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Abstract We introduce the theory of strong homotopy types of simplicial complexes.
Similarly to classical simple homotopy theory, the strong homotopy types can be de-
scribed by elementary moves. An elementary move in this setting is called a strong
collapse and it is a particular kind of simplicial collapse. The advantage of using
strong collapses is the existence and uniqueness of cores and their relationship with
the nerves of the complexes. From this theory we derive new results for studying
simplicial collapsibility with a different point of view. We analyze vertex-transitive
simplicial G-actions and prove a particular case of the Evasiveness conjecture for
simplicial complexes. Moreover, we reduce the general conjecture to the class of
minimal complexes. We also strengthen a result of V. Welker on the barycentric sub-
division of collapsible complexes. We obtain this and other results on collapsibility
of polyhedra by means of the characterization of the different notions of collapses in
terms of finite topological spaces.

Keywords Simplicial complexes · Simple homotopy types · Collapses · Nerves ·
Finite spaces · Posets · Non-evasiveness · Simplicial actions

1 Introduction

The notion of simplicial collapse, introduced by J.H.C. Whitehead in the late
1930s [30], is a fundamental tool in algebraic topology and in combinatorial geome-
try [5, 11]. Collapsible polyhedra are the center of various famous problems, perhaps
the most relevant of them being the Zeeman Conjecture [31]. Although an elementary
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simplicial collapse is very simple to describe, it is not easy to determine whether a
simplicial complex is collapsible. In fact, the Zeeman Conjecture, which states that
K × I is collapsible for any contractible polyhedron K of dimension 2, is still an
open problem. One of the main difficulties when studying collapsibility, or simple
homotopy theory in general, is the non-uniqueness of what we call cores. A core of
a complex K , in this setting, is a minimal element in the poset of all subcomplexes
which expand to K . For instance, there exist collapsible complexes which collapse to
nontrivial subcomplexes with no free faces.

In this article we introduce and develop the theory of strong homotopy types of
simplicial complexes, which has interesting applications to problems of collapsibil-
ity. Similarly to the case of simple homotopy types, the strong homotopy types can
be described in terms of elementary moves. A vertex v of a simplicial complex K

is called dominated if its link is a simplicial cone. An elementary strong collapse
K ↘↘e K � v consists of removing from a simplicial complex K the open star of
a dominated vertex v. Surprisingly the notion of strong homotopy equivalence also
arises from the concept of contiguity classes. It is not hard to see that a strong col-
lapse is a particular case of a classical collapse. This new kind of collapse is much
easier to handle for various reasons: the existence and uniqueness of cores, the fact
that strong homotopy equivalences between minimal complexes are isomorphisms
and the relationship between this theory and the nerves of the complexes. A finite
simplicial complex K is minimal if it has no dominated vertices and a core of a finite
simplicial complex K in this context is a minimal subcomplex K0 ⊆ K such that
K ↘↘ K0. Minimal complexes appeared already in the literature under the name of
taut complexes [12]. B. Grünbaum investigated the relationship between minimal
complexes and nerves, but apparently he was unaware of the significant relationship
between these notions and collapsibility. We will show that, unlike the classical situ-
ation, in this context all the cores of a complex K are isomorphic and one can reach
the core of a complex by iterating the nerve operation. This provides a new method to
study collapsibility from a different viewpoint. The notion of strong collapse appears
in [19] under the name of LC-reduction. The article [19] is devoted to give a purely
combinatorial proof of uniqueness of cores, result that follows from the first part of
our Theorem 2.11. The classification Theorem 2.11 is fundamental in the theory of
strong homotopy types, which is, in contrast, motivated by Stong’s topological ideas
on finite topological spaces [27].

In order to investigate the difference between simplicial collapses and strong col-
lapses, in Sect. 5 we relax the notion of strong collapse and define inductively divers
notions of collapses which lie between the two concepts. In this way, the notion of
non-evasiveness appears naturally in our context. The concept of non-evasiveness,
commonly used in combinatorics and combinatorial geometry, is motivated by prob-
lems in graph theory [4, 15, 17, 18, 29]. A non-evasive simplicial complex is col-
lapsible (in the classical sense) but the converse is not true. Our approach is slightly
different from the previous treatments of this subject, since we are more interested
in understanding the difference between the various notions of collapses from a ge-
ometric point of view. One of the most significant questions related to this concept
is the so-called Evasiveness conjecture for simplicial complexes which asserts that
a non-evasive simplicial complex endowed with a vertex-transitive action of some
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group G is a simplex. The conjecture is still open for non-evasive complexes but it is
known to be false for collapsible complexes in general [17, 18].

A simplicial complex K is vertex-homogeneous if for any pair of vertices
v,w ∈ K , there exists an automorphism ϕ ∈ Aut(K) such that ϕ(v) = w. We will
show that a strong collapsible complex which is vertex-homogeneous is a simplex.
This proves a particular case of the Evasiveness conjecture mentioned above and
sheds some light on the general situation. Moreover, we will see that the square
nerve N 2(K) of any vertex-homogeneous complex K is its core and that any vertex-
homogeneous complex is isomorphic to an nth multiple of its core. As an easy and
direct consequence of these results, one obtains that any vertex-homogeneous com-
plex with a prime number of vertices is minimal or a simplex. One of the main results
that we prove in this direction asserts that the core of a vertex-homogeneous and non-
evasive complex is also vertex-homogeneous and non-evasive. In view of this result,
one derives that the study of the Evasiveness conjecture for simplicial complexes can
be reduced to the class of minimal (and non-evasive) complexes.

As mentioned before, the theory of strong homotopy types for polyhedra is in-
spired by the homotopy theory of finite topological spaces. A finite space satisfying
the T0-separation axiom can be viewed as a finite partially ordered set. One can asso-
ciate to any finite simplicial complex K , a finite T0-space X (K) which corresponds
to the poset of simplices of K . Conversely, one can associate to a given finite T0-space
X the simplicial complex K(X) of its non-empty chains. In [2] we have introduced
the notion of collapse in the setting of finite spaces and proved that a collapse X ↘ Y

between finite spaces induces a collapse K(X) ↘ K(Y ) between their associated sim-
plicial complexes and a simplicial collapse K ↘ L induces a collapse between the
associated finite spaces. One advantage of working with finite spaces is that the ele-
mentary collapses in this context are very simple to handle and describe: they consist
of removing a single point of the space, which is called a weak point. In this paper
we extend these results to the non-evasive case and the strong homotopy case. We
define the notion of non-evasive collapse in the setting of finite spaces and prove that
this notion corresponds exactly to its simplicial version by means of the functors X
and K. Analogously we prove that the concept of strong homotopy equivalence in the
simplicial context corresponds to the notion of homotopy equivalence in the setting of
finite spaces. We use these results on finite spaces to derive results on polyhedra: we
prove that a simplicial complex K is strong collapsible if and only if its barycentric
subdivision K ′ is strong collapsible and that the join KL of two simplicial complexes
is strong collapsible if and only if K or L is strong collapsible. As another direct con-
sequence of our results one can easily deduce a stronger version of a known result of
V. Welker on the barycentric subdivision of collapsible complexes [29]. Indeed, we
show that a simplicial collapse K ↘ L determines a 1-collapse K ′ ↘1 L′. In particu-
lar if K is collapsible, K ′ is 1-collapsible and therefore non-evasive. The converse of
this result is still an open problem but it holds in the case that K ′ is strong collapsible.

2 Strong Homotopy Types

We recall the notion of contiguity classes of simplicial maps. A standard reference
for this is [26]. Two simplicial maps ϕ,ψ : K → L are said to be contiguous if
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Fig. 1 An elementary strong collapse. The vertex v is dominated by v′

ϕ(σ) ∪ ψ(σ) is a simplex of L for every σ ∈ K . The equivalence classes of the
equivalence relation generated by contiguity are called contiguity classes. Contiguous
maps are homotopic at the level of geometric realizations, but this notion is strictly
stronger than usual homotopy. The difference between strong homotopy types and the
usual notion of homotopy types lies in this distinction between contiguity classes and
homotopic maps.

Given a simplicial complex K and a simplex σ ∈ K , the (closed) star of σ will be
denoted by stK(σ ). It is the subcomplex of simplices τ such that τ ∪ σ is a simplex
of K . The link lkK(σ ) is the subcomplex of st (σ ) of simplices disjoint from σ . If
K and L are two disjoint complexes, the join K ∗ L (or KL) is the complex whose
simplices are those of K , those of L and unions of simplices of K and L. A simplicial
cone is the join aK of a complex K and vertex a not in K .

All the simplicial complexes we deal with are assumed to be finite. We will write
“complex” or “simplicial complex” instead of “finite simplicial complex”.

Definition 2.1 Let K be a complex and let v ∈ K be a vertex. We denote by K � v

the full subcomplex of K spanned by the vertices different from v (the deletion of
the vertex v). We say that there is an elementary strong collapse from K to K � v if
lkK(v) is a simplicial cone v′L. In this case we say that v is dominated (by v′) and
we denote K ↘↘e K � v (see Fig. 1). There is a strong collapse from a complex K to
a subcomplex L if there exists a sequence of elementary strong collapses that starts
in K and ends in L. In this case we write K ↘↘ L. The inverse of a strong collapse
is a strong expansion and two complexes K and L have the same strong homotopy
type if there is a sequence of strong collapses and strong expansions that starts in K

and ends in L.

