Implicit definition of the quaternary discriminator

MIGUEL A. CAMPERCHOLI AND DIEGO J. VAGGIONE

ABSTRACT. Let **A** be an algebra. A function $f : A^n \to A$ is implicitly definable by a system of term equations $\bigwedge t_i(x_1, ..., x_n, z) = s_i(x_1, ..., x_n, z)$ if f is the only *n*-ary operation on A making the identities $t_i(\vec{x}, f(\vec{x})) \approx s_i(\vec{x}, f(\vec{x}))$ hold in **A**. Let \mathcal{K} be a class of non trivial algebras. We prove that the quaternary discriminator is implicitly definable on every member of \mathcal{K} (via the same system) iff \mathcal{K} is contained in the class of relatively simple members of some relatively semisimple quasivariety with equationally definable relative principal congruences. As an application we obtain a characterization of the relatively permutable members of such type of quasivarieties. Furthermore, we prove that every algebra in such a quasivariety has a unique relatively permutable extension.

1. Introduction

Let **A** be an algebra and let $t_i(x_1, ..., x_n, z), s_i(x_1, ..., x_n, z), i = 1, ..., k$, be terms such that the system of equations

$$\begin{array}{rcl} t_1(x_1,...,x_n,z) &=& s_1(x_1,...,x_n,z) \\ &\vdots \\ t_k(x_1,...,x_n,z) &=& s_k(x_1,...,x_n,z) \end{array}$$

has a unique solution $z \in A$ whenever we fix the values $x_1, ..., x_n \in A$. One such system on an algebra **A** *implicitly defines* a function $f : A^n \to A$ by letting $f(a_1, ..., a_n)$ be the unique $b \in A$ such that

$$t_i(a_1, ..., a_n, b) = s_i(a_1, ..., a_n, b), \text{ for } i = 1, ..., k.$$

For example, if $\mathbf{G} = (G, ., e)$ is a group, then the system

 $x_1 \cdot z = e$

Presented by \dots

Received \ldots ; accepted in final form \ldots

²⁰¹⁰ Mathematics Subject Classification: Primary: 08C15.

Key words and phrases: quaternary discriminator, implicit equational definition, equationally definable principal congruences.

The research of both authors was supported by a grants from SECYT-UNC and CONICET.

implicitly defines the inverse operation on G and if $\mathbf{L} = (L, \lor, \land, 0, 1)$ is a Boolean lattice, then the system

$$x_1 \lor z = 1$$
$$x_1 \land z = 0$$

defines the complement operation on L.

Given a set A, we use d^A to denote the *quaternary discriminator* on A, that is the function:

$$d^{A}(x, y, z, w) = \begin{cases} z & \text{if } x = y \\ w & \text{if } x \neq y \end{cases}$$

The quaternary discriminator, also known as the switching function, is equivalent to the usual ternary discriminator in the sense that each one is a term of the other [2].

In this paper we prove that the quaternary discriminator is implicitly definable on every member of a class \mathcal{K} of non trivial algebras (via the same system) iff \mathcal{K} is contained in the class of relatively simple members of some relatively semisimple quasivariety with equationally definable relative principal congruences. As an application we obtain a characterization of the relatively permutable members of such type of quasivarieties. Furthermore, we prove that every algebra in such a quasivariety has a unique relatively permutable extension.

2. Notation and some results

Let \mathcal{K} be a class of algebras. As usual, let $I(\mathcal{K})$, $S(\mathcal{K})$, $P(\mathcal{K})$, $P_S(\mathcal{K})$, $P_u(\mathcal{K})$ and $H(\mathcal{K})$ denote the classes of isomorphic images, subalgebras, direct products, subdirect products, ultraproducts and homomorphic images of elements of \mathcal{K} . We write $S_{\leq 4}(\mathcal{K})$ to denote the class of subalgebras of elements of \mathcal{K} which are generated by a set of four or less elements. Let $V(\mathcal{K})$ denote the variety generated by \mathcal{K} and $Q(\mathcal{K})$ the quasivariety generated by \mathcal{K} . We write \mathcal{K}^+ to denote the class $\mathcal{K} \cup \{\text{trivial algebras}\}$ and \mathcal{K}^- to denote the class $\mathcal{K} - \{\text{trivial algebras}\}$. If \mathcal{V} is a variety we use \mathcal{V}_{FSI} (resp. \mathcal{V}_{SI}) to denote the class of finitely subdirectly irreducible (resp. subdirectly irreducible) members of \mathcal{V} .

Let **A** be an algebra. Let $\nabla^{\mathbf{A}}$ be the universal congruence on **A** and $\Delta^{\mathbf{A}}$ the trivial congruence on **A**. By $Con(\mathbf{A})$ we denote the congruence lattice of **A**. If $\theta \in Con(\mathbf{A})$ and $S \subseteq A$, we use $\theta \mid_S$ to denote the relation $\theta \cap (S \times S)$. If Σ is contained in $Con(\mathbf{A})$, let Σ^+ denote $\Sigma \cup \{\nabla^{\mathbf{A}}\}$. We define $\Sigma(\mathbf{A}, \mathcal{K}) = \{\theta \in Con(\mathbf{A}) : \mathbf{A}/\theta \in I(\mathcal{K})\}.$

Let \mathcal{Q} be a quasivariety and let $\mathbf{A} \in \mathcal{Q}$. A relative congruence on \mathbf{A} is a $\theta \in Con(\mathbf{A})$ satisfying $\mathbf{A}/\theta \in \mathcal{Q}$. It is well known that the relative congruences on \mathbf{A} , with the partial order of inclusion, form an algebraic lattice in which arbitrary meets coincide with intersection. We use $Con_{\mathcal{Q}}(\mathbf{A})$ to denote

Vol. 00, XX

the lattice of relative congruences of **A**. The join operation on $Con_{\mathcal{Q}}(\mathbf{A})$ is denoted by the symbol \sqcup . If $a, b \in A$, let $\theta_{\mathcal{Q}}^{\mathbf{A}}(a, b)$ denote the *relative principal* congruence generated by (a, b), that is, the least relative congruence containing the pair (a, b). If $\vec{a}, \vec{b} \in A^n$, we write $\theta_{\mathcal{Q}}^{\mathbf{A}}(\vec{a}, \vec{b})$ to denote the congruence $\theta_{\mathcal{Q}}^{\mathbf{A}}(a_1, b_1) \sqcup \ldots \sqcup \theta_{\mathcal{Q}}^{\mathbf{A}}(a_n, b_n)$. An important property of $Con_{\mathcal{Q}}(\mathbf{A})$ is that its compact elements are precisely the ones of the form $\theta_{\mathcal{Q}}^{\mathbf{A}}(\vec{a}, \vec{b})$, with $\vec{a}, \vec{b} \in A^n, n \geq 1$. We use $MaxCon_{\mathcal{Q}}(\mathbf{A})$ to denote the set of maximal elements of the poset $Con_{\mathcal{Q}}(\mathbf{A}) - \{\nabla^{\mathbf{A}}\}$ and $CMICon_{\mathcal{Q}}(\mathbf{A})$ (resp. $MICon_{\mathcal{Q}}(\mathbf{A}), MPCon_{\mathcal{Q}}(\mathbf{A})$) denotes the set of completely meet irreducible (resp. meet irreducible, meet prime) elements of $Con_{\mathcal{Q}}(\mathbf{A})$.

If $p_i = p_i(x_1, ..., x_n)$, i = 1, ..., m are terms, then \vec{p} denotes the *m*-tuple $(p_1, ..., p_m)$. If $\vec{a} \in A^n$, then $\vec{p}^{\mathbf{A}}(\vec{a})$ denotes $(p_1^{\mathbf{A}}(\vec{a}), ..., p_m^{\mathbf{A}}(\vec{a}))$.

 \mathcal{Q} has equationally definable relative principal congruences (EDRPC for short) if there exist terms $r_i, s_i, i = 1, ..., n$, such that $\theta_{\mathcal{Q}}^{\mathbf{A}}(a, b) = \{(c, d) : \vec{r}^{\mathbf{A}}(a, b, c, d) = \vec{s}^{\mathbf{A}}(a, b, c, d)\}$, for any $\mathbf{A} \in \mathcal{Q}$.

