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For many agricultural purposes the determination 
of soil water storage is a key factor. It controls water avail-

ability to crops and yields, in?uences the partition of rainfall 
into runo@ and inBltration, a@ecting erosion and ?ooding, and 
allows irrigation scheduling. He root zone water status may be 
measured in the Beld or estimated by remote sensing and com-
putation modeling. Most common Beld measurement methods 
include gravimetric sampling, time domain re?ectometry, and 
neutron gauges (Gardner, 1986; Roth et al., 1990). He former is 
a direct and simple method that can be used both for research or 
agronomic goals, but it is rather laborious and time consuming, 
especially when deep soil layers must be sampled. Time domain 
re?ectometry and neutron gauges require special equipments 
and calibration against the gravimetric method and are used 
mainly for research purposes. Additionally, neutron gauges 
involve biological hazard. When estimation of soil water storage 
must be performed at middle (catchment) to large (regional) 
areal scales, remote sensing estimation of surface (5–10 cm) soil 
water content (Grote et al., 2003) and the assimilation of these 
data into di@erent types of models for root zone water predic-
tion is the best option (Kostov and Jackson, 1993; Li and Islam, 
1999). Hese methods are suitable for research purposes but not 
for agronomists and they need validation against Beld data.

To overcome the problem of deep sampling, simple linear 
regression has been used for proBle water storage estimation 
using surface moisture as an independent variable, but this 
method has usually low prediction potential (Jackson, 1986; 
Kostov and Jackson, 1993). More powerful empirical modeling 
options, like polynomial regression (Colwell, 1994; Neter et al., 
1990) or artiBcial neural networks (Joergensen and Bendoric-
chio, 2001; Özesmi et al., 2006), have not been tested for 
proBle water storage prediction.

He Argentinean Pampas covers approximately 50 Mha (Hall 
et al., 1992) and because of its extension and yield potential it 
is considered as one of the most suitable areas for grain crop 
production in the World (Satorre and Slafer, 1999). Around 
50% of the area is cropped under semiarid to subhumid condi-
tions (500–800 mm annual rainfall, Hall et al., 1992). In this 
portion of the region, soil water storage up to 140 cm is a main 
controlling factor of crop yields and models have already been 
developed for yield forecasting including this factor (Bono et al., 
2011), but because of the diZculties in sampling, these are not 
applied by decision makers. Fertilization has become a common 
practice in the region and soils are generally sampled to 60- cm 
depth for N evaluation (Alvarez, 2007). We tested the possibil-
ity of estimating proBle water storage using samples taken from 
the upper soil layers by two modeling approaches: polynomial 
regression and neural networks, to develop tools that may allow 
the prediction of the water storage in the soil proBle without 
the need for additional sampling other than the typical routine 
sampling for soil fertility evaluation.

MATERIALS AND METHODS

During the 2000 to 2007 period, 149 Beld experiments were 
performed in the Semiarid-Subhumid Pampa, widespread 
across an area of approximately 15 Mha, over a wide range of 
climate, management, and soil conditions (Tables 1 and 2). 
A control treatment and di@erent fertilized treatments were 
compared in each experiment, with two to three replications 
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by nutrient rate (N, P, S, and combinations) in randomized 
block designs. He most common summer crop was sun?ower 
(Helianthus annuus L.) (80%) and the most common winter 
crop was wheat (80%). He agricultural phase of rotations at 
the experimental sites was usually compounded by sun?ower, 
corn (Zea mays L.), and wheat (Triticum aestivum L.) in dif-
ferent proportions. Soil was classiBed at each site according to 
Soil Taxonomy (USDA, 2003) by describing the proBle using 
an observation pit. Samples were taken from the four walls of 
the pit for bulk density determination by the cylinder method 
(Blake and Hartge, 1986). During the fallow period, the crop 
growing period (vegetative and ?owering stages) and a}er 
harvest, soil samples were taken with a hand corer in layers of 
20 cm up to 140-cm depth, or to the top limit of a petrocalcic 
horizon, if it appeared within the upper 140 cm of the proBle. 
He corer extracted an approximate volume of 400 cm3. Hree 
samples were taken from each control plot and some fertilized 
plots and composited. In surface samples (0–20 cm) texture 
(Gee and Bauder, 1986) and organic matter (Nelson and Som-
mers, 1996) were determined, and in all samples, gravimetric 
water content was assessed (Gardner, 1986). As usually no 
signiBcant di@erences were detected in water content between 
fertilization treatments (ANOVA, P = 0.05), they were aver-
aged by experiment, generating 712 soil water proBles (Table 1).