Remark 2.2 A vertex v is dominated by a vertex v′ 	= v if and only if every maximal
simplex that contains v also contains v′.

Remark 2.3 It is not hard to see that isomorphic complexes have the same strong
homotopy type. If K is a complex and v ∈ K is a vertex, we can consider for a ver-
tex v′ not in K the complex L = K + (v′stK(v)) = (K � v) + (v′vlkK(v)). Since
lkL(v′) = vlkK(v), then L ↘↘ K . Moreover, by symmetry L ↘↘ L � v = ˜K . One
can use this process repeatedly to show that isomorphic complexes are strong homo-
topy equivalent.
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The notion of strong collapse is related to the usual notion of collapse. Recall
that if K is a complex and σ is a free face of τ (i.e. τ is the unique simplex of K

having σ as a proper face) then we say that there is an elementary collapse from K to
K �{σ, τ }. A collapse K ↘ L from a complex K to a subcomplex L (or an expansion
L ↗ K) is a sequence of elementary collapses from K to L. Two complexes are
said to have the same simple homotopy type if there is a sequence of collapses and
expansions from one to the other. If K and L have the same simple homotopy type,
we write K�↘ L.

It is not hard to prove that if K and L are subcomplexes of a same complex, then
K + L ↘ L if and only if K ↘ K ∩ L. A complex is collapsible if it collapses to a
point. For instance, simplicial cones are collapsible. It is easy to prove that a complex
K is collapsible if and only if the simplicial cone aK collapses to its base K .

Remark 2.4 If v ∈ K is dominated, lk(v) is collapsible and therefore st (v) =
vlk(v) ↘ lk(v) = st (v) ∩ (K � v). Then K = st (v) + (K � v) ↘ K � v. Thus,
the usual notion of collapse is weaker than the notion of strong collapse.

If two simplicial maps ϕ,ψ : K → L lie in the same contiguity class, we will write
ϕ ∼ ψ . It is easy to see that if ϕ1, ϕ2 : K → L and ψ1,ψ2 : L → M are simplicial
maps such that ϕ1 ∼ ϕ2 and ψ1 ∼ ψ2, then ψ1ϕ1 ∼ ψ2ϕ2.

Definition 2.5 A simplicial map ϕ : K → L is a strong equivalence if there exists
ψ : L → K such that ψϕ ∼ 1K and ϕψ ∼ 1L. If there is a strong equivalence ϕ :
K → L we write K ∼ L.

The relation ∼ is clearly an equivalence relation.

Definition 2.6 A complex K is a minimal complex if it has no dominated vertices.

Proposition 2.7 Let K be a minimal complex and let ϕ : K → K be simplicial map
which lies in the same contiguity class as the identity. Then ϕ is the identity.

Proof We may assume that ϕ is contiguous to 1K . Let v ∈ K and let σ ∈ K be a
maximal simplex such that v ∈ σ . Then ϕ(σ)∪σ is a simplex, and by the maximality
of σ , ϕ(v) ∈ ϕ(σ)∪ σ = σ . Therefore every maximal simplex which contains v, also
contains ϕ(v). Hence, ϕ(v) = v, since K is minimal. �

Corollary 2.8 A strong equivalence between minimal complexes is an isomorphism.

Proposition 2.9 Let K be a complex and v ∈ K a vertex dominated by v′. Then, the
inclusion i : K � v ↪→ K is a strong equivalence. In particular, if two complexes K

and L have the same strong homotopy type, then K ∼ L.

Proof Define a vertex map r : K → K � v which is the identity on K � v and such
that r(v) = v′. If σ ∈ K is a simplex with v ∈ σ , consider σ ′ ⊇ σ a maximal simplex.
Therefore v′ ∈ σ ′ and r(σ ) = σ ∪ {v′} � {v} ⊆ σ ′ is a simplex of K � v. Moreover
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ir(σ ) ∪ σ = σ ∪ {v′} ⊆ σ ′ is a simplex of K . This proves that r is simplicial and that
ir is contiguous to 1K . Therefore, i is a strong equivalence. �

Definition 2.10 A core of a complex K is a minimal subcomplex K0 ⊆ K such that
K ↘↘ K0.

Theorem 2.11 Every complex has a core and it is unique up to isomorphism. Two
complexes have the same strong homotopy type if and only if their cores are isomor-
phic.

Proof A core of a complex can be obtained by removing dominated points one by
one. If K1 and K2 are two cores of K , they have the same strong homotopy type
and by Proposition 2.9, K1 ∼ K2. Since they are minimal, by Corollary 2.8 they are
isomorphic.

Let K , L be two complexes. If they have the same strong homotopy type, then also
their cores K0 and L0 do. As above, we conclude that K0 and L0 are isomorphic.

Conversely, if K0 and L0 are isomorphic, they have the same strong homotopy
type by Remark 2.3. Therefore K and L have the same strong homotopy type. �

If K and L are two complexes such that K ∼ L and K0 ⊆ K , L0 ⊆ L are their
cores, then K0 ∼ L0 and therefore K0 and L0 are isomorphic. Hence, we deduce the
following

Corollary 2.12 Two complexes K and L have the same strong homotopy type if and
only if K ∼ L.

Example 2.13 The homogeneous 2-complex of Fig. 2 is collapsible, moreover it is
non-evasive (see Sect. 5). However, it is a minimal complex and therefore it does not
have the strong homotopy type of a point.

A complex is said to be strong collapsible if it strong collapses to one of its ver-
tices or, equivalently, if it has the strong homotopy type of a point. A characterization
of strong collapsible complexes is given by the following result which is the dis-
crete analogue of the description of contractible topological spaces. Its proof follows
immediately from Corollary 2.12.

Fig. 2 A collapsible complex
which is not strong collapsible
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Proposition 2.14 Let K be a complex. The following are equivalent.

(1) K is strong collapsible.
(2) The identity 1K : K → K lies in the same contiguity class as a constant map.
(3) Any morphism from K to another complex L lies in the same contiguity class as

a constant map.
(4) Any morphism from a complex L to K lies in the same contiguity class as a

constant map.

The barycentric subdivision K ′ of a complex K has as vertices the barycenters σ̂

of the simplices of K and the simplices {σ̂0, σ̂1, . . . , σ̂r} of K ′ correspond to chains
σ0 ⊆ σ1 ⊆ · · · ⊆ σr . It is well known that barycentric subdivisions preserve the sim-
ple homotopy type. In fact, stellar subdivisions do. In contrast to the case of simple
homotopy, a complex and its barycentric subdivision need not have the same strong
homotopy type. For example, the boundary of a 2-simplex and its barycentric subdivi-
sion are minimal non-isomorphic complexes, and therefore they do not have the same
strong homotopy type. However, we will show that a complex K is strong collapsible
if and only if its barycentric subdivision is strong collapsible. Note that minimality is
not preserved by barycentric subdivisions. In fact K ′ is minimal if and only if K has
no free faces, or equivalently if K ′ has no free faces. If σ is a free face of τ in K ,
then σ̂ is dominated by τ̂ in K ′.

The following result relates the notion of strong equivalence with the concept
of simple homotopy equivalence. For definitions and results on simple homotopy
equivalences, the reader is referred to [5].

Proposition 2.15 Strong equivalences are simple homotopy equivalences.

Proof Let ϕ : K → L be a strong equivalence. Let K0 be a core of K and L0 a core
of L. Then, the inclusion i : K0 ↪→ K is a strong equivalence and there exists a strong
equivalence r : L → L0 which is a homotopy inverse of the inclusion L0 ↪→ L. Since
K0 and L0 are minimal complexes, the strong equivalence rϕi is an isomorphism and
in particular |rϕi| is a simple homotopy equivalence. By Remark 2.4, |i| and |r| are
also simple homotopy equivalences, and then so is |ϕ|. �

It is not known whether K ∗ L is collapsible only if one of K or L is (see [29]),
but the analogous result is true for strong collapsibility.

Proposition 2.16 Let K and L be two complexes. Then, K ∗ L is strong collapsible
if and only if K or L is strong collapsible.

Proof Suppose v is a dominated vertex of K . Then lkK(v) is a cone and therefore
lkK∗L(v) = lkK(v) ∗ L is a cone. Hence, v is also dominated in K ∗ L. Thus, if K

strong collapses to a vertex v0, K ∗ L ↘↘ v0L ↘↘ v0.
Conversely, assume K ∗ L is strong collapsible. Let v ∈ K ∗ L be a dominated

point and suppose without loss of generality that v ∈ K . Then lkK∗L(v) = lkK(v)∗L

is a cone. Therefore lkK(v) is a cone or L is a cone. If L is a cone, it is strong
collapsible and we are done. Suppose then that lkK(v) is a cone. Since (K �v)∗L =
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(K ∗ L) � v is strong collapsible, by induction K � v or L is strong collapsible and
since K ↘↘ K � v, K or L is strong collapsible. �

3 The Nerve of a Complex

We introduce an application which transforms a complex in another complex with
the same homotopy type. This construction was previously studied by B. Grünbaum
in [12] (see also [17]). We arrived to this concept independently when studying Čech
cohomology of finite topological spaces (see [1]). This construction was already
known to preserve the homotopy type of a complex, but we will show that when we
apply the construction twice, one obtains a complex with the same strong homotopy
type. Moreover, the nerve can be used to obtain the core of a complex.

