U may contain several components
of Ω , only one of them is really unbounded. Nevertheless, due to the non-local
character of the diffusion operator, all the components of Ω contained in U are
‘connected to infinity’. On the other hand, there may exist components ofΩ which
do not intersect U , and which are, thus, ‘truly’ bounded. The function φ is identi-
cally 0 there. Therefore, the scaling we are using is not adequate to characterize the
asymptotic behavior in such subdomains. Indeed, the decay rate in these kinds of
bounded ‘components’ is exponential, and the asymptotic profile is an eigenfunc-
tion of the operator L with zero Dirichlet boundary conditions in the complement
of the ‘component’, associated to the first eigenvalue [9].

Remark 2. The asymptotic behavior for the case where there are no holes (4) can
also be described in the form (6), since the solution to (5) when H = ∅ is φ = 1.

When N � 2, mass is expected to decay to zero (logarithmically when N = 2,
and like a power when N = 1), and the solutions will decay faster than O(t−N/2).
The analysis becomes much more involved, and is postponed to a future paper.

An analogous study in an exterior domain has been performed for the corre-
sponding local problem in [13]. However, the author makes extensive use in the
proofs of the explicit form of the fundamental solution of the local heat equation
in the whole space. One of the main difficulties in the non-local case is that we do
not have such an explicit expression.

An alternative approach, in which fundamental solutions do not play such a key
role in the proofs, has been used for nonlinear (local problems), see for instance
[7,14]. However, the operators under consideration in these cases are invariant
under some scaling transformations, which is not the case in the present problem.

Nevertheless, although it will not be apparent from our proofs, scaling still plays
a key role in the outer region. In fact, as observed in [10], under the usual para-
bolic scaling our operator ‘converges’ to αΔ. This is the reason the outer behavior
is given by the fundamental solution to the heat equation with diffusivity α. This
idea has been used in [17] to study the asymptotic behavior for the nonlocal heat
equation with absorption in a certain critical case.

We complete the study of the asymptotic behavior by analyzing the function φ
at infinity. We prove that all the derivatives of φ behave at infinity as those of the
fundamental solution of the Laplace operator. This result might be of independent
interest.
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Notations. In what follows we will denote

Lu(x, t) :=
∫

RN
J (x − y)

(
u(y, t)− u(x, t)

)
dy.

2. Preliminaries

On the notion of solution. Let u0 ∈ L1(RN ), u0 = 0 almost everywhere in H. A
solution of (1) is a function u ∈ C([0,∞) : L1(RN )) such that for all t > 0

u(·, t) = u0 +
∫ t

0

(
J ∗ u(·, s)− u(·, s)

)
ds a.e. in Ω, u(·, t) = 0 a.e. in H. (7)

Subsolutions and supersolutions are defined as usual by replacing the equalities in
the definition above by � or �, respectively.

Remark 3. If u is a solution, then u ∈ L1(RN × [0, T ]) for all T > 0. Hence, (1)
holds, not only in the sense of distributions, but also almost everywhere in Ω ×
(0,∞). Moreover, we also have u ∈ C1([0,∞) : L1(RN )), and the equation holds
almost everywhere in Ω for all t � 0.

Existence and uniqueness. Existence and uniqueness of a solution to (1) can be
proved for any u0 ∈ L1(RN ) such that u0 = 0 almost everywhere in H in several
ways, for example by means of semigroup theory. For the sake of completeness,
we include a simple proof which uses a standard fixed point argument. We do not
need to assume that u0 ∈ L∞(RN ) or restrict the sign.

Proposition 1. For any u0 ∈ L1(RN ) such that u0 = 0 almost everywhere in H
there exists a unique solution of (1).

Proof. The proof is quite similar to the one for the case H = ∅ performed in [9].
The set

Bt0 = {u ∈ C([0, t0] : L1(RN )) : u(·, t) = 0 a.e. in H for all t ∈ [0, t0]}
endowed with the norm

|||u||| = max
0�t�t0

‖u(·, t)‖L1(RN )

is a Banach space. We define the operator T : Bt0 → Bt0 through

(T u)(·, t) =
⎧
⎨

⎩

u0(·)+
∫ t

0
(J ∗ u(·, s)− u(·, s)) ds a.e. in Ω,

0 a.e. in H.
(8)

This operator turns out to be contractive if t0 is small enough. Indeed,
∫

RN
|T ϕ − T ψ |(·, t)

�
∫

Ω

∫ t

0

(
|J ∗ (ϕ − ψ)(·, s)| + |ϕ − ψ |(·, s)

)
ds

�
∫ t

0

(
‖J‖L1(RN ) + 1

)
‖(ϕ − ψ)(·, s)‖L1(RN ) ds.
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Hence, |||T ϕ − T ψ ||| � 2t0|||ϕ − ψ |||. Thus, T is a contraction if t0 < 1/2. Exis-
tence and uniqueness in the time interval [0, t0] now follow easily, using Banach’s
fixed point theorem. Since the length t0 of the existence and uniqueness time inter-
val does not depend on the initial data, we may iterate the argument to extend the
result to all positive times. ��
Comparison. Comparison is an immediate consequence of the following T -con-
traction property in L1. Again, we are assuming only that the initial data are inte-
grable.

Theorem 2. Let u1, u2 be solutions of (1) having as initial data respectively
u1,0, u2,0 ∈ L1(RN ). Then, for every t � 0,

∫

RN
(u1 − u2)+(·, t) �

∫

RN
(u1,0 − u2,0)+.

Proof. We subtract the equations for u1 and u2 and multiply by 1{u1>u2}. Since
u1 − u2 ∈ C1([0,∞); L1(RN )),

∂t (u1 − u2)1{u1>u2} = ∂t (u1 − u2)+.

On the other hand, just using that 0 � 1{u1>u2} � 1 and J � 0 we get,

J ∗ (u1 − u2)1{u1>u2} � J ∗ (u1 − u2)+.

Finally, (u1 − u2)1{u1>u2} = (u1 − u2)+. We end up with

∂t (u1 − u2)+ �
{

J ∗ (u1 − u2)+ − (u1 − u2)+ a.e. in Ω,

0 a.e. in H.