Gravimetric water was transformed into volumetric water 
content (mm) using soil bulk density, and cumulative water 
storage in the proBle was calculated. In a Brst step, simple 
linear regression and correlation methods were used for data 
analysis (Neter et al., 1990). Polynomial regression and arti-
Bcial neural networks were tested as modeling techniques for 
proBle water storage estimation. He regression model was a 
second grade polynomial which incorporated linear, quadratic, 
and interaction terms (Alvarez and Steinbach, 2011; Colwell, 
1994). Soil water storage to 140-cm depth was the dependent 
variable; climate, soil, and management variables the predictors 

(rainfall, texture, organic matter, gravimetric water content 
of surface soil layers and crop or tillage systems as categorical 
variables). He data set was randomly partitioned into 75% 
for training and 25% for independent testing of Btted models. 
Variable selection was performed by forward stepwise and 
terms were maintained in the regressions if they were signiB-
cant at P = 0.05 by the F test and impacted the R2 in at least 
0.5%. Multicollinearity was checked by the variance in?ator 
factor (Neter et al., 1990). Neural networks were Btted by a 
supervised learning procedure using the back propagation 
algorithm for weights Btting (Rogers and Dowla, 1994). Linear 
transfer functions were used for connecting the input layer 
with the hidden layer and the output layer with the network 
output, meanwhile the sigmoid function (Lee et al., 2003) was 
used for connecting the hidden layer with the output layer. 
Inputs were scaled by minimax (Somaratne et al., 2005) and 
network outputs de-scaled to original units. He same indepen-
dent variables tested for regression analysis were initially tested 
as neural inputs, implementing a hierarchical approach for vari-
able selection (Schaap et al., 1998). Sensitivity analysis allowed 
weighting the e@ect of di@erent inputs on soil water storage by 
calculating a sensitivity ratio (Miao et al., 2006). Only inputs 
with a sensitivity ratio >1 were included into networks because 
lower ratios indicate no impact of the output (Miao et al., 
2006). Selected variables were then tested as inputs by a step-
wise procedure (Gevrey et al., 2003). He learning rate, epoch 
size, and network architecture were determined by methods 
previously described (Alvarez and Steinbach, 2011). Maximum 
simpliBcation of the networks was aimed for without reducing 
the prediction ability as judged by R2. To avoid overlearn-
ing, cross-validation was implemented (Özesmi et al., 2006), 
by Btting networks using a training set (50% data) with early 
stopping of weight adjustments when R2 becomes greater than 
for the validation set (25% data) (Park and Vlek, 2002). And 
independent test of the models was performed with 25% of 
the data. He data set used for testing networks was the same 
as that used for testing regressions. Networks were developed 
with Statistica (www.statso}.com).

A second group of models was developed by similar 
statistical procedures than those described above but using an 
estimation of the volumetric water content of the surface soil 
layers calculated with the average soil bulk density of each soil 
layer (0–20 cm: 1.21 g mL–1; 20–40 cm: 1.33 g mL–1; 40–60 
cm: 1.31 g mL–1) instead of measured bulk density at each site.

Root mean square error (RMSE) of models were calculated 
(Kobayashi and Salam, 2000) and contrasted (Alvarez et al., 
2011). He determination coeZcients of models were also con-
trasted (Kleinbaum and Kupper, 1979). Intercepts and slopes of 

Table 1. Soil types, tillage systems, and sampling time of the experiments conducted in the Semiarid- Subhumid Pampa between 
2000 and 2007.

Soil  
type

 
Experiments

Water 
!"#$%&'

Petrocalcic horizon Tillage system Sampling time

Yes No Tilled No-till No living crop Summer crops Winter crops
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Table 2. Some properties of the sites sampled in the 
Semiarid-Subhumid Pampa between 2000 and 2007.

Variable Minimum Mean Maximum
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regressions of observed vs. estimated data were compared 
against 0 and 1 by the t using IRENE (Fila et al., 2003). In all 
cases P was 0.05.

RESULTS

Gravimetric water content at di@erent depths was signiB-
cantly correlated and correlation coeZcients were higher as 
closer the soil layers (Table 3). Water content was greater in 
Bne- textured soils and as organic matter increased. A weak 
association was detected between rainfall and water storage in 
the upper 60 cm of the proBle, but this association disappeared 
at deeper layers. Poor results were obtained using simple linear 
regression for predicting proBle water storage. If water content 
in the 0- to 20-, 0- to 40-, or 0- to 60-cm layers were used as 
predictors of cumulative water storage to 140-cm depth, R2 
were 0.49, 0.57, and 0.65, respectively.