Definition 3.1 Let K be a complex. The nerve N (K) of K is a complex whose
vertices are the maximal simplices of K and whose simplices are the sets of maxi-
mal simplices of K with non-empty intersection. Given n ≥ 2, we define recursively
N n(K) = N (N n−1(K)).

A proof of the fact that K is homotopy equivalent to its nerve can be given in-
voking a Theorem of Dowker [6]. Let V be the set of vertices of K and S the set of
its maximal simplices. Define the relation R ⊆ V × S by vRσ if v ∈ σ . Following
Dowker, one can consider two complexes. The simplices of the first one are the finite
subsets of V which are related with a same element of S. This complex coincides
with the original complex K . The second complex has as simplices the finite sub-
sets of S which are related with a same element of V . This complex is N (K). The
Theorem of Dowker concludes that |K| and |N (K)| have the same homotopy type.

Example 3.2 Let K be the complex on the left in Fig. 3 with five maximal simplices
σ1, σ2, σ3, σ4 and σ5. Its nerve N (K) is the complex on the right whose vertices are
the maximal simplices of K .

If N r (K) = ∗ for some r ≥ 1, then |K| is contractible. But there are contractible
complexes such that N r (K) is not a point for any r . For instance, if K is the complex

Fig. 3 A complex on the left and its nerve on the right
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of Example 2.13, N (K) has more vertices than K , but N 2(K) is isomorphic to K .
Therefore N r (K) 	= ∗ for every r .

We will see that, in fact, there is a strong collapse from K to a complex isomorphic
to N 2(K) and that there exists r such that N r (K) = ∗ if and only if K is strong
collapsible.

Lemma 3.3 Let L be a full subcomplex of a complex K such that every vertex of K

which is not in L is dominated by some vertex in L. Then K ↘↘ L.

Proof Let v be a vertex of K which is not in L. By hypothesis, v is dominated and
then K ↘↘ K � v. Now suppose w is a vertex of K � v which is not in L. Then, the
link lkK(w) in K is a simplicial cone aM with a ∈ L. Therefore, the link lkK�v(w)

in K � v is a(M � v). By induction K � v ↘↘ L and then K ↘↘ L. �

Proposition 3.4 Let K be a simplicial complex. Then, there exists a complex L iso-
morphic to N 2(K) such that K ↘↘ L.

Proof A vertex of N 2(K) is a maximal family Σ = {σ0, σ1, . . . , σr} of maximal
simplices of K with non-empty intersection. Consider a vertex map ϕ : N 2(K) → K

such that ϕ(Σ) ∈ ⋂r
i=0 σi . This is a simplicial map for if Σ0,Σ1, . . . ,Σr consti-

tute a simplex of N 2(K), then there is a common element σ in all of them, which
is a maximal simplex of K . Therefore ϕ(Σi) ∈ σ for every 0 ≤ i ≤ r and then
{ϕ(Σ1), ϕ(Σ2), . . . , ϕ(Σr)} is a simplex of K .

The vertex map ϕ is injective. If ϕ(Σ1) = v = ϕ(Σ2) for Σ1 = {σ0, σ1, . . . , σr},
Σ2 = {τ0, τ1, . . . , τt }, then v ∈ σi for every 0 ≤ i ≤ r and v ∈ τi for every 0 ≤ i ≤ t .
Therefore Σ1 ∪ Σ2 is a family of maximal simplices of K with non-empty intersec-
tion. By the maximality of Σ1 and Σ2, Σ1 = Σ1 ∪ Σ2 = Σ2.

Suppose Σ0,Σ1, . . . ,Σr are vertices of N 2(K) such that v0 = ϕ(Σ0), v1 =
ϕ(Σ1), . . . , vr = ϕ(Σr) constitute a simplex of K . Let σ be a maximal simplex of
K which contains v0, v1, . . . , vr . Then, by the maximality of the families Σi , σ ∈ Σi

for every i and therefore {Σ0,Σ1, . . . ,Σr} is a simplex of N 2(K).
This proves that L = ϕ(N 2(K)) is a full subcomplex of K which is isomorphic to

N 2(K).
Now, suppose v is a vertex of K which is not in L. Let Σ be the set of maximal

simplices of K which contain v. The intersection of the elements of Σ is non-empty,
but Σ could be not maximal. Let Σ ′ ⊇ Σ be a maximal family of maximal sim-
plices of K with non-empty intersection. Then v′ = ϕ(Σ ′) ∈ L and if σ is a maximal
simplex of K which contains v, then σ ∈ Σ ⊆ Σ ′. Hence, v′ ∈ σ . Therefore v is
dominated by v′. By Lemma 3.3, K ↘↘ L. �

Example 3.5 In the complex K of Fig. 4 there are, according to the previous propo-
sition, two possible ways of regarding N 2(K) as a subcomplex of K . One of these is
the full subcomplex with vertices a, b, c and d .

The nerve can be used to characterize minimal complexes as the following result
shows (cf. [12] Theorem 9).
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Fig. 4 N 2(K) as a subcomplex
of K

Lemma 3.6 A complex K is minimal if and only if N 2(K) is isomorphic to K .

Proof By Proposition 3.4, there exists a complex L isomorphic to N 2(K) such that
K ↘↘ L. Therefore, if K is minimal, L = K .

If K is not minimal, there exists a vertex v dominated by other vertex v′. If v

is contained in each element of a maximal family Σ of maximal simplices of K

with non-empty intersection, then the same occurs with v′. Therefore, we can define
the map ϕ of the proof of Proposition 3.4 so that v is not in its image. Therefore,
L = ϕ(N 2(K)) is isomorphic to N 2(K) and has less vertices than K . Thus, N 2(K)

and K cannot be isomorphic. �

The sequence K, N 2(K), N 4(K), N 6(K), . . . is a decreasing sequence of sub-
complexes of K (up to isomorphism). Therefore, there exists n ≥ 1 such that N 2n(K)

and N 2n+2(K) are isomorphic. Then K strongly collapses to a subcomplex L which
is isomorphic to N 2n(K) and which is minimal. Thus, we have proved the following

Proposition 3.7 Given a complex K , there exists n ≥ 1 such that N n(K) is isomor-
phic to the core of K .

Theorem 3.8 Let K be a complex. Then, K is strong collapsible if and only if there
exists n ≥ 1 such that N n(K) is a point.

Proof If K is strong collapsible, its core is a point and then, there exists n such that
N n(K) = ∗ by the previous proposition. If N n(K) = ∗ for some n, then N n+1(K)

is also a point. Therefore there exists an even positive integer r such that N r (K) = ∗,
and K ↘↘ ∗ by Proposition 3.4. �

4 Finite Topological Spaces

The theory of strong homotopy types was motivated by the homotopy theory of finite
spaces developed by R.E. Stong in [27]. In this section we recall some basic concepts
and results on finite spaces and we establish a correspondence between strong homo-
topy types of finite simplicial complexes and homotopy types of finite spaces. For a
comprehensive treatment of this subject we refer the reader to [1–3, 20–22, 27].

In general, a complex K and its barycentric subdivision K ′ do not have the same
strong homotopy type. We will use the relationship between strong homotopy types
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Fig. 5 A finite T0-space of
three points and the Hasse
diagram of the corresponding
poset

of complexes and finite spaces to prove that K is strong collapsible if and only if K ′
is strong collapsible. Finally, we prove an analogous result for finite spaces.

Given a finite topological space X, for each x ∈ X we denote by Ux the minimal
open set containing x. The relation x ≤ y if x ∈ Uy defines a preorder on the set X,
that is to say, a reflexive and transitive relation. If X is in addition a T0-space (i.e. for
every pair of points there exists an open set which contains one and only one of them),
≤ is antisymmetric (see Fig. 5). This establishes a correspondence between finite T0-
spaces and finite posets. Moreover, continuous maps correspond to order-preserving
maps.

Given two finite T0-spaces X, Y , we denote by YX the space of maps with
the compact-open topology. This finite T0-space corresponds to the set of order-
preserving maps X → Y with the pointwise ordering, i.e. f ≤ g if f (x) ≤ g(x)

for every x ∈ X. The following result characterizes homotopic maps between finite
spaces in terms of posets.

Proposition 4.1 Let f,g : X → Y be two maps between finite spaces. Then f � g if
and only if there is a fence f = f0 ≤ f1 ≥ f2 ≤ · · ·fn = g. Moreover, if A ⊆ X, then
f � g rel A if and only if there exists a fence f = f0 ≤ f1 ≥ f2 ≤ · · ·fn = g such
that fi |A = f |A for every 0 ≤ i ≤ n.

