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Abstract. Let A be an algebra. A function f : An → A is implicitly definable

by a system of term equations
∧

ti(x1, ..., xn, z) = si(x1, ..., xn, z) if f is the only

n-ary operation on A making the identities ti(~x, f(~x)) ≈ si(~x, f(~x)) hold in A. Let
K be a class of non trivial algebras. We prove that the quaternary discriminator is

implicitly definable on every member of K (via the same system) iff K is contained in
the class of relatively simple members of some relatively semisimple quasivariety with

equationally definable relative principal congruences. As an application we obtain a

characterization of the relatively permutable members of such type of quasivarieties.
Furthermore, we prove that every algebra in such a quasivariety has a unique relatively

permutable extension.

1. Introduction

Let A be an algebra and let ti(x1, ..., xn, z), si(x1, ..., xn, z), i = 1, ..., k, be

terms such that the system of equations

t1(x1, ..., xn, z) = s1(x1, ..., xn, z)
...

tk(x1, ..., xn, z) = sk(x1, ..., xn, z)

has a unique solution z ∈ A whenever we fix the values x1, ..., xn ∈ A. One

such system on an algebra A implicitly defines a function f : An → A by

letting f(a1, ..., an) be the unique b ∈ A such that

ti(a1, ..., an, b) = si(a1, ..., an, b), for i = 1, ..., k.

For example, if G = (G, ., e) is a group, then the system

x1.z = e
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implicitly defines the inverse operation on G and if L = (L,∨,∧, 0, 1) is a

Boolean lattice, then the system

x1 ∨ z = 1

x1 ∧ z = 0

defines the complement operation on L.

Given a set A, we use dA to denote the quaternary discriminator on A, that

is the function:

dA(x, y, z, w) =

{
z if x = y

w if x 6= y
The quaternary discriminator, also known as the switching function, is equiv-

alent to the usual ternary discriminator in the sense that each one is a term

of the other [2].

In this paper we prove that the quaternary discriminator is implicitly de-

finable on every member of a class K of non trivial algebras (via the same

system) iff K is contained in the class of relatively simple members of some

relatively semisimple quasivariety with equationally definable relative principal

congruences. As an application we obtain a characterization of the relatively

permutable members of such type of quasivarieties. Furthermore, we prove

that every algebra in such a quasivariety has a unique relatively permutable

extension.

2. Notation and some results

Let K be a class of algebras. As usual, let I(K), S(K), P (K), PS(K), Pu(K)

and H(K) denote the classes of isomorphic images, subalgebras, direct prod-

ucts, subdirect products, ultraproducts and homomorphic images of elements

of K. We write S≤4(K) to denote the class of subalgebras of elements of K
which are generated by a set of four or less elements. Let V (K) denote the

variety generated by K and Q(K) the quasivariety generated by K. We write

K+ to denote the class K ∪ {trivial algebras} and K− to denote the class

K−{trivial algebras}. If V is a variety we use VFSI (resp. VSI) to denote the

class of finitely subdirectly irreducible (resp. subdirectly irreducible) members

of V.

Let A be an algebra. Let ∇A be the universal congruence on A and ∆A

the trivial congruence on A. By Con(A) we denote the congruence lattice of

A. If θ ∈ Con(A) and S ⊆ A, we use θ |S to denote the relation θ ∩ (S × S).

If Σ is contained in Con(A), let Σ+ denote Σ ∪ {∇A}. We define Σ(A,K) =

{θ ∈ Con(A) : A/θ ∈ I(K)}.
Let Q be a quasivariety and let A ∈ Q. A relative congruence on A is a

θ ∈ Con(A) satisfying A/θ ∈ Q. It is well known that the relative congru-

ences on A, with the partial order of inclusion, form an algebraic lattice in

which arbitrary meets coincide with intersection. We use ConQ(A) to denote
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the lattice of relative congruences of A. The join operation on ConQ(A) is

denoted by the symbol t. If a, b ∈ A, let θAQ(a, b) denote the relative principal

congruence generated by (a, b), that is, the least relative congruence contain-

ing the pair (a, b). If ~a,~b ∈ An, we write θAQ(~a,~b) to denote the congruence

θAQ(a1, b1)t...tθAQ(an, bn). An important property of ConQ(A) is that its com-

pact elements are precisely the ones of the form θAQ(~a,~b), with ~a,~b ∈ An, n ≥ 1.