Soil water proBle showed four di@erent trends (Fig. 1). In 
cases in which moisture content was nearly constant with 
depth, cumulative water storage Btted to linear functions and 
the slope of the regression depends on the volumetric water 
content. If surface soil layers were wetter than deep layers a con-
vex function Btted to cumulative water storage and, conversely, 
when surface layers were drier than deep soil, a concave func-
tion adjusts better. A consequence of these trends is that linear 
regression does not Bt well to water data and models that can 
accommodate to curvilinear tendencies are needed.

Polynomial regression and artiBcial neural networks made 
both a good job estimating soil water storage (Fig. 2). He 

Fig. 1. Examples of soil water profiles taken from the pampean 
data set. Subfigure in the left shows gravimetric water 
content of soil layers of 20 cm; subfigure in the right shows 
cumulative water content. (A) whole soil profile dry, (B) 
surface layers dry and deep layers wet, (C) surface layers wet 
and deep layers dry, and (D) whole soil profile wet.

Fig. 2. Observed vs. estimate soil profile water storage (0–140 
cm) of the test data set estimated by two methodologists: 
polynomial regression and artificial neural networks. 
Estimations were performed using measured soil bulk density 
for each site. The artificial neural network model may be 
obtained from the corresponding author on request.T
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best regression model included as predictors volumetric water 
content in two soil layers, 0 to 40 and 0 to 60 cm and depth 
to petrocalcic horizon (Table 4). Other independent variables 
were dropped from models because of their minimum impact 
on proBle water estimation. He best neural network used as 
inputs volumetric water content of the 0- to 20-, 20- to 40- and 
40- to 60-cm layers and depth to petrocalcic horizon with a 
4:5:1 architecture. He generalization capacity of models was 
high because no signiBcant di@erences were observed between 
R2 and RMSE of training (or training+validation) and test 
data sets, neither signiBcant di@erence was detected between 
the performances of modeling methods. He RMSE were 
equivalent to approximately 11% of average soil water storage. 
If models were developed using only volumetric water content 
in 0- to 20- or 0- to 40-cm depths, the prediction potential 
decreased (Table 5). Regression models or neural networks 
could be Btted to water proBles of soils without petrocalcic 
horizon with similar performances than those obtained for all 
soils (results not shown).

Models developed using as predictor volumetric water 
content calculated with average soil bulk density instead of 
measured density had lower Bts than previous models but 
allowed also a good estimation of proBle water storage (Fig. 3, 
Table 4). No signiBcant di@erences were detected between 
the training + validation data sets adjustments of the models 

and their performance with the test data set, neither signiB-
cant di@erence existed between modeling techniques. Root 
mean square errors rounded 13 to 15% of average proBle water 
storage. Regression model used as predictors volumetric water 
content in the 0- to 20-, 20- to 40- and 40- to 60-cm layers and 
depth to petrocalcic horizon and the neural network had the 
same inputs and architecture that the previous one.

DISCUSSION

Our results showed that it is not possible to perform a 
good estimation of proBle water content by simple regression 
using surface soil moisture, even measuring volumetric water 
content in a broad (0–60 cm) upper soil layer. Only in cases in 
which variation of water content between soil layers is small, 
cumulative water proBle tends to be linear. Past work has 
shown similar results. Soil water content of nearby soil layers 
is highly correlated, but correlation coeZcients decrease as 
layers are more distant (Arya et al., 1983; Kostov and Jackson, 
1993), leading to a poor estimation of root zone water storage 
by regressing on surface moisture (Arya et al., 1983; Jackson, 
1986; Jackson et al., 1987; Kostov and Jackson, 1993). Param-
eters of regression models are site or growing stage speciBc and 
cannot be extrapolated to di@erent scenarios than those for 
which they were adjusted (Jackson, 1986; Kostov and Jackson, 
1993). Usually, linear regression estimations are better when 
soils are at hydraulic equilibrium and there are no water ?uxes 
between layers (Jackson, 1986; Kostov and Jackson, 1993).