If x is a point in a finite T0-space X, Fx denotes the set of points which are greater
than or equal to x or, in other words, the closure of {x}. Ûx = Ux � {x} is the set of
points which are strictly smaller than x and F̂x = Fx � {x}. The link Ĉx of a point x in
a finite T0-space X is the subspace Ûx ∪ F̂x of points comparable with x and distinct
from x. Finally, we denote Cx = Ux ∪ Fx the set of points comparable with x.

Definition 4.2 A point x ∈ X is a beat point if Ûx has a maximum or if F̂x has a
minimum. In the first case, x is called a down beat point and in the second, an up
beat point. In other words, x is a beat point if it covers exactly one element or if it is
covered by exactly one element.

Definition 4.3 If x is a beat point of a finite T0-space X, we say that there is an
elementary strong collapse from X to X � {x}. There is a strong collapse from X

to a subspace Y (or a strong expansion from Y to X) if there exists a sequence of
elementary strong collapses starting in X and finishing in Y . We denote this situation
by X ↘↘ Y or Y ↗↗ X.
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It is not hard to prove that if x ∈ X is a beat point, then X�{x} is a strong deforma-
tion retract of X. Therefore, strong collapses of finite spaces are strong deformation
retractions.

A finite T0-space is said to be a minimal finite space if it has no beat points. A core
of a finite space X is a strong deformation retract of X which is a minimal finite space.
The following results are due to Stong [27].

Theorem 4.4 (Stong) Let X be a minimal finite space. A map f : X → X is homo-
topic to the identity if and only if f = 1X .

Every finite space has a core. Moreover we have the following

Corollary 4.5 (Stong) A homotopy equivalence between minimal finite spaces is a
homeomorphism. In particular the core of a finite space is unique up to homeomor-
phism and two finite spaces are homotopy equivalent if and only if they have homeo-
morphic cores.

Note that the core of a finite space X is the smallest space homotopy equivalent
to X. Thus, X is contractible if and only if X ↘↘ ∗.

From Corollary 4.5 one deduces that two finite T0-spaces are homotopy equivalent
if and only if one of them can be obtained from the other just by removing and
adding beat points. Thus, the notion of strong homotopy types of finite spaces that
would follow from the notion of strong collapse coincides with the usual notion of
homotopy types.

These results motivated the definition of strong homotopy types of simplicial com-
plexes and the results proved in Sect. 2. The relationship between both concepts will
be given in Theorems 4.13 and 4.14.

We exhibit here a simple generalization of Stong’s results for finite topological
pairs which uses ideas very similar to the original. As a consequence we prove that
strong expansions of finite spaces coincide with strong deformation retracts.

Definition 4.6 Let (X,A) be a pair of finite T0-spaces, i.e. A is a subspace of a finite
T0-space X. We say that (X,A) is a minimal pair if all the beat points of X lie in A.

Proposition 4.7 Let (X,A) be a minimal pair and let f : X → X be a map such that
f � 1X rel A. Then f = 1X .

Proof Suppose that f ≤ 1X and f |A = 1A. Let x ∈ X. If x ∈ X is minimal, f (x) = x.
In general, suppose we have proved that f |

Ûx
= 1|

Ûx
. If x ∈ A, f (x) = x. If x /∈ A,

x is not a down beat point of X. However, y < x implies y = f (y) ≤ f (x) ≤ x.
Therefore f (x) = x. The case f ≥ 1X is similar, and the general case follows from
Proposition 4.1. �

Note that Theorem 4.4 follows from Proposition 4.7 taking A = ∅.

Corollary 4.8 Let (X,A) and (Y,B) be minimal pairs and let f : X → Y , g : Y → X

be such that gf � 1X rel A, gf � 1Y rel B . Then f and g are homeomorphisms.
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Corollary 4.9 Let X be a finite T0-space and let A ⊆ X. Then, X ↘↘ A if and only
if A is a strong deformation retract of X.

Proof We only have to prove that if A ⊆ X is a strong deformation retract, then
X ↘↘ A. To this end, perform arbitrary elementary strong collapses removing beat
points which are not in A. Suppose X ↘↘ Y ⊇ A and that all the beat points of Y lie
in A. Then (Y,A) is a minimal pair. Since A and Y are strong deformation retracts
of X, the minimal pairs (A,A) and (Y,A) satisfy the hypothesis of Corollary 4.8.
Therefore A and Y are homeomorphic and so, X ↘↘ Y = A. �

It follows that A ⊆ X is a core of X if and only if it is a minimal finite space such
that X ↘↘ A.

The relationship between finite spaces and simplicial complexes is the follow-
ing. Given a finite simplicial complex K , we define the associated finite space (face
poset) X (K) as the poset of simplices of K ordered by inclusion. McCord proved that
|K| and X (K) have the same weak homotopy type [22]. In particular, they have the
same homotopy and homology groups, however, in general they are not homotopy
equivalent. Conversely, if X is a finite T0-space, the associated simplicial complex
(order complex) K(X) has as simplices the non-empty chains of X and it also has
the same weak homotopy type as X. These constructions are functorial: a simplicial
map ϕ : K → L induces an order-preserving map X (ϕ) : X (K) → X (L) given by
X (ϕ)(σ ) = ϕ(σ) and a continuous map f : X → Y between finite T0-spaces induces
a simplicial map K(f ) : K(X) → K(Y ) defined by K(f )(x) = f (x).

Lemma 4.10 Let f,g : X → Y be two homotopic maps between finite T0-spaces.
Then there exists a sequence f = f0, f1, . . . , fn = g such that for every 0 ≤ i < n

there is a point xi ∈ X with the following properties:

1. fi and fi+1 coincide in X � {xi}, and
2. fi(xi) covers or is covered by fi+1(xi).

Proof Without loss of generality, we may assume that f = f0 ≤ g by Proposition 4.1.
Let A = {x ∈ X | f (x) 	= g(x)}. If A = ∅, f = g and there is nothing to prove.
Suppose A 	= ∅ and let x = x0 be a maximal point of A. Let y ∈ Y be such that
y covers f (x) and y ≤ g(x) and define f1 : X → Y by f1|X�{x} = f |X�{x} and
f1(x) = y. Then f1 is continuous for if x′ > x, x′ /∈ A and therefore

f1(x
′) = f (x′) = g(x′) ≥ g(x) ≥ y = f1(x).

Repeating this construction for fi and g, we define fi+1. By finiteness of X and Y

this process ends. �

Proposition 4.11 Let f,g : X → Y be two homotopic maps between finite T0-spaces.
Then the simplicial maps K(f ), K(g) : K(X) → K(Y ) lie in the same contiguity
class.

Proof By the previous lemma, we can assume that there exists x ∈ X such that
f (y) = g(y) for every y 	= x and f (x) is covered by g(x). Therefore, if C is a
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chain in X, f (C) ∪ g(C) is a chain in Y . In other words, if σ ∈ K(X) is a simplex,
K(f )(σ ) ∪ K(g)(σ ) is a simplex in K(Y ). �

A connection between finite spaces and contiguity was previously considered in
[14], but allowing barycentric subdivisions. Proposition 4.11 is a stronger version of
[14, Theorem 3.7].

Proposition 4.12 Let ϕ,ψ : K → L be simplicial maps which lie in the same conti-
guity class. Then X (ϕ) � X (ψ).

Proof Assume that ϕ and ψ are contiguous. Then the map f : X (K) → X (L), de-
fined by f (σ ) = ϕ(σ)∪ψ(σ) is well defined and continuous. Moreover X (ϕ) ≤ f ≥
X (ψ), and then X (ϕ) � X (ψ). �

Now we will study the relationship between strong homotopy types of simplicial
complexes and homotopy types of finite spaces. The following result is a direct con-
sequence of Propositions 4.11 and 4.12.

Theorem 4.13

(a) If two finite T0-spaces are homotopy equivalent, their associated complexes have
the same strong homotopy type.

(b) If two complexes have the same strong homotopy type, the associated finite spaces
are homotopy equivalent.

In fact, we can give a more precise result:

Theorem 4.14

(a) Let X be a finite T0-space and let Y ⊆ X. If X ↘↘ Y , then K(X) ↘↘ K(Y ).
(b) Let K be a complex and let L ⊆ K . If K ↘↘ L, then X (K) ↘↘ X (L).

Proof If x ∈ X is a beat point, there exists a point x′ ∈ Ĉx which is comparable
with all the other points of Ĉx . Then lkK(X)(x) is a simplicial cone. Therefore,
K(X) ↘↘ K(X) � x = K(X � {x}).

If K is a complex and v ∈ K is such that lk(v) = aL is a simplicial cone, we
define r : X (K) → X (K � v) by

r(σ ) =
{

aσ � {v} if v ∈ σ

σ if v /∈ σ.