Q has equationally definable principal meets (EDPM for short) if there exist terms $r_i, s_i, i = 1, ..., n$, such that

 $\theta_{\mathcal{Q}}^{\mathbf{A}}(a,b) \cap \theta_{\mathcal{Q}}^{\mathbf{A}}(c,d) = \theta_{\mathcal{Q}}^{\mathbf{A}}(\vec{r}^{\mathbf{A}}(a,b,c,d), \vec{s}^{\mathbf{A}}(a,b,c,d)), \text{ for any } \mathbf{A} \in \mathcal{Q}.$

 \mathcal{Q} is relatively congruence distributive if $Con_{\mathcal{Q}}(\mathbf{A})$ is distributive, for any $\mathbf{A} \in \mathcal{Q}$. We use \mathcal{Q}_{RFSI} (resp. $\mathcal{Q}_{RSI}, \mathcal{Q}_{RS}$) to denote the class of all relatively finitely subdirectly irreducible (resp. subdirectly irreducible, simple) members of \mathcal{Q} . We note that trivial algebras do not belong to \mathcal{Q}_{FRSI} . \mathcal{Q} is called relatively semisimple if every member of \mathcal{Q} is isomorphic to a subdirect product of relatively simple members of \mathcal{Q} .

The following lemma shows that implicitly definable functions have natural algebraic properties.

Lemma 1. Let $\mathbf{A}, \mathbf{B}, \mathbf{A}_i, i \in I$ be algebras. Let S be the system

 $\bigwedge_{i=1}^{m} p_i(\vec{x}, z) = q_i(\vec{x}, z) \text{ and suppose } S \text{ implicitly defines functions } f: A^n \to A \text{ on } \mathbf{A}, g: B^n \to B \text{ on } \mathbf{B} \text{ and } f_i: A_i^n \to A_i, \text{ on each } \mathbf{A}_i.$

- (1) If F is a homomorphism from \mathbf{A} to \mathbf{B} , then F is a homomorphism from (\mathbf{A}, f) to (\mathbf{B}, g) .
- (2) If **A** is a subalgebra of **B**, then f = g restricted to A^n .
- (3) S implicitly defines the function $(f_i)_{i \in I}$ on $\Pi\{\mathbf{A}_i : i \in I\}$.

Proof. Routine.

We conclude the section with a result characterizing the quasivarieties in which no non trivial algebra has a trivial subalgebra. First a basic lemma.

Lemma 2. Let Q be a quasivariety and let X be a set of variables. Let \mathbf{F} be the Q-free algebra generated by X. Let $r, s, r_1, ..., r_m, s_1, ..., s_m \in \mathbf{F}$, the following are equivalent

(1)
$$(r,s) \in \theta_{\mathcal{Q}}^{\mathbf{F}}(\vec{r},\vec{s}).$$

(2)
$$\mathcal{Q} \vDash \vec{r} = \vec{s} \rightarrow r = s$$

Algebra univers

Proof. Routine.

Proposition 3. Let \mathcal{Q} be a quasivariety. The following are equivalent

- (1) No non trivial algebra in Q has a trivial subalgebra.
- (2) No non trivial algebra in Q_{RSI} has a trivial subalgebra.
- (3) There exist unary terms $0_1(w), ..., 0_n(w), 1_1(w), ..., 1_n(w)$ such that $\mathcal{Q} \vDash \vec{0}(w) = \vec{1}(w) \rightarrow x = y.$
- (4) There exist unary terms $0_1(w), ..., 0_n(w), 1_1(w), ..., 1_n(w)$ such that $\nabla^{\mathbf{A}} = \theta_{\mathcal{Q}}^{\mathbf{A}}(\vec{0}(a), \vec{1}(a)),$

for every $\mathbf{A} \in \mathcal{Q}$ and $a \in A$.

- (5) There exist unary terms $0_1(w), ..., 0_n(w), 1_1(w), ..., 1_n(w)$ such that $\nabla^{\mathbf{F}} = \theta_{\mathcal{Q}}^{\mathbf{F}}(\vec{0}, \vec{1}),$
 - where **F** is the Q-free algebra freely generated by $\{w, x\}$.
- (6) $\nabla^{\mathbf{A}}$ is a compact element of $Con_{\mathcal{Q}}(\mathbf{A})$, for every $\mathbf{A} \in \mathcal{Q}$.
- (7) ∇^F is a compact element of Con_Q(F), where F is a Q-free algebra generated by some infinite set X of free generators.
 If the language of Q has a constant symbol, then the terms of 3., 4. and 5. can be chosen to be closed terms.

Proof. $(1) \Rightarrow (2)$ Obvious.

 $(2) \Rightarrow (3)$ Since

- $\mathcal{Q}_{RSI} \vDash \left(\bigwedge_{t,s \text{ unary terms}} t(w) = s(w) \right) \to x = y$ we have that
- $\mathcal{Q} \vDash \left(\bigwedge_{t,s \text{ unary terms}} t(w) = s(w) \right) \to x = y.$
- Thus a compactness argument produces the terms $0_1, ..., 0_n, 1_1, ..., 1_n$.
 - $(3) \Rightarrow (4)$ Easy.
 - $(4) \Rightarrow (5)$ Trivial.
 - $(5) \Rightarrow (6)$ By Lemma 2 we obtain that

 $\mathcal{Q} \vDash \vec{0}(w) = \vec{1}(w) \to w = x$

So (3) holds and hence we obtain (4) which clearly implies (6).

 $(6) \Rightarrow (7)$. Obvious.

(7) \Rightarrow (1) Suppose $\nabla^{\mathbf{F}} = \theta_{\mathcal{O}}^{\mathbf{F}}(\vec{r}, \vec{s})$, with $r_i = r_i(x_1, ..., x_n)$ and

 $s_i = s_i(x_1, ..., x_n), i = 1, ..., m$. Take $x, y \in X - \{x_1, ..., x_n\}$. By Lemma 2 we have that $\mathcal{Q} \models \vec{r} = \vec{s} \rightarrow x = y$, which implies (1).

For the case in which Q is a variety, the equivalence $(1) \Leftrightarrow (6)$ was proved in [6], the other implications have been proved in [11, Lemma 5.2] and [9].

3. Two topologies on $Con(\mathbf{A})$

In this section we introduce two natural topologies on the lattice of congruences of an algebra. Our treatment is an improvement of the one used in [8] to give a lattice theoretic proof of Jónsson's Lemma.

For an algebra **A** and $x, y \in A$, define

Vol. 00, XX

 $e(x,y) = \{\theta \in Con(\mathbf{A}) : (x,y) \in \theta\}$

$$d(x, y) = \{\theta \in Con(\mathbf{A}) : (x, y) \notin \theta\}.$$

We use τ_e to denote the topology on $Con(\mathbf{A})$ generated by $\{e(x, y) : x, y \in A\}$ and τ_{ed} to denote the topology on $Con(\mathbf{A})$ generated by

 $\{e(x,y): x, y \in A\} \cup \{d(x,y): x, y \in A\}.$

In most of the sheaf representations of algebras as algebras of continuous sections, the spectrum topology is the restriction of one of these two topologies to the spectrum (see for example [4] and [13]).

We say that a set $S \subseteq A^2$ minorizes $\Sigma \subseteq Con(\mathbf{A})$ when for each $\theta \in \Sigma$ there exists $(x, y) \in S$ such that $(x, y) \in \theta$. An immediate consequence of Alexander's Lemma is the following

Lemma 4. For $\Sigma \subseteq Con(\mathbf{A})$, the following are equivalent

- (1) Σ is τ_e -compact.
- (2) If S minorizes Σ , then there exists a finite subset of S which minorizes Σ .

Corollary 5. If **B** is a subalgebra of **A** and $\Sigma \subseteq Con(\mathbf{A})$ is τ_e -compact, then $\{\theta \mid_B : \theta \in \Sigma\} \subseteq Con(\mathbf{B})$ is τ_e -compact.

Lemma 6 ([11, Lemma 2.1]). Let \mathcal{Q} be a quasivariety and let $\mathbf{A} \in \mathcal{Q}$. If $\theta \in MPCon_{\mathcal{Q}}(\mathbf{A})$, then for each τ_e -compact set $\Sigma \subseteq Con_{\mathcal{Q}}(\mathbf{A})$ we have that $\theta \supseteq \bigcap \Sigma$ implies $\theta \supseteq \delta$, for some $\delta \in \Sigma$.

That is to say the meet prime elements of $Con_{\mathcal{Q}}(\mathbf{A})$ are completely meet prime with respect to intersections of τ_e -compact sets.