Integrating in space, and using Fubini’s Theorem, we get

∂t

∫

RN
(u1 − u2)+(·, t) � 0.

��
Remark 4. The same proof applies when there are no holes, Ω = R

N .

As a corollary we have, on one hand, comparison and, on the other hand, an
L1-contraction property for solutions,

‖(u1 − u2)(·, t)‖L1(RN ) � ‖u1,0 − u2,0‖L1(RN ).

The latter property implies the continuous dependence of solutions on the initial
data, and a uniform control of the L1-norm along time,

‖u(·, t)‖L1(RN ) � ‖u0‖L1(RN ).

The proof of Theorem 2 applies under much weaker hypotheses, leading to a
more general comparison principle that will be useful in the sequel.
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Theorem 3. Let {Ω(t)}t�0 be a continuous (with respect to the Hausdorff distance)

family of open smooth domains of R
N . Let u1 and u2 be two functions in the class

C1([0,∞); L1(RN )) such that

∂t u1 − Lu1 � 0, ∂t u2 − Lu2 � 0 for a.e. x ∈ Ω(t), ∀ t > 0,

and u1(x, t) � u2(x, t) for almost everywhere x ∈ R
N \Ω(t),∀ t > 0. Then, for

every t � 0,
∫

RN
(u1 − u2)+(·, t) �

∫

RN
(u1(x, 0)− u2(x, 0))+.

Remark 5. In order to compare a subsolution and a supersolution in Ω(t), t >
0, we need them only to be ordered in (Ω(t)+ B(0; 1)) \ Ω(t), t > 0, and in
Ω(0)+ B(0; 1).

Time decay. Solutions to problem (1) satisfy

u(·, t) =
⎧
⎨

⎩

e−t u0 +
∫ t

0
e−(t−s) J ∗ u(·, s) ds a.e. in R

N \ H,

0 a.e. in H.
(9)

Therefore, u has the same spatial regularity as the initial datum u0, but not more.
In particular, if u0 is not bounded, neither is u(·, t) for any later time.

On the contrary, if the initial datum is bounded, the solution will stay bounded
as time goes by. Moreover, if u0 ∈ L1(RN ) ∩ L∞(RN ), the solution decays like
O(t−N/2). To check this, we first observe that, since u is a solution to (1) and
u(·, t) = 0 almost everywhere in H for all t ∈ [0,∞), then

ut = Lu − XH(J ∗ u) in R
N × (0,∞). (10)

Furthermore, if u0 � 0, we have u(x, t) � 0. Hence, the function u, which belongs
to C([0,∞); L1(RN )), is a subsolution to the Cauchy problem (no holes). There-
fore, it lies below the solution uC to the Cauchy problem with the same initial
datum.

On the other hand, as we have already mentioned, see (4), if u0 ∈ L1(RN ) ∩
L∞(RN ), then uC = O(t−N/2). Thus,

0 � u(x, t) � Ct−N/2. (11)

Remark 6. In order to obtain the asymptotic behavior of uC, the paper [9] requires
u0, û0 ∈ L1(RN ). The paper [15] dispenses with the integrability assumption on
û0, and on the sole hypothesis u0 ∈ L1(RN ) proves that

lim
t→∞ t N/2 max

x∈RN
|u(x, t)− e−t u0(x)− v(x, t)| = 0,

where v has the same meaning as in (3). Therefore, the hypotheses u0 ∈ L1(RN )∩
L∞(RN ) are enough to have (4).
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L∞-solutions. Instead of the L1-theory outlined above, an L∞-theory for (1) is
also possible. Given an initial datum u0 ∈ L∞(RN ), an L∞-solution to problem (1)
is a function u ∈ C([0,∞); L∞(RN )) such that (7) holds for all t � 0.

As in the case of L1-solutions, existence and uniqueness follow from a fixed-
point argument. Indeed,

Bt0 = {u ∈ L∞(RN × [0, t0]) : u(·, t) = 0 a.e. in H for all t ∈ [0, t0]}
endowed with the norm

|||u||| = max
0�t�t0

‖u(·, t)‖L∞(RN )

is a Banach space, and the operator T : Bt0 → Bt0 defined by (8) satisfies |||T ϕ −
T ψ ||| � 2t0|||ϕ −ψ |||. Hence, it is contractive if t0 < 1/2, which implies the local
existence and uniqueness result. By iteration, taking as initial datum u(·, t0) ∈
L∞(RN ), we obtain existence and uniqueness for [0, 2t0] and therefore for all
times.

Besides, L∞-solutions depend continuously on the initial data. Indeed, let u1
and u2 be L∞-solutions with initial data u1,0, u2,0 ∈ L∞(RN ). Since the functions
ui satisfy (9) (with u0 = ui,0), an easy computation shows that for every t > 0,

max
s∈[0,t] ‖u1(·, s)− u2(·, s)‖L∞(RN ) � ‖u1,0 − u2,0‖L∞(RN ).

In particular, the L∞-norm of a bounded solution does not increase with time,

‖u(·, t)‖L∞(RN ) � ‖u(·, 0)‖L∞(RN ) ∀ t > 0.

Essentially the same computation yields a comparison result for bounded sub-
and supersolutions if the hole does not change with time. Let us examine this in
some detail. Assume u1,0 � u2,0 in R

N . Let u1 be a bounded subsolution with
initial datum u1,0 and let u2 be a bounded supersolution with initial datum u2,0
in Ω = R

N \ H with u1 � u2 in H for every t > 0. Let u = u1 − u2 and
u0 = u1,0 − u2,0. Then,

u(x, t) �

⎧
⎨

⎩

e−t u0(x)+
∫ t

0
e−(t−s) J ∗ u(x, s) ds if x ∈ Ω,

0 if x ∈ H.

Hence, for x ∈ Ω ,

u(x, t) �
∫ t

0
e−(t−s) J ∗ u(x, s) ds � sup

RN ×(0,t)
u (1 − e−t ),

with leads to

sup
RN ×(0,t)

u � sup
RN ×(0,t)

u (1 − e−t ).