He modeling approaches tested here allowed a good 
estimation of proBle water storage because they are suitable 
techniques for describing curvilinear responses (Batchelor et 
al., 1997; Colwell, 1994). When feeding polynomial regression 
or neural networks with moisture measurements from at least 
two di@erent soil layers they could detect the curvature trend 
of the cumulative water stored function and predict water 
storage up to 140-cm depth. He error of the models Btted in 
this research are greater than those reported in studies that use 
remote sensing for surface water determination and estimate 
proBle water storage by hydraulic-process based modeling 
(Galantowicz et al., 1999; Hoeben and Troch, 2000; Wagner 
et al., 1999), Hese studies reported RMSE varying usually 
from 4 to 8% when predicting water stored up to 1-m depth, 
but the statistical approaches we tested are much more simple 
and can be applied over a wide set of environmental conditions. 
Hey can be used for soil water storage estimation before crop 

()*%&+,-+.)")/&0&"'+#1+02&+!#%34#/5)%+"&6"&''5#4+/#7&'+$0-
ted for soil water storage estimation to 140-cm depth. Model 
8+9)'+$00&7+:'546+/&)':"&7+'#5%+*:%;+7&4'503+)0+&)<2+'50&=+
/#7&%+>+9)'+$00&7+:'546+)?&")6&+*:%;+7&4'503+1#"+02&+@A+0#+>@AB+
20- to 40-,  and 40- to 60-cm soil layers. 

Model  
term

Parameters

Model 1 Model 2

4&=/$:/P= &5[ &5

D‡ &5 W1YS6N

D6 &5 1Y11N2Q

A1W61 &5 &5

^A1W61)
6 &5 W1Y6N6

A1W21 1Y661 0Y1L

^A1W21)
6 &5 W1YM66

A1WR1 &5 &5

^A1WR1)
6 W1Y16QN W1Y010

_!`!A1W61 &5 &5

_!`!A1W21 W1Y1QN1 W1Y1LMN

_!`!A1WR1 1Y1RR2 1Y1QQM

A1W61!`!A1W21 &5 1Y22Q

A1W61!`!A1WR1 &5 W1Y006

A1W21!`!A1WR1 1Y1MLN 1YM01

[!&5!]!&%=!5;#&;@:+&=Y

a!_!]!D/P=U!=%!P/=$%:+,:;:!U%$;J%&!;&!5%;,5!F;=U!=U;5!=(P/!%8!,+(/$!^:'b3!%=U/$F;5/!
021bY!A1W613!A1W213!+&D!A1WR1!]!5%;,!F+=/$!:%&=/&=!;&!D;88/$/&=!5%;,!,+(/$5!^''bY

Table 5. Performance of two modeling methods for predicting 
'#5%+!"#$%&+9)0&"+'0#")6&+C@D8,@+</E+)'+)+1:4<05#4+#1+':"1)<&+
soil moisture in different layers and depth to the petrocalcic 
horizon.

Variables  
in model

Regression Neural network

R2 RMSE R2 RMSE 

mm mm

_/P=U!c!F+=/$!1W61!:' 1YRRS NNYQ 1YRRM NNY1

_/P=U!c!F+=/$!1W21 1YSM2 26YS 1YS62 2MYM

_/P=U!c!F+=/$!1WR1!:' 1YLMR 6RYS 1YLMM 6QYM

Fig. 3. Observed vs. estimate soil profile water storage (0–140 
cm) of the test data set estimated by two methodologists: 
polynomial regression and artificial neural networks. 
Estimations were performed using average soil bulk density 
for the 0- to 20-, 20- to 40- and 40- to 60-cm soil layers. The 
artificial neural network model may be obtained from the 
corresponding author on request.
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seeding and yield forecasting or also during the growing season 
for soil moisture studies. When soil bulk density data is avail-
able or the soil corer used for sampling allows measurement of 
bulk density, more precise estimations of water stored in the 
proBle may be attained, but the use of average values of bulk 
density instead of measured values is possible when calculating 
volumetric water content of surface layers.

Spatial variability of water storage had been poorly studied in 
the Pampas. Some work had shown than in soils of the Semiarid-
Subhumid Pampa acceptable errors may be attained when water 
storage is measured at 10 sites within small watersheds (8 ha) 
(Ferreyra et al., 2002). He common procedure used in the region 
for sampling destined to fertility evaluation is to sample produc-
tion Belds at around 20 sites (Alvarez, 2007). Consequently, 
sampling strategies adopted for fertility evaluation purposes are 
suitable for water storage estimation of small plots. For extended 
production Belds more research is needed to determine sam-
pling density. Because of its simplicity polynomial regression is 
recommended as a predicting tool for agronomists. He proposed 
methodology can be used in other regions but validation of the 
empiric models Btted or new developments are needed.
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