Corollary 7. If $Con_{\mathcal{Q}}(\mathbf{A})$ is distributive and $\Sigma \subseteq MaxCon_{\mathcal{Q}}(\mathbf{A})$ is τ_e compact and $\bigcap \Sigma = \Delta^{\mathbf{A}}$, then

 $\Sigma = MaxCon_{\mathcal{Q}}(\mathbf{A}) = MICon_{\mathcal{Q}}(\mathbf{A}) = MPCon_{\mathcal{Q}}(\mathbf{A}) = CMICon_{\mathcal{Q}}(\mathbf{A}).$

Proof. Since $Con_{\mathcal{Q}}(\mathbf{A})$ is distributive, $MICon_{\mathcal{Q}}(\mathbf{A}) = MPCon_{\mathcal{Q}}(\mathbf{A})$. Let $\theta \in MPCon_{\mathcal{Q}}(\mathbf{A})$. Since $\bigcap \Sigma = \Delta^{\mathbf{A}} \subseteq \theta$, Lemma 6 says that there exists $\delta \in \Sigma$ such that $\delta \subseteq \theta$. But δ is in $MaxCon_{\mathcal{Q}}(\mathbf{A})$, hence $\delta = \theta$. Thus $MPCon_{\mathcal{Q}}(\mathbf{A}) \subseteq \Sigma$, which implies the other inclusions.

For $\Sigma \subseteq Con(\mathbf{A})$ and \mathcal{U} an ultrafilter on Σ , define $\theta_{\mathcal{U}}^{\Sigma} = \{(x, y) : e(x, y) \cap \Sigma \in \mathcal{U}\}.$

It is easy to check that $\theta_{\mathcal{U}}^{\Sigma} \in Con(\mathbf{A})$. Also we note that

- $(x, y) \notin \theta_{\mathcal{U}}^{\Sigma}$ iff $d(x, y) \cap \Sigma \in \mathcal{U}$.

- If $\theta \in \Sigma$ and $\mathcal{U} = \{\Gamma \subseteq \Sigma : \theta \in \Gamma\}$, then $\theta_{\mathcal{U}}^{\Sigma} = \theta$.

Theorem 8. $(Con(\mathbf{A}), \tau_{ed})$ is a Boolean space. For $\Sigma \subseteq Con(\mathbf{A})$, the closure of Σ in $(Con(A), \tau_{ed})$ is given by

 $\bar{\Sigma} = \{\theta_{\mathcal{U}}^{\Sigma} : \mathcal{U} \text{ is an ultrafilter on } \Sigma\}.$

Proof. It is easy to check that $(Con(\mathbf{A}), \tau_{ed})$ is Hausdorff and zero dimensional. Assume that $(Con(\mathbf{A}), \tau_{ed})$ is not compact. Then we have

Algebra univers.

 $Con(\mathbf{A}) = \bigcup_{i \in I} e(x_i, y_i) \cup \bigcup_{j \in J} d(z_j, w_j)$

and

 $Con(\mathbf{A}) \neq \bigcup_{i \in I_0} e(x_i, y_i) \cup \bigcup_{j \in J_0} d(z_j, w_j)$ whenever $I_0 \subseteq I$ and $J_0 \subseteq J$ are finite. Note that

 $\bigcup_{i \in I_0} e(x_i, y_i) \not\supseteq \bigcap_{i \in J_0} e(z_j, w_j)$

whenever $I_0 \subseteq I$ and $J_0 \subseteq J$ are finite. By the prime ideal theorem there is an ultrafilter \mathcal{U} on $Con(\mathbf{A})$ satisfying

 $e(x_i, y_i) \notin \mathcal{U}$, for each $i \in I$ $e(z_j, w_j) \in \mathcal{U}$, for each $j \in J$. Hence we have

 $\theta_{\mathcal{U}}^{Con(\mathbf{A})} \notin \bigcup_{i \in I} e(x_i, y_i) \cup \bigcup_{j \in J} d(z_j, w_j),$ which is an absurd.

To see the last affirmation of the theorem, we note that for $\Sigma \subseteq Con(A)$, the following are equivalent

(1) $\theta \in \overline{\Sigma}$.

(2) The family $\{e(x,y) \cap \Sigma : (x,y) \in \theta\} \cup \{d(x,y) \cap \Sigma : (x,y) \notin \theta\}$ has the finite intersection property.

But it is easy to prove that (2) is equivalent to

and this concludes the proof of the theorem.

(3) $\theta = \theta_{\mathcal{U}}^{\Sigma}$ for some ultrafilter \mathcal{U} ,

$$\square$$

Corollary 9. If \mathcal{M} is a universal class, then $\Sigma(\mathbf{A}, \mathcal{M}) = \{\theta \in Con(A) : \mathbf{A}/\theta \in \mathcal{M}\}\$ is τ_{ed} -compact, for any algebra A.

Proof. Let \mathcal{U} be an ultrafilter on $\Sigma(\mathbf{A}, \mathcal{M})$. Note that $\theta_{\mathcal{U}}^{\Sigma(\mathbf{A}, \mathcal{M})}$ is the kernel of the canonical map $\mathbf{A} \to \prod \{\mathbf{A}/\theta : \theta \in \Sigma(\mathbf{A}, \mathcal{M})\}/\mathcal{U}$, which says that $\mathbf{A}/\theta_{\mathcal{U}}^{\Sigma(\mathbf{A}, \mathcal{M})} \in ISP_u\{\mathbf{A}/\theta : \theta \in \Sigma(\mathbf{A}, \mathcal{M})\} \subseteq \mathcal{M}$ and hence $\theta_{\mathcal{U}}^{\Sigma(\mathbf{A}, \mathcal{M})} \in \Sigma(\mathbf{A}, \mathcal{M})$.

The combination of Corollary 9 and Lemma 6 is a useful tool which we shall use several times in the sequel.

Corollary 10 ([5, Lemma 1.5]). Let \mathcal{M} be a class of algebras. Then $Q(\mathcal{M})_{RFSI} \subseteq ISP_u(\mathcal{M}).$

Proof. Suppose $\mathbf{A} \in Q(\mathcal{M})_{RFSI}$. Since $Q(\mathcal{M}) = IP_S(ISP_u(\mathcal{M}))$ we have that $\bigcap \Sigma(A, ISP_u(\mathcal{M})) = \Delta^{\mathbf{A}} \in MPCon_{Q(\mathcal{M})}(A)$. Since $\Sigma(A, ISP_u(\mathcal{M}))$ is τ_e -compact (Corollary 9), Lemma 6 says that $\Delta^{\mathbf{A}} \in \Sigma(A, ISP_u(\mathcal{M}))$, hence $\mathbf{A} \in ISP_u(\mathcal{M})$.

Corollary 11. (Jónsson's Lemma): Let \mathcal{K} be such that $V(\mathcal{K})$ is congruence distributive. Then $V(\mathcal{K})_{FSI} \subseteq HSP_u(\mathcal{K})$.

Proof. Let $\mathbf{A} \in SP(\mathcal{K})$, and suppose \mathbf{A}/γ is finitely subdirectly irreducible. We shall see that $\mathbf{A}/\gamma \in HSP_u(\mathcal{K})$. Since $\gamma \in MPCon(A)$ and

 $\bigcap \Sigma(A, ISP_u(\mathcal{K})) = \Delta^{\mathbf{A}}$ we can apply a similar argument as in the above corollary.

Lemma 12. If \mathcal{Q} is a relative congruence distributive quasivariety and \mathcal{M} is a universal class such that $\mathcal{M} \subseteq (\mathcal{Q}_{RFSI})^+$, then $Q(\mathcal{M}) = IP_S(\mathcal{M})$ is a relative congruence distributive quasivariety such that $Q(\mathcal{M})_{RFSI} = \mathcal{M}^-$.

Proof. It follows from Corollary 1.4 of [5] and Corollary 10.

We conclude the section with a result linking the concept of τ_{ed} -compactness with that of EDPM

Proposition 13. Let Q be a quasivariety and let $\mathbf{A} \in Q$. If $Con_Q(\mathbf{A})$ is distributive, then the following are equivalent

- (1) $MICon_{\mathcal{Q}}(\mathbf{A})^+$ is τ_{ed} -compact.
- (2) For any $x, y, z, w \in A$, we have that $\theta_{\mathcal{Q}}^{\mathbf{A}}(x, y) \cap \theta_{\mathcal{Q}}^{\mathbf{A}}(z, w)$ is a compact element of the lattice $Con_{\mathcal{Q}}(\mathbf{A})$.