Therefore, supRN ×(0,t) u � 0 for every t > 0. This means that u � 0. Thus,
u1 � u2.
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Remark 7. The comparison result for bounded sub- and supersolutions of the Cau-
chy problem was proved in [16] using a different technique. The result of that paper
is, in fact, more general, since it also applies to semilinear equations, as long as the
nonlinearity is locally Lipschitz continuous. In addition, its proof copes without
further ado with the case of holes that change with time.

An alternative proof of comparison for the case of one-dimensional exterior
domains which do not change with time can be found in [2].

Remark 8. From now on we will always assume that u0 ∈ L1(RN ) ∩ L∞(RN )

and u0 � 0.

Representation formula. By (10), u can be expressed in terms of the fundamental
solution F = F(x, t) to the operator ∂t − L in the whole space, studied in [9], by
means of the variation of constants formula. Thus, for t � t0 we have

u(x, t) =
∫

RN
F(x − y, t − t0)u(y, t0) dy

−
∫ t

t0

∫

RN
F(x − y, t − s)XH(y)(J ∗ u(·, s))(y) dy ds. (12)

The fundamental solution can be decomposed as

F(x, t) = e−tδ(x)+ ω(x, t), (13)

where δ(x) is the Dirac mass at the origin in R
N and ω is defined via its Fourier

transform as

ω̂(ξ, t) = e−t(e Ĵ (ξ)t − 1
)
, (14)

see [9], from where it is easy to see that ω is a smooth function and

∫

RN
ω(x, t) dx = ω̂(0, t) = 1 − e−t .

Combining (12) and (13), we obtain

u(x, t) = e−(t−t0)u(x, t0)+
∫

RN
ω(x − y, t − t0)u(y, t0) dy

−
∫ t

t0
e−(t−s)XH(x)(J ∗ u(·, s))(x) ds

−
∫ t

t0

∫

RN
ω(x − y, t − s)XH(y)(J ∗ u(·, s))(y) dy ds. (15)

This formula will be the starting point to obtain both the behavior at infinity of φ
and the outer large time behavior of u.
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Estimates for ω. In order to profit from the representation formula (15), we need
good estimates for the regular part, ω, of the fundamental solution.

A first source of estimates comes from the asymptotic convergence of ω to
the fundamental solution of the local heat equation with diffusivity α, which is
proved using Fourier transform techniques [15]. Indeed, given a multi-index β =
(β1, . . . , βN ) ∈ N

N
0 of order |β| = s,

t (N+s)/2‖Dβω(·, t)− DβΓα(·, t)‖L∞(RN ) → 0 as t → ∞, (16)

where Dβ f = ∂
β1
x1 · · · ∂βN

xN f . In particular,

|Dβω(x, t)| � Ct−
N+s

2 if |β| = s. (17)

These estimates give the right order of time decay. However, they do not take into
account the spatial structure of ω, and will not be enough for our purposes. We
need to know something about the spatial decay of ω as |x | → ∞.

A second source of estimates is the expansion

ω(x, t) = e−t
∞∑

n=1

tn J ∗n(x)

n! , J ∗n = J ∗ · · · ∗ J︸ ︷︷ ︸
n times

, (18)

which follows by using the Taylor series of the exponential in (14). This expres-
sion, recently derived in [6], was used by the authors to obtain estimates giving the
behavior of ω as |x | → ∞ for each fixed t . However, though they give the right
order of spatial decay for each time, they become very poor as t → ∞.

Hence we need a different approach: we will obtain ‘good’ estimates through
a comparison argument. Indeed, as observed in [17], ω is a solution to

{
∂tω(x, t)− Lω(x, t) = e−t J (x) in R

N × (0,∞),

ω(x, 0) = 0 in R
N ,

(19)

a fact that can be checked, for example, either by differentiating ω̂(ξ, t)with respect
to t or by using that e−tδ(x)+ω(x, t) is a solution of ∂t F−L F = 0. Good estimates
will then follow from the use of appropriate barriers.

Proposition 2. The function ω is nonnegative. Moreover, given a multi-index
β ∈ N

N
0 of order |β| = s,

|Dβω(x, t)| � C
t

|x |N+2+s
, (20)

∫

RN
|Dβω(x, t)| dx � Ct−s/2. (21)

The cases s = 0, 1 have already been proved in [17] through a clever use of the
above mentioned comparison principle from [16]. The proof of the general case is
completely analogous. The fact that ω is nonnegative was also proved in [17] and
can also be seen from the series expansion (18).

Remark 9. Estimates (20) and (21) are in some sense optimal, since they are invari-
ant under the ‘parabolic’ scaling (τku)(x, t) = k N u(kx, k2t). This scaling will play
a major part in some of our proofs.
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3. The Stationary Problem

As we have seen in the introduction, the L-harmonic function φ solving (5)
plays a key role in the description of the asymptotic behavior of solutions to (1). In
this section we prove that problem (5) is well posed, and we obtain some properties
of φ that will be required later. Though not needed in the sequel, we complete our
study of the stationary solution φ by precisely describing its behavior at infinity.

Remark on the notion of solution. In principle, we only need φ ∈ L1
loc(R

N ), so
that the convolution makes sense. But the equation implies that φ has the same
regularity in Ω as J has in R

N . Hence φ is at least continuous in Ω and, in our
case, φ is smooth in Ω . However, φ is not continuous across the boundary of Ω .

3.1. Existence and Uniqueness

To prove existence we will approximate the domainΩ by a sequence of bounded
domains, Ωn = Ω ∩ B(0; n). Let us start by studying the Dirichlet problem for
such bounded domains.

Lemma 1. Let G ⊂ R
N open and bounded.

(i) Given f ∈ L∞(Gc), there exists a solution to problem

Lφ(x) = 0 in G, φ = f (x) in G
c
.

(ii) Let φ1, φ2 ∈ L∞(RN ) ∩ C(G) such that

Lφ1 � Lφ2 in G, φ1 � φ2 in G
c
.

Then φ1 � φ2 in R
N .

Proof. Existence. Let K = {ψ ∈ C(G) : ‖ψ‖L∞(G) � ‖ f ‖L∞(Gc)}. We define
an operator T : K → K through the formula

(T ψ) (x) =
∫

G
J (x − y)ψ(y) dy +

∫

Gc
J (x − y) f (y) dy.