Clearly r is a well-defined order-preserving map. Denote i : X (K � v) ↪→ X (K) the
inclusion and define f : X (K) → X (K),

f (σ ) =
{

aσ if v ∈ σ

σ if v /∈ σ.
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Then ir ≤ f ≥ 1X (K) and both ir and f are the identity on X (K � v). Therefore
ir � 1X (K) rel X (K � v) and then X (K) ↘↘ X (K � v) by Corollary 4.9. �

Notice that the barycentric subdivision of a complex K coincides with K ′ =
K(X (K)). The barycentric subdivision of a finite T0-space X is defined as X′ =
X (K(X)).

Theorem 4.15 Let K be a complex. Then K is strong collapsible if and only if K ′ is
strong collapsible.

Proof If K ↘↘ ∗, then X (K) ↘↘ ∗ and K ′ = K(X (K)) ↘↘ ∗ by Theorem 4.14.
Suppose now that K is such that K ′ ↘↘ ∗. Let L be a core of K . Then K ↘↘ L

and by Theorem 4.14, K ′ ↘↘ L′. Therefore L is minimal and L′ is strong collapsi-
ble. Let L0 = L′,L1,L2, . . . ,Ln = ∗ be a sequence of subcomplexes of L′ such that
there is an elementary strong collapse from Li to Li+1 for every 0 ≤ i < n. We will
prove by induction in i that all the barycenters of the 0-simplices and of the maximal
simplices of L are vertices of Li ⊆ L′.

Let σ = {v0, v1, . . . , vk} be a maximal simplex of L. By induction, the barycenter
σ̂ of σ is a vertex of Li . We claim that lkLi

(σ̂ ) is not a cone. If σ is a 0-simplex,
that link is empty, so we assume σ has positive dimension. Since v̂j σ̂ is a simplex
of L′, v̂j ∈ Li by induction and Li is a full subcomplex of L′, then v̂j ∈ lkLi

(σ̂ ) for
every 0 ≤ j ≤ k. Suppose lkLi

(σ̂ ) is a cone. In particular, there exists σ ′ ∈ L such
that σ̂ ′ ∈ lkLi

(σ̂ ) and moreover σ̂ ′v̂j ∈ lkLi
(σ̂ ) for every j . Since σ is a maximal

simplex, σ ′
� σ and vj ∈ σ ′ for every j . Then σ ⊆ σ ′, which is a contradiction.

Hence, σ̂ is not a dominated vertex of Li and therefore, σ̂ ∈ Li+1.
Let v ∈ L be a vertex. By induction, v̂ ∈ Li . As above, if v is a maximal simplex

of L, lkLi
(v̂) = ∅. Suppose v is not a maximal simplex of L. Let σ0, σ1, . . . , σk be the

maximal simplices of L which contain v. By induction σ̂j ∈ Li for every 0 ≤ j ≤ k,
and since Li ⊆ L′ is full, σ̂j ∈ lkLi

(v̂). Suppose that lkLi
(v̂) is cone. Then there exists

σ ∈ L such that σ̂ ∈ lkLi
(v̂) and moreover, σ̂ σ̂j ∈ lkLi

(v̂) for every j . In particular,
v � σ and σ ⊆ σj for every j . Let v′ ∈ σ , v′ 	= v. Then v′ is contained in every
maximal simplex which contains v. This contradicts the minimality of L. Therefore
v̂ is not dominated in Li , which proves that v̂ ∈ Li+1.

Finally, Ln = ∗ contains all the barycenters of the vertices of L. Thus, L = ∗ and
K is strong collapsible. �

We will prove a finite-space version of Theorem 4.15. In general, X and X′ do
not have the same homotopy type. However, we will show that X is contractible if
and only if its barycentric subdivision X′ is contractible. The first implication follows
immediately from Theorem 4.14. For the converse, we need some previous results.

Lemma 4.16 Let X be a finite T0-space. Then X is a minimal finite space if and only
if there are no x, y ∈ X with x 	= y such that if z ∈ X is comparable with x, then so
is it with y.
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Proof If X is not minimal, there exists a beat point x. Without loss of generality
assume that x is a down beat point. Let y be the maximum of Ûx . Then if z ≥ x,
z ≥ y and if z < x, z ≤ y.

Conversely, suppose that there exists x and y as in the statement. In particular x is
comparable with y. We may assume that x > y. Let A = {z ∈ X | z > y and Cz ⊆ Cy}.
This set is non-empty since x ∈ A. Let x′ be a minimal element of A. We show that
x′ is a down beat point with y = max(Ûx′). Let z < x′, then z is comparable with
y since x′ ∈ A. Suppose z > y. Let w ∈ X. If w ≤ z, then w ≤ x′ and so, w ∈ Cy .
If w ≥ z, w ≥ y. Therefore z ∈ A, contradicting the minimality of x′. Then z ≤ y.
Therefore y is the maximum of Ûx′ . �

Proposition 4.17 Let X be a finite T0-space. Then X is a minimal finite space if and
only if K(X) is a minimal complex.

Proof If X is not minimal, it has a beat point x and then K(X) ↘↘ K(X � {x}) by
Theorem 4.14. Therefore K(X) is not minimal.

Conversely, suppose K(X) is not minimal. Then it has a dominated vertex x. Sup-
pose lk(x) = x′L for some x′ ∈ X, L ⊆ K(X). In particular, if y ∈ X is comparable
with x, y ∈ lk(x) and then yx′ ∈ lk(x). Thus, any point comparable with x is also
comparable with x′. By Lemma 4.16, X is not minimal. �

Corollary 4.18 Let X be a finite T0-space. Then X is contractible if and only if X′
is contractible.

Proof If X is contractible, X ↘↘ ∗, then K(X) ↘↘ ∗ by Theorem 4.14 and therefore
X′ = X (K(X)) ↘↘ ∗. Now suppose that X′ is contractible. Let Y ⊆ X be a core
of X. Then by Theorem 4.14 X′ ↘↘ Y ′. If X′ is contractible, so is Y ′. Again by
Theorem 4.14, K(Y ′) = K(Y )′ is strong collapsible. By Theorem 4.15, K(Y ) is strong
collapsible. By Proposition 4.17, K(Y ) is a minimal complex and therefore K(Y ) =
∗. Then Y is just a point, so X is contractible. �

There is an alternative proof of Corollary 4.18 which does not make use of The-
orem 4.15. It can be obtained from the following result, which is the converse of
Theorem 4.13 (b).

Theorem 4.19 Let K and L be two simplicial complexes. If X (K) and X (L) are
homotopy equivalent, then K and L have the same strong homotopy type.

Proof Let f : X (K) → X (L) be a homotopy equivalence. We may assume that f

sends minimal points to minimal points since in other case, it is possible to replace
f by a map ̂f which sends a minimal element x of X (K) to a minimal element
y ≤ f (x) of X (L). This new map ̂f is also order preserving and since ̂f ≤ f , it is
also a homotopy equivalence.

The map f induces a vertex map F : K → L defined by F(v) = w if f ({v}) =
{w}. Moreover F is simplicial for if σ = {v0, v1, . . . , vn} is a simplex of K , then
σ ≥ {vi} in X (K) for every i and then f (σ ) ≥ f ({vi}) in X (L). Thus, F(vi) is
contained in the simplex f (σ ) for every i, which means that F(σ) is a simplex of L.
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Let g : X (L) → X (K) be a homotopy inverse of f . We may also assume that
g sends minimal elements to minimal elements and therefore it induces a simplicial
map G : L → K . We show that GF ∼ 1K and FG ∼ 1L.

Since gf � 1X (K), there exists a sequence of maps hi : X (K) → X (K) such that

gf = h0 ≤ h1 ≥ · · · ≤ h2k = 1X (K).

Once again we can assume that the maps h2i send minimal elements to minimal
elements and induce simplicial maps H2i : K → K . The maps H2i and H2i+2 are
contiguous, for if σ = {v0, v1, . . . , vn}, then

h2i

({vj }
) ≤ h2i (σ ) ≤ h2i+1(σ ),

and then H2i (vj ) ∈ h2i+1(σ ) for every j . Therefore H2i (σ ) ⊆ h2i+1(σ ). Analo-
gously H2i+2(σ ) ⊆ h2i+1(σ ) and then H2i (σ ) ∪ H2i+2(σ ) is a simplex of K . Hence,
GF = H0 lies in the same contiguity class as H2k = 1K . Symmetrically FG ∼ 1L

and by Corollary 2.12, K and L have the same strong homotopy type. �

The alternative proof of Corollary 4.18 mentioned above is as follows. Suppose
X is a finite T0-space such that X′ is contractible. Let Y be a core of X. Then
X (K(Y )) = Y ′ � X′ is also contractible and by Theorem 4.19, K(Y ) has the strong
homotopy type of a point. However, by Proposition 4.17, K(Y ) is minimal, and then
K(Y ) is a point, which proves that the core Y of X is a point.