Proof. $(1) \Rightarrow (2)$ Note that the sets

 $e(x,y) \cap MICon_{\mathcal{Q}}(\mathbf{A})^+$

 $e(z,w) \cap MICon_{\mathcal{Q}}(\mathbf{A})^+$

 $d(u,v) \cap MICon_{\mathcal{Q}}(\mathbf{A})^+$, with $(u,v) \in \theta_{\mathcal{Q}}^{\mathbf{A}}(x,y) \cap \theta_{\mathcal{Q}}^{\mathbf{A}}(z,w)$

form a covering of $MICon_{\mathcal{Q}}(\mathbf{A})^+$. Thus the τ_{ed} -compactness of $MICon_{\mathcal{Q}}(\mathbf{A})^+$ says that there are $(u_1, v_1), ..., (u_k, v_k) \in \theta_{\mathcal{O}}^{\mathbf{A}}(x, y) \cap \theta_{\mathcal{O}}^{\mathbf{A}}(z, w)$ such that

 $e(x,y) \cap MICon_{\mathcal{Q}}(\mathbf{A})^+$

$$e(z,w) \cap MICon_{\mathcal{Q}}(\mathbf{A})^{+}$$

 $d(u_i, v_i) \cap MICon_{\mathcal{Q}}(\mathbf{A})^+, i = 1, ..., k$

is a covering of $MICon_{\mathcal{Q}}(\mathbf{A})^+$ and the reader can check that

 $\theta_{\mathcal{O}}^{\mathbf{A}}(x,y) \cap \theta_{\mathcal{O}}^{\mathbf{A}}(z,w) = \theta_{\mathcal{O}}^{\mathbf{A}}(u_1,v_1) \sqcup \ldots \sqcup \theta_{\mathcal{O}}^{\mathbf{A}}(u_k,v_k).$

 $(2) \Rightarrow (1)$ We prove the case in which $\nabla^{\mathbf{A}}$ is not a compact element of $Con_{\mathcal{Q}}(\mathbf{A})$. Let \mathbf{L} be the sublattice of $Con_{\mathcal{Q}}(\mathbf{A})$ consisting of all compact elements of $Con_{\mathcal{Q}}(\mathbf{A})$ together with $\nabla^{\mathbf{A}}$. Let $Id(\mathbf{L})$ be the lattice of all ideals of \mathbf{L} . We note that the map $\theta \to \{\delta \in L - \{\nabla^{\mathbf{A}}\} : \delta \subseteq \theta\}$ is an isomorphism from $Con_{\mathcal{Q}}(\mathbf{A})$ to $Id(\mathbf{L})$ which identifies $MICon_{\mathcal{Q}}(\mathbf{A})^+$ with $\{I \in Id(\mathbf{L}) : I$ is prime}. Since this isomorphism connects the topology τ_{ed} relativized to $MICon_{\mathcal{Q}}(\mathbf{A})^+$ with the Priestley topology on $\{I \in Id(\mathbf{L}) : I \text{ is prime}\}$, we have that $MICon_{\mathcal{Q}}(\mathbf{A})^+$ is τ_{ed} -compact.

The remaining case is similar.

Corollary 14. A relatively congruence distributive quasivariety \mathcal{Q} has EDPM iff for every $\mathbf{A} \in \mathcal{Q}$, the set $MICon_{\mathcal{Q}}(\mathbf{A})^+$ is τ_{ed} -compact.

Proof. (\Rightarrow) Since $(\mathcal{Q}_{RFSI})^+$ is universal, we can apply Corollary 9. (\Leftarrow) It follows from (ii) \Rightarrow (i) of [5, Thm 2.3] and the above proposition.

4. Main theorem and applications

We observe that if \mathcal{Q} is a relatively congruence distributive quasivariety, then for $\theta \in Con_{\mathcal{Q}}(A)$, with $\mathbf{A} \in \mathcal{Q}$, the congruence

 $\theta^* = \bigcap \{ \gamma \in MICon_{\mathcal{Q}}(A) : \theta \not\subseteq \gamma \}$

is the pseudo-complement of θ in the lattice $Con_{\mathcal{Q}}(A)$, i.e. θ^* is the greatest $\delta \in Con_{\mathcal{Q}}(A)$ satisfying

$$\theta \cap \delta = \Delta^{\mathbf{A}}$$

(use that $MICon_{\mathcal{Q}}(A) = MPCon_{\mathcal{Q}}(A)$).

Theorem 15. Let \mathcal{K} be any class of non trivial algebras. The following are equivalent

- (1) There are terms $p_i, q_i, i = 1, ..., n$ such that the system $\vec{p}(x_1, x_2, x_3, x_4, z) = \vec{q}(x_1, x_2, x_3, x_4, z)$ implicitly defines the quaternary discriminator, for every $\mathbf{A} \in \mathcal{K}$.
- (2) $SP_u S_{\leq 4}(\mathcal{K}) \subseteq (\mathcal{Q}_{RS})^+$ for some relatively congruence distributive quasivariety \mathcal{Q} .
- (3) $Q(\mathcal{K})$ has EDRPC and $Q(\mathcal{K})_{RS} = ISP_u(\mathcal{K})^-$.
- (4) $\mathcal{K} \subseteq \mathcal{Q}_{RS}$ for some quasivariety \mathcal{Q} with EDRPC.
- (5) There are terms $p_i, q_i, i = 1, ..., n$, such that

 $\mathcal{K} \vDash \vec{p}(x, y, z, w) = \vec{q}(x, y, z, w) \leftrightarrow (x = y \rightarrow z = w).$

(6) For every trivial satisfiable open formula $O(x_1, ..., x_m)$ there are terms $p_i, q_i, i = 1, ..., n$, such that

 $\mathcal{K} \vDash \vec{p}(x_1,...,x_m) = \vec{q}(x_1,...,x_m) \leftrightarrow O(x_1,...,x_m).$

If \mathcal{K} generates a locally finite quasivariety, 2. can be replaced by

 $\tilde{2}$. S_{≤4}(\mathcal{K}) ⊆ (\mathcal{Q}_{RS})⁺ for some relative congruence distributive quasivariety \mathcal{Q} .

If $Q(\mathcal{K})$ satisfies some of the equivalent conditions of Proposition 3, 6. can be replaced by

6. For every open formula $O(x_1, ..., x_m)$ there are terms $p_i, q_i, i = 1, ..., n$, such that

 $\mathcal{K} \vDash \vec{p}(x_1, ..., x_m) = \vec{q}(x_1, ..., x_m) \leftrightarrow O(x_1, ..., x_m).$

Proof. $(1) \Rightarrow (2)$ Note that

 $\mathcal{K}\vDash \vec{p}(x,y,z,w,z)=\vec{q}(x,y,z,w,z)\leftrightarrow (x=y\vee z=w)$ and hence

 $ISP_u(\mathcal{K})\vDash \vec{p}(x,y,z,w,z)=\vec{q}(x,y,z,w,z)\leftrightarrow (x=y\vee z=w).$ Thus Lemma 10 says that

 $Q(\mathcal{K})_{RFSI} \models \vec{p}(x, y, z, w, z) = \vec{q}(x, y, z, w, z) \leftrightarrow (x = y \lor z = w)$ which by Theorem 2.3 of [5] implies that $Q(\mathcal{K})$ is relatively congruence dis-

tributive. By Lemma 1 $ISP_u(\mathcal{K})^- \subseteq Q(\mathcal{K})_{RS}$. (2) \Rightarrow (3) By Lemma 12 we have that $\mathcal{R} = Q(ISP_uS_{\leq 4}(\mathcal{K}))$ is relatively congruence distributive and $\mathcal{R}_{RFSI} = ISP_uS_{\leq 4}(\mathcal{K})^-$. Since $ISP_uS_{\leq 4}(\mathcal{K}) \subseteq (\mathcal{Q}_{RS})^+$ we have that \mathcal{R} is relatively semisimple. Since $(\mathcal{R}_{RS})^+$ is universal, Corollary 9 says that $MaxCon_{\mathcal{R}}(\mathbf{B})^+$ is τ_{ed} -compact, for any $\mathbf{B} \in \mathcal{R}$.

First we shall prove that for $\mathbf{B} \in \mathcal{R}$ and $a, b \in B$,

(*) $\gamma \supseteq \theta_{\mathcal{R}}^{\mathbf{B}}(a,b)^*$ iff $\gamma \in d(a,b) \cap MaxCon_{\mathcal{R}}(\mathbf{B})$, for any $\gamma \in MaxCon_{\mathcal{R}}(\mathbf{B})$.