Since ‖T ψ‖L∞(G) � ‖ f ‖L∞(Gc) and ‖T ψ‖C1(G) � CJ ‖ f ‖L∞(Gc), we may apply

Schauder’s fixed point theorem to obtain that T has a fixed point φ̂ ∈ K. Then, the
function

φ(x) =
{
φ̂(x), x ∈ G,

f (x), x ∈ G
c
,

is the sought-after solution.
Comparison. Let φ = φ1 − φ2. Then,

φ(x) �
∫

G
J (x − y)φ(y) dy.
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Assume for contradiction that M = maxG φ > 0. Let x0 ∈ G be a point at which
the maximum is attained and let Gi be the corresponding connected component.
The set K = {x ∈ Gi : φ(x) = M} is nonempty and closed. On the other hand,

M = φ(x0) �
∫

G
J (x0 − y)φ(y) dy � M

∫

G
J (x0 − y) dy � M.

This is possible only if φ(x) = M in G ∩ supp J (x0 − ·). Since J (0) > 0, this
implies that φ(x) = M in G ∩ B(x0; δ) for some δ > 0; hence K is an open subset
of Gi . Since Gi is connected, we deduce that K = Gi , so that, φ ≡ M > 0 in Gi .
But this implies that

M = φ(x0) � M
∫

G
J (x0 − y) dy < M

for any x0 ∈ ∂Gi where the density of G
c
i is positive, a contradiction. ��

If in Lemma 1 we take G = Ωn, f = 0 in H, f = 1 in Ωc
n \ H, we obtain

a monotone sequence {φn}n∈N converging to a function φ. In order to prove that
φ approaches 1 at infinity, we will compare the approximate solutions defined in
bounded sets with a suitable barrier z. Hence we need to estimate Lz.

Lemma 2. Let z(x) = (|x |2 + b)−γ , γ > 0. There exists a number
b = b(J, γ, N ) > 0 such that

Lz(x) � −2α γ (|x |2 + b)−(γ+1)(N − 2 − 2γ ), (22)

where α is the constant defined in (2).

Proof. After some cumbersome, but easy, computations, using Taylor’s expansion
and the radial symmetry of J , we find that

Lz(x) = −2α γ (|x |2 + b)−(γ+1)(N − 2 − 2γ )− 4α γ (γ + 1)(|x |2 + b)−(γ+2)b

+O
(
(|x |2 + b)−(γ+2)),

from where the result follows just choosing b large enough. ��
Proposition 3. There exists a unique solution to (5). Moreover, 0 � φ � 1 and
there exists a positive constant K such that

1 − φ(x) � K
(|x |2 + 1

)(N−2)/2
, x ∈ Ω. (23)

Proof. Existence. Let n0 in N be such that H ⊂ B(0; n0). Consider the sequence
of functions {φn(x)}n�n0

, where φn is the solution to

⎧
⎪⎨

⎪⎩

Lφn(x) = 0 in B(0; n) \ H,
φn = 0 in H,
φn = 1 in B(0; n)c.

(24)
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A simple comparison argument proves that 0 � φn(x) � 1 for all n � n0, x ∈
R

N . Hence, φn(x) � φn+1(x) in (B(0; n))c, which yields, again by comparison,
0 � φn+1(x) � φn(x) � 1 for all n � n0, x ∈ R

N . Therefore, the monotone limit

φ(x) = lim
n→∞φn(x)

is well defined, and satisfies 0 � φ � 1. Letting n → ∞ in (24), by the monotone
convergence theorem we get

Lφ(x) = 0 in Ω, φ = 0 in H.

We still have to prove (23), which implies in particular that φ(x) → 1 as
|x | → ∞. This is done by comparison with the barrier z described in Lemma 2
with 2γ = N − 2. Indeed, by taking K large enough, on one hand we have
K z � 1 = 1 − φn in H, K z � 1 − φn = 0 in (B(0; n))c, and on the other hand
L(K z) � 0 = L(1 − φn) in B(0; n) \ H. Hence, K z � 1 − φn in R

N and, passing
to the limit, we obtain (23).
Uniqueness. Let φ and φ be two solutions to (5). We consider the family of
functions φλ(x) := φ(x)+ λ. Since both φ and φ are bounded, there is a value λ1
such that φλ1

� φ in R
N . Let

λ0 = inf{λ : φλ � φ in R
N }.

We shall prove that λ0 = 0, which means that φ � φ in R
N , from which uniqueness

follows, since the roles of φ and φ can be interchanged.
Assume for contradiction that λ0 > 0. Since both φ(x) and φ(x) tend to 1

as |x | → ∞, there exists R1 such that φλ0
(x) > φ(x) if |x | � R1. Moreover,

φλ0
> φ in H. Hence, as both φ and φ are continuous in RN \ H, there exists x0

in B(0; R1) \ H such that φλ0
(x0) = φ(x0). The set

S = {x ∈ B(0; R1) \ H : φλ0
(x) = φ(x)}

is closed and non-empty. If x1 is a point in ∂S where the density of Sc is positive,
then φλ0

(x1) = φ(x1) but J ∗ φλ0
(x1) > J ∗ φ(x1). Since this is a contradiction,

we get that λ0 = 0. ��

3.2. Asymptotic Properties

We now obtain the decay at infinity of the derivatives of φ. In the sequel we let
ψ = 1 − φ.

Proposition 4. Given s ∈ N0, there exists a constant Cs such that, for every multi-
index β ∈ N

N
0 of order |β| = s,

|Dβψ(x)| � Cs

|x |N−2+s
, x ∈ Ω. (25)
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Proof. The function φ is the unique bounded solution to the evolution problem (1)
with initial data φ. Hence, using the representation formula (15) with t0 = 0 and
u(x, t0) = φ(x), we get,

φ(x) = 1

1 − e−t

∫

RN
ω(x − y, t)φ(y) dy − XH(x)(J ∗ φ)(x)

− 1

1 − e−t

∫ t

0

∫

H
ω(x − y, t − s)(J ∗ φ)(y) dy ds.