5 From Strong Collapses to Evasiveness

The theory of strong homotopy types has been shown to be much easier to handle
than the classical simple homotopy theory. In order to understand the difference be-
tween simplicial collapses and strong collapses or, more specifically, to investigate
how far is a simplicial collapse from being a strong collapse, one can relax the notion
of strong collapse and define inductively different notions of collapses which lie be-
tween both concepts. In this section we will compare the various notions of collapses
of complexes and use the theory of finite topological spaces to improve some known
results on collapsibility and non-evasiveness.

The notion of non-evasiveness arises from problems of graph theory and extends
then to combinatorics and combinatorial geometry [4, 15, 16, 18, 29]. We will see
that this concept appears naturally in our context. Our approach differs slightly from
previous treatments of this subject. As we have already mentioned, we are more inter-
ested in understanding the difference between the distinct notions of collapses from
a geometric viewpoint. As a consequence of our results, we obtain a stronger version
of a known result of V. Welker concerning the barycentric subdivisions of collapsible
complexes [29].

Definition 5.1 A strong collapse K ↘↘ L will be also called a 0-collapse and will
be denoted by K ↘0 L. A complex K is 0-collapsible if K 0-collapses to a point (i.e.
if it is strong collapsible). We will say that there is a 1-collapse K ↘1 L from K to L
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Fig. 6 A 2-collapsible
simplicial complex which is not
1-collapsible

if we can remove vertices one by one in such a way that their links are 0-collapsible
complexes. A complex is 1-collapsible if it 1-collapses to a point. In general, there is
an (n+1)-collapse K ↘n+1 L if there exists a sequence of deletions of vertices whose
links are n-collapsible. A complex is (n + 1)-collapsible if it (n + 1)-collapses to a
point.

Since simplicial cones are strong collapsible, if follows that n-collapsible com-
plexes are (n + 1)-collapsible. In fact, this implication is strict for every n. Exam-
ple 2.13 shows a 1-collapsible complex which is not 0-collapsible. This example can
be easily generalized to higher dimensions.

Example 5.2 Denote by S0 the discrete complex with two vertices and consider the
simplicial join (S0)∗4 = S0 ∗ S0 ∗ S0 ∗ S0 with vertices a, a′, b, b′, c, c′, d, d ′ and
whose simplices are the sets of vertices which do not have a repeated letter. Let
K be the complex obtained from that space when removing the maximal simplex
{a, b, c, d} (see Fig. 6). The links of the points a, b, c and d are isomorphic to the
complex of Example 2.13. The links of the other points are spheres isomorphic to
(S0)∗3 = S0 ∗ S0 ∗ S0. Then K is not 1-collapsible. However, its easy to see that K

is 2-collapsible. In general, it can be proved that (S0)∗n minus a maximal simplex is
(n − 2)-collapsible but not (n − 3)-collapsible.

Definition 5.3 A simplicial complex is said to be non-evasive if it is n-collapsible
for some n ≥ 0. If a complex is not non-evasive, it will be called evasive.

The minimum number n such that K is n-collapsible measures how far is the non-
evasive complex K from being strong collapsible. Note that this definition of non-
evasive coincides with the usual definition, which is as follows: K is non-evasive if it
has only one vertex or if inductively there exists a vertex v ∈ K such that both K � v

and lk(v) are non-evasive (cf. [4, 16]).
Note that the notions of non-evasiveness and n-collapsibility coincide in com-

plexes of dimension less than or equal to n + 1.
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Fig. 7 A collapsible evasive
complex

If K is a complex and v ∈ K is such that lk(v) is non-evasive, we say that there
is an elementary NE-collapse from K to K � v. We say that there is an NE-collapse
(or an NE-reduction) K ↘NE L from a complex K to a subcomplex L if there exists
a sequence of elementary NE-collapses from K to L. It is easy to prove by induction
that non-evasive complexes are collapsible. The converse is not true as the following
example shows.

Example 5.4 The 2-homogeneous complex of Fig. 7 is a slight modification of one
defined by Hachimori (see [13, Sect. 5.4]). The face {1,3} is free and it is easy to see
that the complex is collapsible. However, the links of the vertices are graphs which
are not trees. Thus it is evasive.

Definition 5.5 A finite T0-space X is non-evasive if it is a point or inductively if
there exists x ∈ X such that both its link Ĉx and X � {x} are non-evasive.

If x is a point of a finite T0-space X such that Ĉx is non-evasive, we say that there
is an elementary NE-collapse from X to X � {x}. There is an NE-collapse from X to
a subspace Y if there exists a sequence of elementary NE-collapses from X to Y . We
denote this by X ↘NE Y .

Recall from [2] and [3] that a weak point of a finite T0-space X is a point x ∈ X

such that Ĉx is contractible. We say that there is a collapse X ↘ Y if the subspace
Y can be obtained from X by removing weak points one by one. Beat points are
particular cases of weak points.

Remark 5.6 If X is a finite T0-space such that there is a point x ∈ X with Cx = X,
it can be proved by induction that X is non-evasive. The link of a beat point satisfies
this property and therefore, strong collapses of finite spaces are NE-collapses and
contractible spaces are non-evasive. Since the links of weak points are contractible,
collapses are NE-collapses and collapsible spaces are non-evasive.

Although it seems awkward, for complexes we see that an NE-collapse K ↘NE L

is a collapse K ↘ L, but for finite spaces the implication is in the opposite direction:
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a collapse X ↘ Y is an NE-collapse X ↘NE Y . However, the following results will
show that the notion of NE-collapse for finite spaces corresponds exactly to the notion
of NE-collapse of simplicial complexes. These results extend our previous results of
[2] on simple homotopy types.

Theorem 5.7 Let X and Y be finite T0-spaces. If X ↘NE Y , then K(X) ↘NE K(Y ).

Proof We prove the result by induction in the number of points of X. It suffices to
corroborate it for elementary NE-collapses. Let x ∈ X be such that Ĉx is non-evasive.
Then Ĉx ↘NE ∗ and by induction lkK(X)(x) = K(Ĉx) ↘NE ∗, i.e. lkK(X)(x) is non-
evasive. Therefore K(X) ↘NE K(X) � x = K(X � {x}). �

In particular one deduces the analogous version for (usual) collapses proved in [2].
For the sake of completeness we include the proof of the following result from [2].

Theorem 5.8 If a complex K collapses to a subcomplex L, then X (K) ↘ X (L).

Proof We may assume there is an elementary collapse K ↘ L of a free face σ of a
simplex aσ . Then σ ∈ X (K) is covered only by aσ . Therefore σ is a beat point and
in particular X (K) ↘ X (K) � {σ }. Now, the link of aσ in X (K) � {σ } is X (aσ̇ )

which is contractible by Theorem 4.14 since the cone aσ̇ is strong collapsible. Then,
aσ is a weak point of X (K) � {σ } which proves that X (K) � {σ } ↘ X (L). �

In particular we deduce the following

Corollary 5.9 If K ↘NE L is an NE-collapse of complexes, then X (K) ↘NE X (L).

Theorem 5.10 Let Y be a subspace of a finite T0-space X. Then, X ↘ Y if and only
if K(X) ↘1 K(Y ). In particular X is collapsible if and only if K(X) is 1-collapsible.

Proof Since K(X)�x = K(X � {x}), it suffices to analyze the case that Y = X � {x}
for some x ∈ X. There is a collapse from X to X � {x} if and only if x ∈ X is a
weak point, or in other words if Ĉx is contractible. But if Ĉx is contractible, then by
Theorem 4.14, lkK(X)(x) = K(Ĉx) is strong collapsible. Conversely, if lkK(X)(x) =
K(Ĉx) is strong collapsible, (Ĉx)

′ is contractible by Theorem 4.14 and then x ∈ X is
a weak point by Theorem 4.18. Finally, the link of x in K(X) is strong collapsible if
and only if K(X) ↘1 K(X � {x}). �

We can now derive the most important result of this section:

Corollary 5.11 If a complex K collapses to a subcomplex L, then K ′ ↘1 L′. In par-
ticular if K is collapsible, K ′ is 1-collapsible.

Proof If K ↘ L, then by Theorem 5.8 X (K) ↘ X (L) and by Theorem 5.10, K ′ =
K(X (K)) ↘1 K(X (L)) = L′. �
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In view of this result, it is equivalent to say that a compact polyhedron has a col-
lapsible triangulation and that it has a 1-collapsible triangulation. This equivalence
could be helpful when studying problems of collapsibility, such as Zeeman’s conjec-
ture.

In particular one can deduce Welker’s result [29, Theorem 2.10].

Corollary 5.12 (Welker) Let K be a collapsible complex. Then the barycentric sub-
division K ′ is non-evasive.

Remark 5.13 It is unknown whether the converse of Corollary 5.12 holds. However,
if K ′ is not just non-evasive but strong collapsible, then by Theorem 4.15, K is strong
collapsible and in particular collapsible.

The proof of the fact that if K is collapsible then K ′ is 1-collapsible was made
in two steps: K ↘ ∗ ⇒ X (K) ↘ ∗ ⇒ K ′ = K(X (K)) ↘1 ∗. In order to prove the
converse, one could try to prove the converses of both implications. In fact, the second
implication is an equivalence X (K) ↘ ∗ ⇔ K ′ ↘1 ∗, by Theorem 5.10.