The if-part is obvious. Suppose that $\gamma \supseteq \theta_{\mathcal{R}}^{\mathbf{B}}(a, b)^*$. Since $\theta_{\mathcal{R}}^{\mathbf{B}}(a, b)^* = \bigcap d(a, b) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$ and $d(a, b) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$ is τ_{ed} -compact, Lemma 6 says that there is $\theta \in d(a, b) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$ such that $\gamma \supseteq \theta$. By the maximality of θ we have that $\gamma = \theta$ and so $\gamma \in d(a, b) \cap MaxCon_{\mathcal{R}}(\mathbf{B})$.

Next we prove that

(**) $\theta_{\mathcal{R}}^{\mathbf{B}}(a,b)^*$ is the complement of $\theta_{\mathcal{R}}^{\mathbf{B}}(a,b)$ in the distributive lattice $Con_{\mathcal{R}}(\mathbf{B})$.

Suppose that $\theta_{\mathcal{R}}^{\mathbf{B}}(a,b) \sqcup \theta_{\mathcal{R}}^{\mathbf{B}}(a,b)^* \neq \nabla^{\mathbf{B}}$. Since \mathcal{R} is relatively semisimple, there is $\gamma \in MaxCon_{\mathcal{R}}(\mathbf{B})$ satisfying $\theta_{\mathcal{R}}^{\mathbf{B}}(a,b) \sqcup \theta_{\mathcal{R}}^{\mathbf{B}}(a,b)^* \subseteq \gamma$. So we have that $(a,b) \in \gamma$ and by (*) we obtain that $(a,b) \notin \gamma$, which is absurd.

We shall prove that

(***) $\theta_{\mathcal{R}}^{\mathbf{B}}(a,b)^* \cap \theta_{\mathcal{R}}^{\mathbf{B}}(c,d)$ is a compact element of $Con_{\mathcal{R}}(\mathbf{B})$.

To prove this, first we shall prove that the sets

 $d(a,b) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$

 $e(c,d) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$

 $d(u,v) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$, with $(u,v) \in \theta_{\mathcal{R}}^{\mathbf{B}}(a,b)^* \cap \theta_{\mathcal{R}}^{\mathbf{B}}(c,d)$

form a covering of $MaxCon_{\mathcal{R}}(\mathbf{B})^+$. Note that $\nabla^{\mathbf{B}} \in e(c, d) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$. Let $\gamma \in MaxCon_{\mathcal{R}}(\mathbf{B})$. Suppose that $\gamma \notin d(u, v) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$, for every $(u, v) \in \theta^{\mathbf{B}}_{\mathcal{R}}(a, b) \cap \theta^{\mathbf{B}}_{\mathcal{R}}(c, d)^*$. Thus $\gamma \supseteq \theta^{\mathbf{B}}_{\mathcal{R}}(a, b)^* \cap \theta^{\mathbf{B}}_{\mathcal{R}}(c, d)$ and hence $\gamma \supseteq \theta^{\mathbf{B}}_{\mathcal{R}}(a, b)^*$ or $\gamma \supseteq \theta^{\mathbf{B}}_{\mathcal{R}}(c, d)$, which by (*) says that either $\gamma \in d(a, b) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$ or $\gamma \in e(c, d) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$. Thus the τ_{ed} -compactness of $MaxCon_{\mathcal{R}}(\mathbf{B})^+$ says that there are $(u_1, v_1), ..., (u_k, v_k)$ such that

 $d(a,b) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$

 $e(c,d) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+$

 $d(u_i, v_i) \cap MaxCon_{\mathcal{R}}(\mathbf{B})^+, i = 1, ..., k$

is a covering of $MaxCon_{\mathcal{R}}(\mathbf{B})^+$ and the reader can check that

 $\theta_{\mathcal{R}}^{\mathbf{B}}(a,b)^* \cap \theta_{\mathcal{R}}^{\mathbf{B}}(c,d) = \theta_{\mathcal{R}}^{\mathbf{B}}(u_1,v_1) \sqcup \ldots \sqcup \theta_{\mathcal{R}}^{\mathbf{B}}(u_k,v_k).$

Let **F** be the \mathcal{R} -free algebra freely generated by x, y, z, w. Let $r_i, s_i, i = 1, ..., m$, be terms such that

 $\theta_{\mathcal{R}}^{\mathbf{F}}(x,y)^* \cap \theta_{\mathcal{R}}^{\mathbf{B}}(z,w) = \theta_{\mathcal{R}}^{\mathbf{F}}(r_1,s_1) \sqcup \ldots \sqcup \theta_{\mathcal{R}}^{\mathbf{F}}(r_m,s_m).$

By (*) we have that for every $\gamma \in MaxCon_{\mathcal{R}}(\mathbf{F})$, the following are equivalent (i) $x/\gamma \neq y/\gamma$ or $z/\gamma = w/\gamma$.

(ii) $\vec{r}^{\mathbf{F}/\gamma}(x/\gamma, y/\gamma, z/\gamma, w/\gamma) = \vec{s}^{\mathbf{F}/\gamma}(x/\gamma, y/\gamma, z/\gamma, w/\gamma).$

Thus for every $\mathbf{B} \in \mathcal{R}_{RS} = ISP_uS_4(\mathcal{K})^-$ we have that $\mathbf{B} \models \vec{r}(x, y, z, w) = \vec{s}(x, y, z, w) \leftrightarrow (x \neq y \lor z = w)$

and hence

(****) $ISP_u(\mathcal{K}) \vDash \vec{r}(x, y, z, w) = \vec{s}(x, y, z, w) \leftrightarrow (x \neq y \lor z = w).$ Since $S_{\leq 4}(\mathcal{K}) \subseteq \mathcal{R}_{RS}$ and \mathcal{R} has EDPM Theorem 2.3 of [5] says that there are terms $p_i, q_i, i = 1, ..., n$, such that

 $S_{\leq 4}(\mathcal{K})\vDash \vec{p}(x,y,z,w)=\vec{q}(x,y,z,w)\leftrightarrow (x=y\vee z=w).$ Thus

 $ISP_u(\mathcal{K})\vDash \vec{p}(x,y,z,w)=\vec{q}(x,y,z,w)\leftrightarrow (x=y\vee z=w).$ By Lemma 10

 $Q(\mathcal{K})_{RFSI} \vDash \vec{p}(x, y, z, w, z) = \vec{q}(x, y, z, w, z) \leftrightarrow (x = y \lor z = w)$

which combining Corollary 2.4 of [5] with Theorem 2.3 of [5] says that $Q(\mathcal{K})$ is relatively congruence distributive and $Q(\mathcal{K})_{RFSI} = ISP_u(\mathcal{K})^-$. Finally we note that for $\mathbf{B} \in Q(\mathcal{K})$ and $a, b, c, d \in B$, we have

$$\begin{split} \mathbf{B} &\models \vec{r}(a, b, c, d) = \vec{s}(a, b, c, d) \\ \text{iff} \\ (r_i(a, b, c, d), s_i(a, b, c, d)) \in \gamma, \text{ for every } \gamma \in MICon_{Q(\mathcal{K})}(\mathbf{B}), \ i = 1, ..., m \\ \text{iff (by (****))} \\ (a, b) \in \gamma \text{ implies } (c, d) \in \gamma, \text{ for every } \gamma \in MICon_{Q(\mathcal{K})}(\mathbf{B}) \\ \text{iff} \\ (c, d) \in \theta_{Q(\mathcal{K})}^{\mathbf{B}}(a, b) \\ \text{iff says that } O(\mathcal{K}) \text{ has EDRPC via the terms } r_i \in i = 1, ..., m. \\ \text{Thus, the terms } r_i \in i =$$

which says that $Q(\mathcal{K})$ has EDRPC via the terms $r_i, s_i, i = 1, ..., m$. Thus (****) implies that $ISP_u(\mathcal{K})^- \subseteq Q(\mathcal{K})_{RS}$ and hence

 $Q(\mathcal{K})_{RS} = ISP_u(\mathcal{K})^- = Q(\mathcal{K})_{RFSI}.$

 $(3) \Rightarrow (4)$ Trivial.

(4) \Rightarrow (5) Suppose $\vec{p}(x, y, z, w) = \vec{q}(x, y, z, w)$ defines $(z, w) \in \theta_{\mathcal{Q}}(x, y)$ in \mathcal{Q} . It is clear that

 $\mathcal{K}\vDash \vec{p}(x,y,z,w)=\vec{q}(x,y,z,w)\leftrightarrow (x=y\rightarrow z=w).$

(5) \Rightarrow (6) By [7, Remark 2.4] we have that there are terms $r_i, s_i, i = 1, ..., m$, such that

 $\mathcal{K} \vDash \vec{r}(x, y, z, w) = \vec{s}(x, y, z, w) \leftrightarrow (x = y \lor z = w).$

Thus we have that (6) holds for every open formula $O(x_1, ..., x_m)$ of the form $\bigvee_{j=1}^{l} t_j = k_j$. Since every trivial satisfiable open formula is equivalent to a conjunction of formulas of the form

 $u_1 = v_1 \to \left(u_2 = v_2 \to \left(\dots \to \left(u_k = v_k \to \bigvee_{j=1}^l t_j = k_j \right) \dots \right) \right)$ with $k, l \ge 1$, an inductive argument proves (6).