Therefore, since
∫

RN ω(x, t) dx = 1 − e−t , we have

ψ(x) = 1

1 − e−t

∫

RN
ω(x − y, t)ψ(y) dy + XH(x)(J ∗ φ)(x)

+ 1

1 − e−t

∫ t

0

∫

H
ω(x − y, t − s)(J ∗ φ)(y) dy ds. (26)

Given k > 0, we denote

φk(x) = k N−2φ(kx), ψk(x) = k N−2ψ(kx),
Jk(x) = k N J (kx), ωk(x, t) = k N (kx, k2t),

and Hk = {x ∈ R
N : kx ∈ H}. If we scale equation (26) according to these recipes,

we get

ψk(x) = 1

1 − e−t

∫

RN
ωk(x − y, k−2t)ψk(y) dy + XHk (x)(Jk ∗ φk)(x)

+ 1

1 − e−t

∫ t

0

∫

Hk

ωk(x − y, k−2(t − s))(Jk ∗ φk)(y) dy ds.

Let δ > 0 be given. There exists a value kδ such that XHk (x) = 0 if |x | � δ/2 and
k � kδ . Therefore,

Dβψk(x) = 1

1 − e−t

∫

RN
Dβωk(x − y, k−2t)ψk(y) dy

︸ ︷︷ ︸
A

+ 1

1 − e−t

∫ t

0

∫

Hk

Dβωk(x − y, k−2(t − s))(Jk ∗ φk)(y) dy ds

︸ ︷︷ ︸
B

,

if |x | � δ/2 and k � kδ .
We start by estimating B. If y ∈ Hk and |x | � δ, then |x − y| � δ/2 if

k � kδ . On the other hand, since 0 � φk(x) � k N−2, we have, in addition,
0 � Jk ∗ φk � k N−2. So, recalling that |Hk | = Ck−N and the bounds in (20)—
which are scaling invariant—we get

|B| � k N−2

1 − e−t

∫ t

0

∫

Hk

Ck−2(t − s)

|x − y|N+s+2 dy ds

� Cδ,N
k−4

1 − e−t

∫ t

0
(t − s) ds = Cδ,N

k−4

1 − e−t
t2 � Cδ,N if t = k2.
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Now we estimate A with t = k2. Recall that 0 � ψ(x) � C/|x |N−2. Therefore
we have, again using (20) and (21),

|A| � 1

1 − e−k2

∫

|y|<δ/2
|Dβωk(x − y, 1)| C

|y|N−2 dy

+ Cδ,N
1 − e−k2

∫

|y|�δ/2
|Dβωk(x − y, 1)| dy

� Cδ,N
1 − e−k2

∫

|y|<δ/2
dy

|y|N−2 + Cδ,N
1 − e−k2 � Cδ,N .

In conclusion, given δ > 0 there exists kδ such that, if k � kδ and |x | � δ, then
|Dβψk(x)| � Cδ,N .

Let us take |x | = 1,C1 = C1,N , y = kx so that k = |y|. Then, we get

|y|N−2+s |Dβψ(y)| = k N−2+s |Dβψ(kx)| = |Dβψk(x)| � C1 if |y| = k � k1.

This proves estimate (25), except for a bounded set. However, φ is smooth in Ω ,
and hence the estimate is obviously true for bounded sets. ��
Remark 10. The proof of the bound (25) only requires J ∈ Cs+1.

Though the second derivatives ofψ decay like O(|x |−N ) as |x | → ∞, a special
combination, the Laplacian, decays faster. In particular,Δψ is integrable at infinity.

Corollary 1. There exists a constant C such that |Δψ(x)| � C
|x |N+2 in Ω .

Proof. Using Taylor’s expansion we get

Lψ(x) = αΔψ(x)+ O

(

max|β|=4
‖Dβψ‖L∞(B1(x))

)

.

Since ψ is L-harmonic, the result follows from the estimate (25) for the fourth
order derivatives. ��
Remark 11. The proof of Corollary 1 only requires J ∈ C4. If we weaken this
assumption and only require J ∈ C3, we get |Δψ(x)| � C/|x |N+1, and the
Laplacian of ψ is still integrable at infinity.

We can profit from the integrability of Δψ at infinity to obtain the precise
asymptotic behavior of ψ .

Proposition 5. There exists a constant C∗ such that for every multi-index β ∈ N
N
0

of order |β| = s,

|x |N−2+s
∣
∣
∣Dβψ(x)− Dβψ∗(x)

∣
∣
∣ → 0 as |x | → ∞, ψ∗(x) = C∗|x |2−N . (27)
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Proof. Scaling and compactness. From (25) we get that the scaled functions
ψk satisfy |Dβψk(x)| � C/|x |N−2+s if |β| = s. Hence, thanks to Arzelà-Ascoli’s
theorem, for any sequence {kn}n∈N there exist a subsequence, that we name again
{kn}n∈N, and a function ψ∗ such that, for any multi-index β,

Dβψkn → Dβψ∗ uniformly on compact sets of R
N \ {0}. (28)

Moreover, ψ∗ inherits from the functions ψk the estimate

0 � ψ∗(x) � C/|x |N−2. (29)

Identification of the limit along subsequences. We consider the scaled operator
Lk defined by Lkv = k2

(
Jk ∗ v − v

)
. Performing a Taylor expansion, it is easy to

check that Lkϕ → αΔϕ uniformly for any ϕ ∈ C∞
c (R

N ).
Now let ϕ ∈ C∞

c (R
N \ {0}). We write

∫

RN
ψ∗αΔϕ =

∫

RN
ψk Lkϕ +

∫

RN
(ψ∗ − ψk)αΔϕ +

∫

RN
ψk(αΔϕ − Lkϕ).

(30)

Since Lkψ
k = 0, we have

∫

RN ψ
k Lkϕ = ∫

RN Lkψ
kϕ = 0. Besides, using (25), as

k → ∞ we have
∣
∣
∣
∣

∫

RN
ψk(αΔϕ − Lkϕ)

∣
∣
∣
∣ � C

∫

RN ∩
(

supp ϕ+B1/k (0)
) |αΔϕ − Lkϕ| → 0.