We use MaxConQ(A) to denote the set of maximal elements of the poset

ConQ(A) − {∇A} and CMIConQ(A) (resp. MIConQ(A), MPConQ(A))

denotes the set of completely meet irreducible (resp. meet irreducible, meet

prime) elements of ConQ(A).

If pi = pi(x1, ..., xn), i = 1, ...,m are terms, then ~p denotes the m-tuple

(p1, ..., pm). If ~a ∈ An, then ~pA(~a) denotes (pA1 (~a), ..., pAm(~a)).

Q has equationally definable relative principal congruences (EDRPC for

short) if there exist terms ri, si, i = 1, ..., n, such that θAQ(a, b) = {(c, d) :

~rA(a, b, c, d) = ~sA(a, b, c, d)}, for any A ∈ Q.

Q has equationally definable principal meets (EDPM for short) if there exist

terms ri, si, i = 1, ..., n, such that

θAQ(a, b) ∩ θAQ(c, d) = θAQ(~rA(a, b, c, d), ~sA(a, b, c, d)), for any A ∈ Q.

Q is relatively congruence distributive if ConQ(A) is distributive, for any

A ∈ Q. We use QRFSI (resp. QRSI , QRS) to denote the class of all relatively

finitely subdirectly irreducible (resp. subdirectly irreducible, simple) members

of Q. We note that trivial algebras do not belong to QFRSI . Q is called

relatively semisimple if every member ofQ is isomorphic to a subdirect product

of relatively simple members of Q.

The following lemma shows that implicitly definable functions have natural

algebraic properties.

Lemma 1. Let A, B, Ai, i ∈ I be algebras. Let S be the system∧m
i=1 pi(~x, z) = qi(~x, z) and suppose S implicitly defines functions f : An → A

on A, g : Bn → B on B and fi : Ani → Ai, on each Ai.

(1) If F is a homomorphism from A to B, then F is a homomorphism from

(A, f) to (B, g).

(2) If A is a subalgebra of B, then f = g restricted to An.

(3) S implicitly defines the function (fi)i∈I on Π{Ai : i ∈ I}.

Proof. Routine. �

We conclude the section with a result characterizing the quasivarieties in

which no non trivial algebra has a trivial subalgebra. First a basic lemma.

Lemma 2. Let Q be a quasivariety and let X be a set of variables. Let F be the

Q-free algebra generated by X. Let r, s, r1, ..., rm, s1, ..., sm ∈ F, the following

are equivalent

(1) (r, s) ∈ θFQ(~r,~s).

(2) Q � ~r = ~s→ r = s.
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Proof. Routine. �

Proposition 3. Let Q be a quasivariety. The following are equivalent

(1) No non trivial algebra in Q has a trivial subalgebra.

(2) No non trivial algebra in QRSI has a trivial subalgebra.

(3) There exist unary terms 01(w), ..., 0n(w), 11(w), ..., 1n(w) such that

Q � ~0(w) = ~1(w)→ x = y.

(4) There exist unary terms 01(w), ..., 0n(w), 11(w), ..., 1n(w) such that

∇A = θAQ(~0(a),~1(a)),

for every A ∈ Q and a ∈ A.

(5) There exist unary terms 01(w), ..., 0n(w), 11(w), ..., 1n(w) such that

∇F = θFQ(~0,~1),

where F is the Q-free algebra freely generated by {w, x}.
(6) ∇A is a compact element of ConQ(A), for every A ∈ Q.

(7) ∇F is a compact element of ConQ(F), where F is a Q-free algebra gen-

erated by some infinite set X of free generators.

If the language of Q has a constant symbol, then the terms of 3., 4. and

5. can be chosen to be closed terms.

Proof. (1)⇒(2) Obvious.

(2)⇒(3) Since

QRSI �
(∧

t,s unary terms t(w) = s(w)
)
→ x = y

we have that

Q �
(∧

t,s unary terms t(w) = s(w)
)
→ x = y.

Thus a compactness argument produces the terms 01, ..., 0n, 11, ..., 1n.

(3)⇒(4) Easy.

(4)⇒(5) Trivial.

(5)⇒(6) By Lemma 2 we obtain that

Q � ~0(w) = ~1(w)→ w = x

So (3) holds and hence we obtain (4) which clearly implies (6).

(6)⇒(7). Obvious.