Of course, there is an analogue of Corollary 5.12 for finite spaces. If X is a non-
evasive finite space, K(X) is non-evasive and then X′ is collapsible. If the converse
of this statement is true, then any barycentric subdivision K ′ which is collapsible,
would also be non-evasive, and therefore the converse of Corollary 5.12 would be
false.

6 Vertex-Homogeneous Complexes and Fixed Points

A complex K is said to be vertex-homogeneous if the group of simplicial auto-
morphisms Aut(K) acts transitively on the vertices of K . In other words, K is
vertex-homogeneous if for any two vertices v,w ∈ K , there exists an automorphism
ϕ : K → K such that ϕ(v) = w. For instance, the simplices are vertex-homogeneous
simplicial complexes. There exist examples of contractible (even collapsible) vertex-
homogeneous complexes which are not simplices (see [15, 17]). The Evasiveness
conjecture for simplicial complexes states that a non-evasive vertex-homogeneous
simplicial complex is a simplex. This has been verified for complexes with a prime-
power number of vertices, but the general question remains open.

In this section we will prove that the conjecture holds if the complex is strong
collapsible (Corollary 6.6). We will also prove that if K is vertex-homogeneous,
its core is vertex-homogeneous and it is isomorphic to N 2(K). Moreover, we will
see that vertex-homogeneous complexes are isomorphic to an nth multiple of their
cores. From these results we will deduce that any vertex-homogeneous complex with
a prime number of vertices is minimal or a simplex. Finally, we use the notions
of collapses introduced in the previous section to prove that the core of a vertex-
homogeneous non-evasive complex is also non-evasive. This result implies that the
study of the Evasiveness conjecture can be reduced to the class of minimal complexes.

If ϕ : K → K is a simplicial automorphism of a contractible complex K , there is
a point of |K| which is fixed by |ϕ|. In fact, every continuous map f : |K| → |K|
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has a fixed point by the Lefschetz fixed-point theorem [26]. The problem becomes
harder when one studies fixed points of an automorhism group instead of a single
automorphism. There exist examples of fixed-point free actions of finite groups over
compact contractible polyhedra [8]. Furthermore, R. Oliver [23] characterized the
groups G for which every simplicial action of G over a finite contractible complex
has a fixed point.

From a different perspective, we use a result of Stong [28], to prove that if K is a
strong collapsible complex, then every simplicial action on K has a fixed point.

Theorem 6.1 (Stong) If X is a contractible finite T0-space, there is a point x ∈ X

fixed by every homeomorphism of X.

Theorem 6.2 Let K be a strong collapsible complex and let G be a group of simpli-
cial automorphisms of K . Then there exists a point x ∈ |K| such that |ϕ|(x) = x for
every ϕ ∈ G.

Proof The action of G on K induces an action of G on the contractible space X (K).
By Theorem 6.1 there exists a point σ ∈ X (K) which is fixed by the action of G.
Therefore, the simplex σ is fixed by the automorphisms of G and then, the barycenter
of σ is a fixed point by the action. �

Remark 6.3 The fact of being the group of automorphisms of a strong collapsible
complex does not impose any restriction on the group. In other words, every finite
group is the automorphism group of some strong collapsible complex. Given a finite
group G, there exists a complex K such that Aut(K) � G (see [9]). If K is not a
cone, then the simplicial cone aK with base K is a strong collapsible complex with
automorphism group isomorphic to G.

We will use Theorem 6.2 to study vertex-homogeneous complexes, but first we
will prove a more precise version of this result, which is interesting in its own right.
In general, the fixed-point set |K|G is not the realization of a subcomplex of K , but
when it is, this complex is strong collapsible provided that K is. A simplicial action
of a group G on a complex K is said to be admissible if for every simplex fixed by
the action we see that each of its vertices is also fixed. This hypothesis is not very
restrictive since for any action, the action induced on the barycentric subdivision is
admissible. When an action is admissible, the fixed-point set |K|G coincides with the
geometric realization of the full subcomplex KG ⊆ K spanned by the vertices which
are fixed by the action.

Lemma 6.4 Let G be a group acting on a finite T0-space X. If X is contractible, so
is the fixed-point set XG.

Proof If X has just one point, there is nothing to do. Otherwise, X contains a beat
point x. Suppose that x /∈ XG. All the points in the orbit Gx of x are also beat points,
and since Gx is an antichain, X ↘↘ X � Gx. By induction XG = (X � Gx)G is
contractible. Suppose now that x ∈ XG and let us assume without loss of generality
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that Ûx has a maximum y. In this case, y is fixed by the action as well and therefore,
x is also a beat point in XG. By induction, XG

� {x} = (X � {x})G is contractible,
and then so is XG. �

Theorem 6.5 Let K be a strong collapsible complex and let G be a group of sim-
plicial automorphisms. Then the fixed-point set |K|G is contractible. Moreover, if the
action of G on K is admissible, KG is strong collapsible.

Proof We may assume that the action is admissible, since the first part of the result
follows from the second by taking the barycentric subdivision. By Theorem 4.13,
X (K) is contractible and by Lemma 6.4, the induced action on X (K) has a con-
tractible fixed-point set. Since the action on K is admissible, X (K)G = X (KG). By
Theorem 4.13, (KG)′ is strong collapsible and then by Theorem 4.15, so is KG. �

Segev proved that any action on a collapsible 2-complex has a fixed point [25],
however, Theorem 6.2 is not true for collapsible complexes of arbitrary dimension.
This follows from the existence of fixed-point free actions on disks [8] and the fact
that any triangulation of a disk has some iterated barycentric subdivision which is col-
lapsible [32]. Also, the non-existence of fixed-point free actions on collapsible com-
plexes would imply that every vertex-homogeneous collapsible complex is a simplex
(see the proof of Corollary 6.6 below).

From Theorem 6.2, we deduce that the Evasiveness conjecture is true for strong
collapsible simplicial complexes.

Corollary 6.6 Let K be a strong collapsible vertex-homogeneous complex. Then K

is a simplex.

Proof By Theorem 6.2 there exists a point x ∈ |K| fixed by Aut(K). Therefore, the
support of x is a fixed simplex, and since K is vertex-homogeneous, this simplex
must contain all the vertices of K . �

We will see another proof of this result as an application of the study of the square-
nerve N 2(K) of a vertex-homogeneous complex K .

Let K be a complex and v,w vertices of K . We denote v ≺ w if every maxi-
mal simplex of K which contains v, also contains w. In other words, v ≺ w if v is
dominated by w or if v = w. Clearly ≺ is a preorder on the set of vertices of K .

Remark 6.7 Let v,w be vertices of a complex K and let ϕ ∈ Aut(K). If v ≺ w,
ϕ(v) ≺ ϕ(w). This follows immediately from the fact that ϕ induces a correspon-
dence between maximal simplices containing v and maximal simplices containing
ϕ(v).

Proposition 6.8 If K is vertex-homogeneous, ≺ is an equivalence relation and all
the equivalence classes have the same cardinality.

Proof Suppose v ≺ w. Let ϕ ∈ Aut(K) such that ϕ(v) = w. By Remark 6.7,

v ≺ ϕ(v) ≺ ϕ2(v) ≺ · · ·
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Since K is finite and ϕ is one-to-one on vertices, there exists n ≥ 1 such that
ϕn(v) = v. Then, w = ϕ(v) ≺ ϕn(v) = v. Thus, ≺ is symmetric and then an equiva-
lence.

For the second part, suppose [v] is the equivalence class of a vertex v and [v′] is
the class of another vertex v′. Let ψ be an automorphism such that ψ(v) = v′. By Re-
mark 6.7, ψ induces a well-defined map from [v] to [v′] and ψ−1 a map [v′] → [v].
These are mutually inverse, and then [v] and [v′] have the same cardinality. �

Remark 6.9 If K is vertex-homogeneous, N 2(K) is isomorphic to any full subcom-
plex of K spanned by a set of vertices constituted by one element of each class of
≺. By the proof of Proposition 3.4, N 2(K) is isomorphic to any full subcomplex of
K spanned by a set of vertices, one v ∈ ⋂r

i=0 σi for each maximal intersecting fam-
ily {σ0, σ1, . . . , σr} of maximal simplices of K . On the other hand, each one of the
intersections

⋂r
i=0 σi is an equivalence class of ≺ and vice versa.

Theorem 6.10 Let K be a vertex-homogeneous complex. Then, the core of K is
vertex-homogeneous and it is isomorphic to N 2(K).

Proof Let L be a full subcomplex of K with one vertex in each equivalence class of
≺. Since K ↘↘ L and L is isomorphic to N 2(K), we only need to prove that L is
minimal. First we claim that if σ is a maximal simplex of K , σ ∩ L is a maximal
simplex of L.