Thus, taking k = kn in (30) and letting n → ∞, we get
∫

RN ψ
∗αΔϕ = 0, which

implies that Δψ∗ = 0 in R
N \ {0}. Since |x |N−2ψ∗ is bounded, see estimate (29),

we may conclude that there exists a constant C∗ such that ψ∗(x) = C∗/|x |N−2.
Uniqueness of the limit. We next prove that the constant C∗ is independent of
the sequence {kn}n∈N.

A direct computation shows that
∫

∂B(0;R)

∂ψ∗

∂r
dS = C∗(2 − N )N VN for all R > 0,

where VN stands for the volume of the unit ball in R
N . On the other hand,

if H ⊂⊂ BR0 ,
∫

∂B(0;R)

∂ψ

∂r
dS =

∫

∂B(0;R0)

∂ψ

∂r
dS +

∫

BR\BR0

Δψ(x) dx for all R > R0.

Since
∫

BR\BR0
Δψ(x) dx has a finite limit as R → ∞, see Corollary 1,

∫

∂B(0;R)
∂ψ
∂r dS also has a limit, that we denote by μ.

Let y = kx . On one hand, we have |y|N−1∇ψ(y) = |x |N−1∇ψk(x) and on the
other, |y|N−1∇ψ∗(y) = |x |N−1∇ψ∗(x). Therefore, taking k = kn and |x | = 1,
which implies |y| = kn , and using (28), we get

|y|N−1
∣
∣∇ψ(y)− ∇ψ∗(y)

∣
∣ = ∣

∣∇ψkn (x)− ∇ψ∗(x)
∣
∣ < ε
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if |y| = kn and n is large. Hence,

∣
∣
∣

∫

∂B(0;kn)

∂ψ

∂r
dS − C∗(2 − N )N VN

∣
∣
∣ =

∣
∣
∣

∫

∂B(0;kn)

(
∂ψ

∂r
− ∂ψ∗

∂r

)

dS
∣
∣
∣ < Cε

if n is large. We conclude that, C∗ = μ
(
(2 − N )N VN

))−1.
Rephrasing the limit. Take y = kx and |x | = 1. In the above steps we have
proved that

|y|N−2+s Dβψ(y) = k N−2+s Dβψ(kx) = Dβψk(x) → Dβψ∗(x)

as |y| = k → ∞. Since Dβψ∗(x)=|y|N−2+|β| Dβψ∗(y) (remember that |x | = 1),
this is just (27). ��
Remark 12. To get (27) it is enough to have J ∈ Cmax(3,s). We need at least
J ∈ C3, no matter the order of the derivative we are considering, in order for Δψ
to be integrable at infinity, which is one of the main ingredients of the proof.

4. Conservation Law and Asymptotic Mass

We start our study of the evolutionary problem (1) with a conservation law that
will be of the highest importance for establishing the behavior of the solution in
the far field.

Proposition 6. Let u be the solution to (1) and φ the solution to (5). Then,

∫

RN
u(x, t)φ(x) dx =

∫

RN
u0(x)φ(x) dx := M∗ for every t > 0. (31)

Proof. Since u(x, t) = φ(x) = 0 for x ∈ H, we have

d

dt

∫

RN
u(x, t)φ(x) dx =

∫

RN
ut (x, t)φ(x) dx

=
∫

RN

∫

RN
J (x − y)

(
u(y, t)− u(x, t)

)
φ(x) dy dx

=
∫

RN

∫

RN
J (x − y)

(
φ(y)− φ(x)

)
u(x, t) dy dx

= 0.

��
Though mass is not conserved, there is a non-trivial asymptotic mass, which

coincides with the conserved quantity M∗.

Proposition 7. Let u be the solution to (1) and M∗ = ∫

RN u0(x)φ(x) dx. The mass
of the solution at time t,M(t) = ∫

RN u(x, t) dx, satisfies M(t) → M∗ as t → ∞.



Carmen Cortázar et al.

Proof. In fact,
∣
∣
∣
∣

∫

RN
u(x, t) dx − M∗

∣
∣
∣
∣ =

∫

RN
u(x, t)

(
1 − φ(x)

)
dx

�
∫

|x |<η√t
u(x, t) dx +

∫

|x |�η√t
u(x, t)

(
1 − φ(x)

)
dx

� Ct−N/2(η
√

t)N + C
1

(η
√

t)N−2

∫

RN
u(x, t) dx

� CηN + C‖u0‖L1(RN )

1

(η
√

t)N−2
.

Hence, choosing η so that CηN < ε and taking lim supt→∞ we get,

lim sup
t→∞

∣
∣
∣
∣

∫

RN
u(x, t) dx − M∗

∣
∣
∣
∣ � ε.

We conclude by letting ε → 0. ��

5. Far-Field Limit

In this section we study the large time behavior of the solution to (1) in sets of
the form {|x |2 � δt}, with δ > 0.

Theorem 4. Let u be the solution of (1) and M∗ the asymptotic mass given in (31).
Then, for every δ > 0,

t N/2‖u(x, t)− M∗Γα(x, t)‖L∞({|x |2�δt}) → 0 as t → ∞. (32)

Proof. Let t0 > 0 and t � 2t0. From the representation formula (15) we have

t N/2|u(x, t) − M∗Γα(x, t)| � t N/2e−(t−t0)u(x, t0)︸ ︷︷ ︸
I1

+ t N/2
∣
∣
∣
∣

∫

RN
ω(x − y, t − t0)u(y, t0) dy − M∗Γα(x, t)

∣
∣
∣
∣

︸ ︷︷ ︸
I2

+ t N/2
∫ t

t0
e−(t−s)XH(x)(J ∗ u(·, s))(x) ds

︸ ︷︷ ︸
I3

+ t N/2
∫ t

t0

∫

RN
ω(x − y, t − s)XH(y)(J ∗ u(·, s))(y) dy ds

︸ ︷︷ ︸
I4

.