(7)⇒(1) Suppose ∇F = θFQ(~r,~s), with ri = ri(x1, ..., xn) and

si = si(x1, ..., xn), i = 1, ...,m. Take x, y ∈ X − {x1, ..., xn}. By Lemma 2 we

have that Q � ~r = ~s→ x = y, which implies (1). �

For the case in which Q is a variety, the equivalence (1)⇔(6) was proved in

[6], the other implications have been proved in [11, Lemma 5.2] and [9].

3. Two topologies on Con(A)

In this section we introduce two natural topologies on the lattice of congru-

ences of an algebra. Our treatment is an improvement of the one used in [8]

to give a lattice theoretic proof of Jónsson‘s Lemma.

For an algebra A and x, y ∈ A, define
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e(x, y) = {θ ∈ Con(A) : (x, y) ∈ θ}
d(x, y) = {θ ∈ Con(A) : (x, y) /∈ θ}.

We use τe to denote the topology on Con(A) generated by {e(x, y) : x, y ∈ A}
and τed to denote the topology on Con(A) generated by

{e(x, y) : x, y ∈ A} ∪ {d(x, y) : x, y ∈ A} .
In most of the sheaf representations of algebras as algebras of continuous sec-

tions, the spectrum topology is the restriction of one of these two topologies

to the spectrum (see for example [4] and [13]).

We say that a set S ⊆ A2 minorizes Σ ⊆ Con(A) when for each θ ∈ Σ

there exists (x, y) ∈ S such that (x, y) ∈ θ. An immediate consequence of

Alexander’s Lemma is the following

Lemma 4. For Σ ⊆ Con(A), the following are equivalent

(1) Σ is τe-compact.

(2) If S minorizes Σ, then there exists a finite subset of S which minorizes

Σ.

Corollary 5. If B is a subalgebra of A and Σ ⊆ Con(A) is τe-compact, then

{θ |B : θ ∈ Σ} ⊆ Con(B) is τe-compact.

Lemma 6 ([11, Lemma 2.1]). Let Q be a quasivariety and let A ∈ Q. If

θ ∈MPConQ(A), then for each τe-compact set Σ ⊆ ConQ(A) we have that

θ ⊇
⋂

Σ implies θ ⊇ δ, for some δ ∈ Σ.

That is to say the meet prime elements of ConQ(A) are completely meet prime

with respect to intersections of τe-compact sets.

Corollary 7. If ConQ(A) is distributive and Σ ⊆ MaxConQ(A) is τe-

compact and
⋂

Σ = ∆A, then

Σ = MaxConQ(A) = MIConQ(A) = MPConQ(A) = CMIConQ(A).

Proof. Since ConQ(A) is distributive, MIConQ(A) = MPConQ(A). Let θ ∈
MPConQ(A). Since

⋂
Σ = ∆A ⊆ θ, Lemma 6 says that there exists δ ∈ Σ

such that δ ⊆ θ. But δ is in MaxConQ(A), hence δ = θ. Thus MPConQ(A) ⊆
Σ, which implies the other inclusions. �

For Σ ⊆ Con(A) and U an ultrafilter on Σ, define

θΣ
U = {(x, y) : e(x, y) ∩ Σ ∈ U}.

It is easy to check that θΣ
U ∈ Con(A). Also we note that

- (x, y) /∈ θΣ
U iff d(x, y) ∩ Σ ∈ U .

- If θ ∈ Σ and U = {Γ ⊆ Σ : θ ∈ Γ}, then θΣ
U = θ.

Theorem 8. (Con(A), τed) is a Boolean space. For Σ ⊆ Con(A), the closure

of Σ in (Con(A), τed) is given by

Σ̄ = {θΣ
U : U is an ultrafilter on Σ}.

Proof. It is easy to check that (Con(A), τed) is Hausdorff and zero dimensional.

Assume that (Con(A), τed) is not compact. Then we have
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Con(A) =
⋃
i∈I e(xi, yi) ∪

⋃
j∈J d(zj , wj)

and

Con(A) 6=
⋃
i∈I0 e(xi, yi) ∪

⋃
j∈J0 d(zj , wj)

whenever I0 ⊆ I and J0 ⊆ J are finite. Note that⋃
i∈I0 e(xi, yi) +

⋂
j∈J0 e(zj , wj)

whenever I0 ⊆ I and J0 ⊆ J are finite. By the prime ideal theorem there is

an ultrafilter U on Con(A) satisfying

e(xi, yi) /∈ U , for each i ∈ I
e(zj , wj) ∈ U , for each j ∈ J.