(6) \Rightarrow (1) Let $p_i,q_i,\,i=1,...,n$ and $r_i,s_i,\,i=1,...,m,$ be such that

 $\mathcal{K}\vDash \vec{p}(x,y,z,w)=\vec{q}(x,y,z,w)\leftrightarrow (x=y\rightarrow z=w)$

 $\mathcal{K}\vDash \vec{r}(x,y,z,w)=\vec{s}(x,y,z,w)\leftrightarrow (x=y\vee z=w).$

Note that the system

 $\vec{p}(x_1, x_2, z, x_3) = \vec{q}(x_1, x_2, z, x_3) \wedge \vec{r}(x_1, x_2, z, x_4) = \vec{s}(x_1, x_2, z, x_4)$ witnesses the fact that the discriminator is implicitly definable in every member of \mathcal{K} .

Finally we shall prove that $(6) \Rightarrow (\tilde{6})$, when $Q(\mathcal{K})$ satisfies some of the equivalent conditions of Proposition 3. Let $\vec{0}(w)$ and $\vec{1}(w)$ be terms such that $Q(\mathcal{K}) \vDash \vec{0}(w) = \vec{1}(w) \rightarrow x = y.$

Let $O(x_1, ..., x_m)$ be an open formula. First suppose $m \ge 1$. Note that $\mathcal{K} \models \left(\vec{0}(x_1) = \vec{1}(x_1) \lor O(x_1, ..., x_m)\right) \leftrightarrow O(x_1, ..., x_m)$

(remember that \mathcal{K} has no trivial algebra). Since $\vec{0}(x_1) = \vec{1}(x_1) \vee O(x_1, ..., x_m)$ is trivial satisfiable, we can apply (6) to obtain (6). For the case m = 0, the language need to have a constant and hence we can make a similar argument.

Corollary 16. Let \mathcal{Q} be a quasivariety. The following are equivalent

Vol. 00, XX

- (1) \mathcal{Q} has EDPM and $\mathcal{Q}_{RFSI} = \mathcal{Q}_{RS}$.
- (2) Q is relatively semisimple and has EDRPC.
- (3) \mathcal{Q} has EDPM and $\theta_{\mathcal{Q}}^{\mathbf{A}}(x, y)$ is a complemented element of $Con_{\mathcal{Q}}(\mathbf{A})$, for every $\mathbf{A} \in \mathcal{Q}$, and $x, y \in A$.
- (4) $Q = Q(\mathcal{K})$, for some class \mathcal{K} satisfying some of the equivalent conditions of Theorem 15.

We observe that if we consider an infinite field \mathbf{F} as a model of the language of rings with identity, then the quaternary discriminator is not implicitly definable in \mathbf{F} . This is because if ($\tilde{6}$) of Theorem 15 holds for $\mathcal{K} = {\mathbf{F}}$, then there exist terms $p_i, q_i, i = 1, ..., n$, such that

 $\mathbf{F} \vDash (\bigwedge_{i=1}^{n} p_i(x) = q_i(x)) \leftrightarrow x \neq 0$

which is impossible. In contrast, it is well known that in every finite field the discriminator is given by a term.

To give another application of Theorem 15, consider a relatively subdirectly irreducible algebra \mathbf{A} of a quasivariety \mathcal{Q} with EDRPC. Let $a, b \in A$ be such that $\theta_{\mathcal{Q}}^{\mathbf{A}}(a, b)$ is a monolith of $Con_{\mathcal{Q}}(\mathbf{A})$. Let \mathcal{L}_e be the language of \mathcal{Q} expanded by adding two new distinct constants c_a and c_b . Let $\mathbf{A}_e = (\mathbf{A}, a, b)$. We shall prove that the quaternary discriminator is implicitly definable in \mathbf{A}_e . Let $\mathcal{Q}_e = Q(ISP_u(\mathbf{A}_e))$. We observe that $\theta_{\mathcal{Q}}^{\mathbf{B}}(c_a^{\mathbf{B}}, c_b^{\mathbf{B}})$ is a monolith of every non trivial algebra $\mathbf{B} \in ISP_u(\mathbf{A}_e)$. Also note that every homomorphism between members of $ISP_u(\mathbf{A}_e)$ must be injective. Thus

 $(\mathcal{Q}_e)_{RSI} = (\mathcal{Q}_e)_{RS} = ISP_u(\mathbf{A}_e).$ Let

 $\mathcal{G} = \{ (\mathbf{B}, a, b) : a, b \in B \text{ and } \mathbf{B} \in \mathcal{Q} \}.$

Note that \mathcal{G} is a relatively congruence distributive quasivariety (since so is \mathcal{Q}) and that

 $\mathcal{G}_{RSI} = \{ (\mathbf{B}, a, b) : a, b \in B \text{ and } \mathbf{B} \in \mathcal{Q}_{RSI} \}$ Also we note that

 $(\mathcal{Q}_e)_{RSI} \subseteq \mathcal{G}_{RSI}$

which by Lemma 12 says that Q_e is relatively congruence distributive. Thus $(2) \Rightarrow (1)$ of Theorem 15 implies that the quaternary discriminator is implicitly definable on \mathbf{A}_e

Relatively permutable members

Let \mathcal{Q} be a quasivariety and let $\mathbf{A} \in \mathcal{Q}$. We say that \mathbf{A} is relatively permutable if for any $\theta, \delta \in Con_{\mathcal{Q}}(\mathbf{A})$ we have that $\theta \circ \delta = \delta \circ \theta = \theta \sqcup \delta$.

Theorem 17. Let \mathcal{Q} be a relatively semisimple quasivariety with EDRPC. Let $r_i, s_i, i = 1, ..., n$, be quaternary terms such that $\vec{r}(x, y, z, w) = \vec{s}(x, y, z, w)$ defines $(z, w) \in \theta_{\mathcal{Q}}(x, y)$ in \mathcal{Q} and let $p_i, q_i, i = 1, ..., m$, be quaternary terms such that $\theta_{\mathcal{Q}}(x, y) \cap \theta_{\mathcal{Q}}(z, w) = \theta_{\mathcal{Q}}(\vec{p}(x, y, z, w), \vec{q}(x, y, z, w))$, in every member of \mathcal{Q} . Then for every $\mathbf{A} \in \mathcal{Q}$, the following are equivalent

(1) A is relatively permutable.

M. A. Campercholi and D. J. Vaggione

- $(2) \quad \mathbf{A} \vDash \forall xyzw \exists ! u \quad \vec{r}(x, y, u, z) = \vec{s}(x, y, u, z) \land \vec{p}(x, y, u, w) = \vec{q}(x, y, u, w).$
- $(3) \ \mathbf{A} \vDash \forall xyzw \exists u \ \vec{r}(x,y,u,z) = \vec{s}(x,y,u,z) \land \vec{p}(x,y,u,w) = \vec{q}(x,y,u,w).$
- (4) **A** is isomorphic to a Boolean product whose factors belongs to $(Q_{RS})^+$.
- (5) **A** is isomorphic to the algebra of global sections of a sheaf whose stalks belongs to $(\mathcal{Q}_{RS})^+$.
- (6) $\theta_{\mathcal{Q}}^{\mathbf{A}}(a,b) \circ \theta_{\mathcal{Q}}^{\mathbf{A}}(a,b)^* = \nabla^{\mathbf{A}}$, for every $a, b \in A$. Moreover, if \mathbf{A} is relatively permutable, then
- (7) $Con_{\mathcal{Q}}(\mathbf{A}) = Con(\mathbf{A}, N^{\mathbf{A}})$, where $N^{\mathbf{A}}$ is defined by $N^{\mathbf{A}}(a, b, c, d) = only \ u \ such \ that \ \vec{r}(a, b, u, c) = \vec{s}(a, b, u, c) \land \vec{p}(a, b, u, d) = \vec{q}(a, b, u, d).$
- (8) If $\theta \in Con(\mathbf{A}, N^{\mathbf{A}})$, then \mathbf{A}/θ is relatively permutable and $(\mathbf{A}, N^{\mathbf{A}})/\theta = (\mathbf{A}/\theta, N^{\mathbf{A}/\theta})$.