Let δ > 0 and |x |2 � δt . We have the following estimates for the quantities Ii :
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• I1 � Ct N/2e−t/2 → 0 as t → ∞.
• The estimate for I2 is the most involved, and is split into three parts,

I2 � t N/2
∫

RN
|ω(x − y, t − t0)− Γα(x − y, t − t0)| u(y, t0) dy

︸ ︷︷ ︸
I2,1

+ t N/2
∣
∣
∣
∣

∫

RN
Γα(x − y, t − t0)u(y, t0) dy − M(t0)Γα(x, t)

∣
∣
∣
∣

︸ ︷︷ ︸
I2,2

+ t N/2Γα(x, t)|M(t0)− M∗|
︸ ︷︷ ︸

I2,3

.

– Using (16),

I2,1 � t N/2‖u(·, t0)‖L1(RN )‖ω(·, t − t0)− Γα(·, t − t0)‖L∞(RN )

= t N/2‖u0‖L1(RN )o
(
(t − t0)

− N
2
)
.

Thus, limt→∞ I2,1 = 0.
– The well-known asymptotics for solutions of the local heat equation imply

limt→∞ I2,2 = 0.
– By Proposition 7, if t0 is large enough, I2,3 � Cα|M(t0)− M∗| < ε.

• For t0 large enough, x /∈ H. Hence, I3 = 0.
• If t0 is large enough and y ∈ H, |x − y| � |x |/2. On the other hand, by (11)

0 � u(x, s) � Cs−N/2 and therefore, 0 � (J ∗ u(·, s))(x) � Cs−N/2. Thus,
using the space-time bound (20) for ω,

I4 � Ct N/2
∫ t

t0

∫

H
t − s

|x − y|N+2 s−N/2 dy ds � C

(
t

|x |2
) N

2 +1

t
− N

2 +1
0

� Cδ−
N
2 −1 t

− N
2 +1

0 < ε

if t0 is large enough.

Gathering all the above estimates, we get

lim sup
t→∞

∥
∥t N/2u(x, t)− t N/2 M∗Γα(x, t)

∥
∥

L∞(|x |2�δt) � 2ε.

We finally let ε → 0. ��
As a corollary of the outer behavior, we can do better in the proof of Proposi-

tion 7 to obtain the rate of decay of the mass to its asymptotic limit.

Corollary 2. Under the assumptions of Proposition 7, we have

M(t) = M∗ + K t−
N−2

2 + o
(

t−
N−2

2

)
, (33)

where K = C∗M∗ ∫

RN Uα(ξ)|ξ |2−N dξ, C∗ = lim|x |→∞(1 − φ(x))|x |N−2.
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Proof. We have from the conservation law (31) that

t
N−2

2 (M(t)− M∗) = t
N−2

2

∫

RN
u(x, t)(1 − φ(x)) dx .

In order to estimate this last integral, we split it into two parts,

t
N−2

2

∫

RN
u(x, t)(1 − φ(x)) dx

= t
N−2

2

∫

{|x |�δt1/2}
u(x, t)(1 − φ(x)) dx

︸ ︷︷ ︸
I1

+t
N−2

2

∫

{|x |�δt1/2}
u(x, t)(1 − φ(x)) dx

︸ ︷︷ ︸
I2

for δ > 0 and t big enough. Using the estimate 0 � 1 − φ(x) � c1|x |2−N and
the bound 0 � u(x, t) � Ct−N/2 we get 0 � I1 � Cδ2. For I2, we perform the
change of variables x = ξ t1/2, and get

lim
t→∞ I2 =

∫

{|ξ |�δ}
lim

t→∞
|ξ |N−2

(
1 − φ

(
ξ t1/2

))
t

N−2
2

|ξ |N−2 u(ξ t1/2, t)t N/2 dξ

= C∗M∗
∫

{|ξ |�δ}
Uα(ξ)|ξ |2−N dξ.

Hence

C∗M∗
∫

{|ξ |�δ}
Uα(ξ)|ξ |2−N dξ � lim inf

t→∞ t
N−2

2 (M(t)− M∗)

� lim sup
t→∞

t
N−2

2 (M(t)− M∗) � Cδ2 + C∗M∗
∫

{|ξ |�δ}
Uα(ξ)|ξ |2−N dξ,

from where the result follows just by letting δ → 0. ��
Remark 13. The amount of mass, ML(u), lost in the evolution is given by

ML(u) :=
∫

RN
u0(x) dx − lim

t→∞

∫

RN
u(x, t) dx =

∫

RN
(1 − φ(x))u0(x) dx > 0.

Therefore, the influence of the hole structure is felt at the asymptotic level through
the projection of the initial data onto ψ := 1 − φ, which represents in this way the
dissipation capacity of H.

Notice thatψ is the L-harmonic function defined inΩ that takes a value of 1 on
H and of 0 at infinity. Hence, by analogy with the standard (local) potential theory,
we may say that ψ is the function that measures the L-capacity of H, by means of
the formula

cap(H) = inf
{u�1 on H}

∫

Ω

∫

Ω

J (x − y)(u(x)− u(y))2 dx dy.
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6. Near-Field Limit

In view of Theorem 4, what is left to complete the proof of Theorem 1 is to
show that the limit (6) is uniformly valid in sets of the form {|x |2 < δt} for some
δ > 0. This is the goal of this section.

Theorem 5. Let u be the solution to (1). There exists a value δ > 0 such that

lim
t→∞ t N/2‖u(x, t)− M∗φ(x)Γα(x, t)‖L∞({|x |2<δt}) = 0. (34)

Instead of (34), we will prove

lim
t→∞ t N/2‖u(x, t)− M∗φ(x)ω(x, t)‖L∞({|x |2<δt}) = 0, (35)

which turns out to be equivalent, thanks to (16) with |β| = 0. Notice also that,
using again (16), together with the asymptotic behavior of φ, we may rewrite (32)
in a similar way,

lim
t→∞ t N/2‖u(x, t)− M∗φ(x)ω(x, t)‖L∞({|x |2�δt}) = 0. (36)

In order to prove (35) we will construct suitable barriers approaching the asymp-
totic limit as t → ∞. We choose κ ∈ (0, 1), γ ∈ (0, (N − 2 − κ)/2), and then
define, for any K± > 0,

v±(x, t) = φ(x)ω(x, t)± K±t−
N+κ

2 z(x), (37)

with z as in Lemma 2, z(x) = (|x |2 + b)−γ . We take b large enough, so that (22)
is satisfied.