Hence we have

θ
Con(A)
U /∈

⋃
i∈I e(xi, yi) ∪

⋃
j∈J d(zj , wj),

which is an absurd.

To see the last affirmation of the theorem, we note that for Σ ⊆ Con(A),

the following are equivalent

(1) θ ∈ Σ̄.

(2) The family {e(x, y) ∩ Σ : (x, y) ∈ θ} ∪ {d(x, y) ∩ Σ : (x, y) /∈ θ} has the

finite intersection property.

But it is easy to prove that (2) is equivalent to

(3) θ = θΣ
U for some ultrafilter U ,

and this concludes the proof of the theorem. �

Corollary 9. If M is a universal class, then Σ(A,M) = {θ ∈ Con(A) :

A/θ ∈M} is τed-compact, for any algebra A.

Proof. Let U be an ultrafilter on Σ(A,M). Note that θ
Σ(A,M)
U is the ker-

nel of the canonical map A →
∏
{A/θ : θ ∈ Σ(A,M)}/U , which says

that A/θ
Σ(A,M)
U ∈ ISPu{A/θ : θ ∈ Σ(A,M)} ⊆ M and hence θ

Σ(A,M)
U ∈

Σ(A,M). �

The combination of Corollary 9 and Lemma 6 is a useful tool which we shall

use several times in the sequel.

Corollary 10 ([5, Lemma 1.5]). Let M be a class of algebras. Then

Q(M)RFSI ⊆ ISPu(M).

Proof. Suppose A ∈ Q(M)RFSI . Since Q(M) = IPS(ISPu(M)) we have

that
⋂

Σ(A, ISPu(M)) = ∆A ∈ MPConQ(M)(A). Since Σ(A, ISPu(M)) is

τe-compact (Corollary 9), Lemma 6 says that ∆A ∈ Σ(A, ISPu(M)), hence

A ∈ ISPu(M). �

Corollary 11. (Jónsson‘s Lemma): Let K be such that V (K) is congruence

distributive. Then V (K)FSI ⊆ HSPu(K).

Proof. Let A ∈ SP (K), and suppose A/γ is finitely subdirectly irreducible.

We shall see that A/γ ∈ HSPu(K). Since γ ∈MPCon(A) and⋂
Σ(A, ISPu(K)) = ∆A we can apply a similar argument as in the above

corollary. �
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Lemma 12. If Q is a relative congruence distributive quasivariety and M
is a universal class such that M ⊆ (QRFSI)+

, then Q(M) = IPS(M) is a

relative congruence distributive quasivariety such that Q(M)RFSI =M−.

Proof. It follows from Corollary 1.4 of [5] and Corollary 10. �

We conclude the section with a result linking the concept of τed-compactness

with that of EDPM

Proposition 13. Let Q be a quasivariety and let A ∈ Q. If ConQ(A) is

distributive, then the following are equivalent

(1) MIConQ(A)+ is τed-compact.

(2) For any x, y, z, w ∈ A, we have that θAQ(x, y) ∩ θAQ(z, w) is a compact

element of the lattice ConQ(A).

Proof. (1)⇒(2) Note that the sets

e(x, y) ∩MIConQ(A)+

e(z, w) ∩MIConQ(A)+

d(u, v) ∩MIConQ(A)+, with (u, v) ∈ θAQ(x, y) ∩ θAQ(z, w)

form a covering of MIConQ(A)+. Thus the τed-compactness of MIConQ(A)+

says that there are (u1, v1), ..., (uk, vk) ∈ θAQ(x, y) ∩ θAQ(z, w) such that

e(x, y) ∩MIConQ(A)+

e(z, w) ∩MIConQ(A)+

d(ui, vi) ∩MIConQ(A)+, i = 1, ..., k

is a covering of MIConQ(A)+ and the reader can check that

θAQ(x, y) ∩ θAQ(z, w) = θAQ(u1, v1) t ... t θAQ(uk, vk).

(2)⇒(1) We prove the case in which ∇A is not a compact element of

ConQ(A). Let L be the sublattice of ConQ(A) consisting of all compact

elements of ConQ(A) together with ∇A. Let Id(L) be the lattice of all ideals

of L. We note that the map θ → {δ ∈ L − {∇A} : δ ⊆ θ} is an isomorphism

from ConQ(A) to Id(L) which identifies MIConQ(A)+ with {I ∈ Id(L) : I

is prime}. Since this isomorphism connects the topology τed relativized to

MIConQ(A)+ with the Priestley topology on {I ∈ Id(L) : I is prime}, we

have that MIConQ(A)+ is τed-compact.