Proof. The implications $(1)\Rightarrow(6)$, $(2)\Rightarrow(3)$ are trivial. It is well known that Boolean products are specialized sheaves and hence $(4)\Rightarrow(5)$ follows.

Next, for $\mathbf{A} \in \mathcal{Q}$, and $a, b, c, d \in A$, note that u is a solution of the system $\vec{r}(a, b, u, c) = \vec{s}(a, b, u, c) \land \vec{p}(a, b, u, d) = \vec{q}(a, b, u, d)$

 iff

 $(u,c) \in \theta_{\mathcal{Q}}^{\mathbf{A}}(a,b) \text{ and } (u,d) \in \theta_{\mathcal{Q}}^{\mathbf{A}}(a,b)^{*}.$

Furthermore, such a u is unique. Thus we have that (2), (3) and (6) are equivalent.

Also note that every member of \mathcal{Q}_{RS} satisfies (2). Since $S(\mathcal{Q}_{RS})^+ \subseteq (\mathcal{Q}_{RS})^+$ and sheaves preserve sentences of the form $\forall \exists! \bigwedge p = q$, when the algebra of global sections is a subdirect product of the stalks [12], we have that (5) \Rightarrow (2) holds.

In what follows, for an algebra **A** satisfying (2), let $N^{\mathbf{A}}$ denote the function $N^{\mathbf{A}}(a, b, c, d) =$ only u such that $\vec{r}(a, b, u, c) = \vec{s}(a, b, u, c) \land \vec{p}(a, b, u, d) =$ $\vec{q}(a, b, u, d)$.

Note that if **A** is relatively permutable, then $N^{\mathbf{A}} = d^{\mathbf{A}}$.

Suppose (6) holds. We shall use some terminology of [11]. Note that condition (6) says that $Con_{\mathcal{Q}}(\mathbf{A})$ is a factorial projective. Since the closure operator on $A \times A$:

 $S \to \bigcap \{ \theta \in Con_{\mathcal{Q}}(\mathbf{A}) : S \subseteq \theta \}$

is algebraic we have that $Con_{\mathcal{Q}}(\mathbf{A})$ is a congruencially algebraic projective. Thus (4) \Rightarrow (1) of [11, Th 6.2] implies that $Con_{\mathcal{Q}}(\mathbf{A})$ is a locally Boolean projective. By [11, Th 6.4] we have that $MaxCon_{\mathcal{Q}}(\mathbf{A})$ is a locally Boolean spectra and hence the canonical embedding $\mathbf{A} \rightarrow \prod_{\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})} \mathbf{A}/\gamma$ is a locally Boolean representation. It is well known that if we add a trivial factor, then we obtain a Boolean representation, i.e. the embedding $\mathbf{A} \rightarrow \prod_{\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A}) \cup \{\nabla \mathbf{A}\}} \mathbf{A}/\gamma$ is a Boolean representation. Note that, in particular, we have proved (6) \Rightarrow (4). By (2) of [11, Th 5.3] we have that there is a quaternary operation $c: A^4 \rightarrow A$ such that

 $\rho: (\mathbf{A}, c) \to \Pi_{\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})}(\mathbf{A}/\gamma, d^{\mathbf{A}/\gamma})$

is an irredundant fully expanded subdirect representation. Since $d^{\mathbf{A}/\gamma} = N^{\mathbf{A}/\gamma}$, for $\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})$, we have that $c = N^{\mathbf{A}}$. As ρ is fully expanded we have that $Con(\mathbf{A}, N^{\mathbf{A}}) \subseteq Con_{\mathcal{Q}}(\mathbf{A})$. Since ρ is an embedding of the extended language, it follows that $MaxCon_{\mathcal{Q}}(\mathbf{A}) \subseteq Con(\mathbf{A}, N^{\mathbf{A}})$, which implies that $Con_{\mathcal{Q}}(\mathbf{A}) = Con(\mathbf{A}, N^{\mathbf{A}})$. But the algebras $(\mathbf{A}/\gamma, d^{\mathbf{A}/\gamma})$, with $\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})$ generate a discriminator variety and hence $(\mathbf{A}, N^{\mathbf{A}})$ is congruence permutable. Thus we have proved $(6) \Rightarrow (1)$ and (7).

We leave to the reader the proof of (8).

Let \mathcal{Q} be a relatively semisimple quasivariety with EDRPC and let \mathcal{L} be the language of \mathcal{Q} . Let \mathcal{L}_N be the language \mathcal{L} expanded by adding the new 4-ary function symbol N. Define

 $\mathcal{P}_N = \{ (\mathbf{A}, N^{\mathbf{A}}) : \mathbf{A} \text{ is relatively permutable} \}$

We note that \mathcal{P}_N is a quasivariety since it can be axiomatized by a set of quasiidentities axiomatizing \mathcal{Q} plus the identities

 $\vec{r}(x,y,N(x,y,z,w),z)\approx\vec{s}(x,y,N(x,y,z,w),z)$

 $\vec{p}(x,y,N(x,y,z,w),w)\approx\vec{q}(x,y,N(x,y,z,w),w)$

(use (3) \Rightarrow (1) of Theorem 17). But by (8) of Theorem 17, \mathcal{P}_N is closed under quotients which says that it is a variety. Also note that (7) of Theorem 17 implies that

 $(\mathcal{P}_N)_{SI} = (\mathcal{P}_N)_S = \{(\mathbf{A}, d^A) : \mathbf{A} \in \mathcal{Q}_{RS}\}$

and hence \mathcal{P}_N is a discriminator variety. One can think of N as a 'missing operation' in the relatively permutable algebras in \mathcal{Q} , that once added makes the class of these algebras into a variety.

If $\mathbf{A} \in \mathcal{Q}$ and $\mathbf{E} \in \mathcal{P}_N$, we say that \mathbf{E} is a relatively permutable extension of \mathbf{A} if \mathbf{A} is a subalgebra of the reduct of \mathbf{E} to the language of \mathcal{Q} and \mathbf{E} is generated by A. Of course, since every algebra in \mathcal{Q} is embeddable in a direct product of relatively simple algebras, every $\mathbf{A} \in \mathcal{Q}$ has at least a relatively permutable extension. Moreover, every $\mathbf{A} \in \mathcal{Q}$ has a free relatively permutable extension, i.e. a relatively permutable extension \mathbf{E} with the property that for every onto homomorphism $f : \mathbf{A} \to \mathbf{B}$, and every relatively permutable extension \mathbf{G} of \mathbf{B} , there exists a unique homomorphism $\bar{f} : \mathbf{E} \to \mathbf{G}$ such that $\bar{f} \mid_{A} = f$. This is because we can take \mathbf{E} to be the \mathcal{L}_N -reduct of the \mathcal{R} -free algebra generated by the empty set of free generators, where \mathcal{R} is the variety defined as follows

- the language of \mathcal{R} is \mathcal{L}_N expanded by adding a new constant c_a for each $a \in A$.

- \mathcal{R} is axiomatized by a set of axioms for \mathcal{P}_N plus the identities

 $F(c_{a_1}, ..., c_{a_n}) = c_{F^{\mathbf{A}}(a_1, ..., a_n)}, \ F \in \mathcal{L}, \ a_1, ..., a_n \in A.$

If \mathbf{E}_1 and \mathbf{E}_2 are two relatively permutable extensions of \mathbf{A} , then we say that \mathbf{E}_1 and \mathbf{E}_2 are *equivalent* if there is an isomorphism $f : \mathbf{E}_1 \to \mathbf{E}_2$ such that $f \mid_A$ is the identity on A.

Theorem 18. Let Q be a relatively semisimple quasivariety with EDRPC. Every $\mathbf{A} \in Q$ has, modulo equivalence, exactly one relatively permutable extension. Moreover if \mathbf{E} is the relatively permutable extension of \mathbf{A} , then the map

 $\begin{array}{ccc} Con(\mathbf{E}) & \to & Con_{\mathcal{Q}}(\mathbf{A}) \\ \theta & \to & \theta \mid_{A} \end{array}$

is a lattice isomorphism.

Proof. First note that

(*) If **E** is a relatively permutable extension of **A** and **A** is relatively permutable, then $\mathbf{E} = (\mathbf{A}, N^{\mathbf{A}})$.

Next, suppose **E** is a relatively permutable extension of **A** and let \mathbf{E}_r be the reduct of **E** to the language of \mathcal{Q} . If $\theta \in Con(\mathbf{E})$, we shall use \mathbf{A}/θ to denote the subalgebra of \mathbf{E}_r/θ whose universe is the set $\{a/\theta : a \in A\}$. Note that

(**) \mathbf{E}/θ is a relatively permutable extension of \mathbf{A}/θ .