Lemma 3. Let R > 0 and v± as above. There exists a value δ∗ > 0, independent
of K±, such that for all δ ∈ (0, δ∗), K± � 1, we have

∂tv+ − Lv+ � 0, ∂tv− − Lv− � 0, R2 � |x |2 � δt.

Proof. On one hand,

∂tv+(x, t) = φ(x)∂tω(x, t)− N + κ

2t
K+t−

N+κ
2 z(x).

On the other hand, using that φ is L-harmonic and (22), we get

Lv+(x, t) � φ(x)Lω(x, t)+
∫

RN
J (x − y)

(
φ(y)− φ(x)

)(
ω(y, t)− ω(x, t)

)
dy

−2αγ (N − 2 − 2γ )

|x |2 + b
K+t−

N+κ
2 z(x).

Hence, since ω solves (19) and φ � 0,

∂tv+ − Lv+ � −
∫

RN
J (x − y)

∣
∣φ(y)− φ(x)

∣
∣
∣
∣ω(y, t)− ω(x, t)

∣
∣ dy

︸ ︷︷ ︸
A

+K+t−
N+κ

2 z(x)

(
2αγ (N − 2 − 2γ )

|x |2 + b
− N + κ

2t

)

︸ ︷︷ ︸
B

.
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Estimate for A. We first notice that there is a constant C > 0 such that

|φ(x)− φ(y)| � C

|x |N−1 if |x − y| � 1. (38)

Indeed, let R̂ be such that H ⊂ B(0; R̂). Since |φ(x)− φ(y)| � 1, inequality (38)
is obviously true for |x | � max{2, R̂ + 1} with C = (max{2, R̂ + 1})N−1. On the
other hand, if |x | > max{2, R̂ + 1}, Taylor’s expansion yields

|φ(x)− φ(y)| � max|β|=1
max

ξ∈B(x;1) |D
βφ(ξ)| if |x − y| � 1. (39)

The result now follows from the estimate (25) with |β| = 1, since |ξ | � |x |/2 for
all ξ ∈ B(x; 1) whenever |x | � 2.

Combining (39) with (17), we conclude that there is a constant C > 0 such that

A � Ct− N+1
2

|x |N−1 = Ct− N+κ
2 (|x |2/t)

1−κ
2

|x |N−κ � Ct− N+κ
2 δ

1−κ
2

|x |N−κ if |x |2 � δt.

Estimate for B. If R2 � |x |2 � δt and δ � αγ (N−2−2γ )R2

(N+κ)(R2+b)
, we have

N + κ

2t
� δ(N + κ)

|x |2 = δ(N + κ)(R2 + b)

R2|x |2 + b|x |2

� δ(N + κ)(R2 + b)

R2(|x |2 + b)
� αγ (N − 2 − 2γ )

|x |2 + b
.

Thus, with this choice of δ,

B � αγ (N − 2 − 2γ )

|x |2 + b
.

The above estimates for A and B yield, if K+ � 1,

∂tv+ − Lv+ � t− N+κ
2

(|x |2 + b)γ+1

(

αγ (N − 2 − 2γ )− Cδ
1−κ

2 (|x |2 + b)γ+1)

|x |N−κ

)

.

On the other hand, since 2(γ + 1) � N − κ ,

(|x |2 + b)γ+1

|x |N−κ � (R2 + b)γ+1

RN−κ .

Therefore, taking δ small enough, we get

∂tv+ − Lv+ � 0, R2 � |x |2 � δt

for all K+ � 1. Notice that the threshold value of δ does not depend on K+.
An analogous argument leads to the statement concerning v−, since

e−t J (x) � t
N+1

2 |x |1−N if R2 � |x |2 � δt

whenever ‖J‖∞ � R2/δ
N+1

2 . ��
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Proof of Theorem 5. Let R > 0 such that B(0; R) ⊂ H. As a consequence of
Lemma 3, we know that there is a value δ > 0 such that

∂tv+ − Lv+ � 0, x ∈ Ω ∩ {R2 < |x |2 � δt}, t > R2/δ.

Let now ε > 0. By (36), (16) with |β| = 0, and the asymptotic behavior of φ, there
exists a time t0 > 0 such that u(x, t) � (1 + ε)M∗φ(x)ω(x, t) if (δt)1/2 � |x | �
(δt)1/2 + 1, t � t0. Hence, for any K+ � 0,

u(x, t) � (1 + ε)M∗v+(x, t) if (δt)1/2 � |x | � (δt)1/2 + 1, t � t0.

On the other hand, it is obvious that there exists a constant K+ � 1 such that
u(x, t0) � (1 + ε)M∗v+(x, t0) if |x | � (δt0)1/2 + 1. Finally, we also have that
u(x, t) = 0 � (1 + ε)M∗v+(x, t), x ∈ H, t � t0. Therefore, by comparison, see
Theorem 3 and Remark 5,

u(x, t) � (1 + ε)M∗v+(x, t), |x | � (δt)1/2, t � t0.

Hence, using the decay estimate (17), if |x | � (δt)1/2, t � t0, we have

t N/2 (
u(x, t)− M∗φ(x)ω(x, t)

)

� εM∗φ(x)t N/2ω(x, t)+ (1 + ε)M∗K+t−
κ
2 z(x)

� εM∗C + (1 + ε)M∗K+t−
κ
2 b−γ .

Letting t → ∞ and then ε → 0, we conclude that

lim sup
t→∞

t N/2 (
u(x, t)− M∗φ(x)ω(x, t)

)
� 0.

An analogous argument shows that

(1 − ε)M∗v−(x, t) � u(x, t), |x | � (δt)1/2, t � t0.

Hence, lim inf
t→∞ t N/2 (u(x, t)− M∗φ(x)ω(x, t)) � 0. ��

As a corollary, we obtain the behavior on compact sets.

Corollary 3. Let u be the solution to (1). Then,

t N/2u(x, t) → M∗

(4πα)N/2 φ(x) uniformly in compact subsets of R
N . (40)

Remark 14. The limit (40) holds uniformly in Ω ∩ {|x |2 � δ(t)t}, as long as
limt→∞ δ(t) = 0.
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