Let τ be a simplex of L containing σ ∩ L and let ν be a maximal simplex of
K containing τ . Let v ∈ σ . Then there exists v′ ∈ L with v ≺ v′. Since v ∈ σ , then
v′ ∈ σ and therefore v′ ∈ σ ∩ L ⊆ ν. Since ν is maximal in K and v′ ≺ v, v ∈ ν.
This proves that σ ⊆ ν and by the maximality of σ , σ = ν. Thus, τ ⊆ σ and then
τ = τ ∩ L ⊆ σ ∩ L. This proves that σ ∩ L is maximal in L.

Now, suppose that v and w are two vertices of L and that v ≺ w in L. Let σ be a
maximal simplex of K which contains v. Then σ ∩ L is maximal in L and therefore
w ∈ σ ∩L ⊆ σ . Therefore v ≺ w in K and since both vertices lie in L, v = w. Hence,
L has no dominated vertices, which says that it is minimal.

It only remains to prove the vertex-homogeneity of N 2(K). An automorphism
ϕ : K → K induces an automorphism ϕ : N 2(K) → N 2(K). If {σ0, σ1, . . . , σr}
is a maximal intersecting family of maximal simplices of K , so is {ϕ(σ0), ϕ(σ1),

. . . , ϕ(σr)}. This defines a vertex map ϕ : N 2(K) → N 2(K) which is clearly simpli-
cial with inverse ϕ−1.

Suppose Σ1 = {σ0, σ1, . . . , σr} and Σ2 = {τ0, τ1, . . . , τs} are two maximal inter-
secting families of maximal simplices of K . Take v ∈ ⋂r

i=0 σi , w ∈ ⋂s
i=0 τi and an

automorphism ϕ of K such that ϕ(v) = w. Then ϕ(Σ1) = Σ2, so N 2(K) is vertex-
homogeneous. �

The fact that the square nerve preserves vertex-homogeneity can also be deduced
immediately from [17, Lemma 10].

We adopt Lutz’s terminology [17] and call the nth multiple of a complex K the
complex nK whose vertex set is VK × {1,2, . . . , n} and whose simplices are the sets
whose projections to VK are simplices of K . In other words, nK is the simplicial
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product of K with an (n − 1)-simplex. Notice that if K is vertex-homogeneous, so is
nK for every n ≥ 1.

Proposition 6.11 Let K be a vertex-homogeneous complex. Then, there exists n ≥ 1
such that K is isomorphic to the nth multiple of its core.

Proof Let L be a full subcomplex of K containing one vertex of each equivalence
class of ≺ and let n be the number of elements of each class. For every v ∈ L, let
ϕv : [v] → {v}×{1,2, . . . , n} be a bijection. We claim that the vertex bijective map ϕ :
VK → VnL induced by the maps ϕv is a simplicial isomorphism between K and nL.

Let p : nL → L be the canonical projection. Let σ ∈ K . If τ is a maximal simplex
of K which contains σ and v ∈ p(ϕ(σ )), there exists v′ ∈ [v] such that v′ ∈ σ . Since
v′ ≺ v, v ∈ τ . Therefore, p(ϕ(σ )) ⊆ τ is a simplex, which proves that ϕ is simplicial.

Now if σ ∈ nL, p(σ) ∈ K . Let τ be a maximal simplex of K which contains p(σ).
If v ∈ ϕ−1(σ ), there exists v′ ∈ [v] such that v′ ∈ p(σ). Since v′ ≺ v, v ∈ τ . Thus,
ϕ−1(σ ) ⊆ τ is a simplex of K and so, ϕ−1 is simplicial.

Since L is isomorphic to the core of K by Theorem 6.10 and Remark 6.9, the
result is proved. �

From this result we obtain an alternative proof of Corollary 6.6. If K is vertex-
homogeneous and strong collapsible, the core N 2(K) is a point. The nth multiple of
a point is a simplex.

Corollary 6.12 If a vertex-homogeneous complex K has a prime number of vertices,
then it is minimal or it is a simplex.

Definition 6.13 Let K be a complex with vertex set VK and let F : VK → N be a
function. We define the complex F K whose vertices are the pairs (v, i) with v ∈ VK

and 1 ≤ i ≤ F (v) and whose simplices are the sets {(v0, i0), (v1, i1), . . . , (vr , ir )}
such that the projections {v0, v1, . . . , vr} are simplices of K .

This generalizes the notion of nth multiple of K which coincides with F K when
F is the constant map n.

Theorem 6.14 Let K be a simplicial complex, F : VK → N and n ≥ 0. If F K is
n-collapsible, then K is n-collapsible. In particular if F K is non-evasive, so is K .

Proof The proof is by induction in n. The full subcomplex L of F K spanned by the
vertices of the form (v,1) with v ∈ VK is isomorphic to K . Moreover, every vertex
(v, i) of F K with i ≥ 2 is dominated by the vertex (v,1) of L. By Lemma 3.3,
F K ↘↘ L. Thus, if F K is strong collapsible, so is K . This proves the case n = 0.

Now assume that F K is (n + 1)-collapsible. Then there exists an ordering

(v0, i0), (v1, i1), . . . , (vr , ir )

of the vertices of F K such that lkLs ((vs, is)) is n-collapsible for 0 ≤ s < r , where
L0 = F K and Ls+1 = Ls � (vs, is).
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For each v ∈ K consider the number lv = max{j | vj = v}. Let w0,w1, . . . ,wk

be the ordering of the vertices of K such that lw0 < lw1 < · · · < lwk
. We claim that

it is possible to make the deletions of the vertices of K in that order to show that
K ↘n+1 wk .

Define K0 = K and Kq+1 = Kq � wq for 0 ≤ q < k. We have to show that
lkKq (wq) is n-collapsible for every 0 ≤ q < k. We already know that lkLlwq

((wq, ilwq
))

is n-collapsible, so, by induction it suffices to prove that lkLlwq
((wq, ilwq

)) is isomor-

phic to F ′lkKq (wq) for some F ′ : VlkKq (wq) → N.
The vertices of lkLlwq

((wq, ilwq
)) are the vertices (u, i) of Llwq +1 such that {(u, i),

(wq, ilwq
)} is a simplex of F K . By definition of lwq , if (u, i) ∈ Llwq +1, then u =

wp for some p > q . Thus if (u, i) ∈ lkLlwq
((wq, ilwq

)), u ∈ lkKq (wq). Conversely,
if u ∈ lkKq (wq), then u = wp for some p > q and then (u, ilu) ∈ lkLlwq

((wq, ilwq
)).

Moreover (u, is) ∈ lkLlwq
((wq, ilwq

)) for every lwq < s ≤ r such that vs = u.
In general, a set of vertices {(u0, i0), (u1, i1), . . . , (ut , it )} of lkLlwq

((wq, ilwq
)) is a

simplex if and only if {(u0, i0), (u1, i1), . . . , (ut , it ), (wq, ilwq
)} is a simplex of F K or

equivalently if {u0, u1, . . . , ut } ∈ lkKq (wq). Then lkLlwq
((wq, ilwq

)) is isomorphic to

F ′lkKq (wq) where F ′(u) is the cardinality of the set {s | lwq < s ≤ r and vs = u}. �

Corollary 6.15 The core of a vertex-homogeneous non-evasive complex is non-
evasive.

Proof Let K be a vertex-homogeneous complex and let L be its core. By Proposi-
tion 6.11, K = nL for some n. If K is non-evasive, then L is non-evasive by Theo-
rem 6.14. �

In general, the core of a non-evasive complex need not be non-evasive as the fol-
lowing example shows.

Example 6.16 The finite space X whose Hasse diagram is as shown in Fig. 8, is
collapsible and therefore K(X) is a 1-collapsible complex. In particular K(X) is non-
evasive. The point x ∈ X is a beat point and then K(X) ↘↘ K(X � {x}). The space
X � {x} has no weak points (cf. [3]) and therefore K(X � {x}) has no vertices with
strong collapsible links by Theorem 5.10. In particular K(X � {x}) is the core of
K(X) and it is evasive because it is two-dimensional and not 1-collapsible.

Fig. 8 A collapsible finite space
with a non-collapsible core
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In view of Corollary 6.15 and Proposition 6.11, in order to prove the Evasiveness
conjecture for simplicial complexes it suffices to verify it for minimal complexes. In
other words, the following statement is equivalent to the Evasiveness conjecture.

Conjecture 6.17 (Evasiveness conjecture for minimal complexes) If K is a minimal,
vertex-homogeneous, non-evasive complex, then it is a point.

Strong homotopy types and strong collapsible complexes are also related to the no-
tion of dismantlable graph via the clique complex and 1-skeleton operations. More-
over, these operations establish a close connection between the nerve of a complex
and the clique graph of a graph. The theory of strong homotopy types can be used
to obtain generalizations or alternative proofs of results on graphs, and some of the
results that we exhibit here can be analyzed from the perspective of graphs. For in-
stance, the convergence of iterated clique graphs of a clique-Helly graph, studied in
[7, 24], can be easily deduced from our results in Sect. 3.

The main results of [10] relating contractibility of finite spaces with dismantlabil-
ity of graphs, can be deduced from our Theorem 4.15 and Corollary 4.18, although it
is also true that the latter follows from Theorem 2.4 and Corollary 2.5 of [10].
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