We shall prove that

(***) $\gamma \mid_A \in MaxCon_{\mathcal{Q}}(\mathbf{A})$, for every $\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{E}_r)$.

Since $\mathbf{A}/\gamma \mid_A$ is embeddable in $\mathbf{E}_r/\gamma \in (\mathcal{Q}_{RS})^+$, we have that

 $\gamma \mid_{A} \in MaxCon_{\mathcal{Q}}(\mathbf{A})^{+}$. Suppose $\gamma \mid_{A} = \nabla^{\mathbf{A}}$. By (**) we have that \mathbf{E}/γ is a relatively permutable extension of a trivial algebra, which implies that \mathbf{E}/γ is trivial since $\mathcal{P}_{N} \models N(x, x, x, x) = x$. But this is absurd since $\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{E}_{r})$ and hence we have that $\gamma \mid_{A} \in MaxCon_{\mathcal{Q}}(\mathbf{A})$, concluding the proof of (***).

Next we prove that

(****) For every $\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})$ there is exactly one $\lambda \in MaxCon_{\mathcal{Q}}(\mathbf{E}_r)$ satisfying $\gamma = \lambda \mid_{A}$.

Since $MaxCon_{\mathcal{Q}}(\mathbf{E}_{r})^{+}$ is τ_{e} -compact (Corollary 9), we have that $\{\lambda \mid_{A} : \lambda \in MaxCon_{\mathcal{Q}}(\mathbf{E}_{r})^{+}\} \subseteq MaxCon_{\mathcal{Q}}(\mathbf{A})$ is τ_{e} -compact (Corollary 5), which by Corollary 7 says that $\{\lambda \mid_{A} : \lambda \in MaxCon_{\mathcal{Q}}(\mathbf{E}_{r})^{+}\} = MaxCon_{\mathcal{Q}}(\mathbf{A})^{+}$ and hence we have proved the existence part of (****). For $\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})$, let $\theta = \bigcap \{\lambda \in MaxCon_{\mathcal{Q}}(\mathbf{E}_{r}) : \gamma = \lambda \mid_{A}\}.$

Since $\theta \in Con(\mathbf{E})$ and $\gamma = \theta \mid_A$, (**) implies that \mathbf{E}/θ is a relatively permutable extension of $\mathbf{A}/\theta \cong \mathbf{A}/\gamma$. Since \mathbf{A}/γ is relatively simple, it is relatively permutable, which by (*) says that $\mathbf{E}/\theta \cong (\mathbf{A}/\gamma, N^{\mathbf{A}/\gamma})$. Thus $\theta \in MaxCon_{\mathcal{Q}}(\mathbf{E}_r)$. This proves the uniqueness part of (****).

For $\gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})$, let γ_e be the only $\lambda \in MaxCon_{\mathcal{Q}}(\mathbf{E}_r)$ satisfying $\gamma = \lambda \mid_A$. Note that the map

 $MaxCon_{\mathcal{Q}}(\mathbf{A}) \rightarrow MaxCon_{\mathcal{Q}}(\mathbf{E}_r)$

 $\gamma \longrightarrow \gamma_e$ is bijective. Also note that

 $\begin{array}{rccc} A/\gamma & \to & E/\gamma_e \\ a/\gamma & \to & a/\gamma_e \end{array}$

is an isomorphism between $(\mathbf{A}/\gamma, N^{\mathbf{A}/\gamma})$ and \mathbf{E}/γ_e . Thus for two \mathcal{L}_N -terms $t = t(x_1, ..., x_n)$ and $s = s(x_1, ..., x_n)$ and elements $a_1, ..., a_n, b_1, ..., b_n \in A$ we have that

$$t^{\mathbf{E}}(a_1, ..., a_n) = s^{\mathbf{E}}(b_1, ..., b_n)$$

 iff

$$t^{\mathbf{E}}(a_1, ..., a_n)/\gamma_e = s^{\mathbf{E}}(b_1, ..., b_n)/\gamma_e, \,\forall \gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})$$

 iff

$$t^{\mathbf{E}/\gamma_e}(a_1/\gamma_e, ..., a_n/\gamma_e) = s^{\mathbf{E}/\gamma_e}(b_1/\gamma_e, ..., b_n/\gamma_e), \,\forall \gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A})$$

 iff

$$t^{(\mathbf{A}/\gamma,N^{\mathbf{A}/\gamma})}(a_1/\gamma,...,a_n/\gamma) = s^{(\mathbf{A}/\gamma,N^{\mathbf{A}/\gamma})}(b_1/\gamma,...,b_n/\gamma), \,\forall \gamma \in MaxCon_{\mathcal{Q}}(\mathbf{A}).$$

We note that this last property depends only from \mathbf{A} which says that the relatively permutable extension \mathbf{E} is uniquely determined by \mathbf{A} .

Next we shall prove that

$$\begin{array}{rcl} Con(\mathbf{E}) & \to & Con_{\mathcal{Q}}(\mathbf{A}) \\ \theta & \to & \theta \mid_{A} \end{array}$$

is a lattice isomorphism. Since $(\bigcap_i \gamma_i) |_A = \bigcap_i \gamma_i |_A$ and every member of $Con_Q(\mathbf{A})$ is intersection of a subset of $MaxCon_Q(\mathbf{A})$, (****) says that the above map is onto. To see that this map is injective, suppose that $\theta, \delta \in Con(\mathbf{E})$ are such that $\theta |_A = \delta |_A$ and $\theta \neq \delta$. W. l. o. g. we can suppose that $\delta \subseteq \theta$. By (**) we have that \mathbf{E}/δ is a relatively permutable extension of \mathbf{A}/δ . Note that $\theta/\delta \in Con(\mathbf{E}/\delta) - \{\Delta^{\mathbf{E}/\delta}\}$ and $(\theta/\delta) |_{A/\delta} = \Delta^{\mathbf{A}/\delta}$. Thus we can suppose that $\delta = \Delta^{\mathbf{E}}$. Since \mathbf{E}/θ is a relatively permutable extension of $\mathbf{A}/\theta \cong \mathbf{A}$, there is an isomorphism

 $g: \mathbf{E}/\theta \to \mathbf{E}$

such that $g(a/\theta) = a$, for every $a \in A$. Note that $g \circ \pi_{\theta}$ is an isomorphism such that $g \circ \pi_{\theta} \mid_{A} = id_{A}$ and $g \circ \pi_{\theta} \neq id_{E}$. But this is an absurd since we could take **E** to be the free relatively permutable extension of **A**.

In the case in which Q is the variety of bounded distributive lattices the free relatively permutable extensions are the free Boolean extensions [1].

References

- R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Missouri (1974).
- [2] S. Burris and H. Sankappanavar, A course in Universal Algebra, Springer-Verlag, New York, 1981.
- [3] H. Gramaglia and D. Vaggione, Birkhoff-like sheaf representation for varieties of lattice expansions, Studia Logica 56(1/2) (1996), 111-131

- [4] P. Krauss and D. Clark, Global subdirect Products, Amer. Math. Soc. Mem. 210 (1979).
- J. Czelakowski and W. Dziobiak, Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class, Algebra Universalis, 27 (1990), 128-149.
- [6] J. Kollar, Congruences and one element subalgebras, Algebra Universalis, 9 (1979), 266-267.
- [7] A. Pynko, Subquasivarieties of implicative locally-finite quasivarieties, to appear in Math. Logic Quarterly
- [8] D. Vaggione, On Jónsson's theorem, Mathematica Bohemica, Vol. 121 (1996), No. 1, 55–58.
- [9] D. Vaggione, Varieties of shells, Algebra Universalis, 36 (1996), 483-487.
- [10] D. Vaggione, Sheaf Representation and Chinese Remainder Theorems, Algebra Universalis, 29 (1992), 232-272.
- [11] D. Vaggione, Locally Boolean spectra, Algebra Universalis, 33 (1995) 319-354.
- [12] H. Volger, Preservation theorems for limits of structures and global sections of sheaves of structures, Math. Z. 166 (1970), 27-53.
- [13] H. Werner, Discriminator algebras, algebraic representation and model theoretic properties, Akademie-Verlag, Berlin, 1978.

MIGUEL A. CAMPERCHOLI

Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina *e-mail*: camper@famaf.unc.edu.ar

DIEGO J. VAGGIONE

Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina

e-mail: vaggione@famaf.unc.edu.ar