The remaining case is similar. �

Corollary 14. A relatively congruence distributive quasivariety Q has EDPM

iff for every A ∈ Q, the set MIConQ(A)+ is τed-compact.

Proof. (⇒) Since (QRFSI)+
is universal, we can apply Corollary 9. (⇐) It

follows from (ii)⇒(i) of [5, Thm 2.3] and the above proposition. �

4. Main theorem and applications

We observe that if Q is a relatively congruence distributive quasivariety,

then for θ ∈ ConQ(A), with A ∈ Q, the congruence
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θ∗ =
⋂
{γ ∈MIConQ(A) : θ * γ}

is the pseudo-complement of θ in the lattice ConQ(A), i.e. θ∗ is the greatest

δ ∈ ConQ(A) satisfying

θ ∩ δ = ∆A

(use that MIConQ(A) = MPConQ(A)).

Theorem 15. Let K be any class of non trivial algebras. The following are

equivalent

(1) There are terms pi, qi, i = 1, ..., n such that the system

~p(x1, x2, x3, x4, z) = ~q(x1, x2, x3, x4, z)

implicitly defines the quaternary discriminator, for every A ∈ K.

(2) SPuS≤4(K) ⊆ (QRS)
+

for some relatively congruence distributive quasi-

variety Q.

(3) Q(K) has EDRPC and Q(K)RS = ISPu(K)−.

(4) K ⊆ QRS for some quasivariety Q with EDRPC.

(5) There are terms pi, qi, i = 1, ..., n, such that

K � ~p(x, y, z, w) = ~q(x, y, z, w)↔ (x = y → z = w).

(6) For every trivial satisfiable open formula O(x1, ..., xm) there are terms

pi, qi, i = 1, ..., n, such that

K � ~p(x1, ..., xm) = ~q(x1, ..., xm)↔ O(x1, ..., xm).

If K generates a locally finite quasivariety, 2. can be replaced by

2̃. S≤4(K) ⊆ (QRS)
+

for some relative congruence distributive quasivariety

Q.

If Q(K) satisfies some of the equivalent conditions of Proposition 3, 6. can be

replaced by

6̃. For every open formula O(x1, ..., xm) there are terms pi, qi, i = 1, ..., n,

such that

K � ~p(x1, ..., xm) = ~q(x1, ..., xm)↔ O(x1, ..., xm).

Proof. (1)⇒(2) Note that

K � ~p(x, y, z, w, z) = ~q(x, y, z, w, z)↔ (x = y ∨ z = w)

and hence

ISPu(K) � ~p(x, y, z, w, z) = ~q(x, y, z, w, z)↔ (x = y ∨ z = w).

Thus Lemma 10 says that

Q(K)RFSI � ~p(x, y, z, w, z) = ~q(x, y, z, w, z)↔ (x = y ∨ z = w)

which by Theorem 2.3 of [5] implies that Q(K) is relatively congruence dis-

tributive. By Lemma 1 ISPu(K)− ⊆ Q(K)RS .

(2)⇒(3) By Lemma 12 we have that R = Q(ISPuS≤4(K)) is relatively

congruence distributive and RRFSI = ISPuS≤4(K)−. Since ISPuS≤4(K) ⊆
(QRS)

+
we have that R is relatively semisimple. Since (RRS)

+
is universal,

Corollary 9 says that MaxConR(B)+ is τed-compact, for any B ∈ R.

First we shall prove that for B ∈ R and a, b ∈ B,
(*) γ ⊇ θBR(a, b)∗ iff γ ∈ d(a, b)∩MaxConR(B), for any γ ∈MaxConR(B).
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The if-part is obvious. Suppose that γ ⊇ θBR(a, b)∗. Since θBR(a, b)∗ =
⋂
d(a, b)∩

MaxConR(B)+ and d(a, b) ∩MaxConR(B)+ is τed-compact, Lemma 6 says

that there is θ ∈ d(a, b)∩MaxConR(B)+ such that γ ⊇ θ. By the maximality

of θ we have that γ = θ and so γ ∈ d(a, b) ∩MaxConR(B).

Next we prove that

(**) θBR(a, b)∗ is the complement of θBR(a, b) in the distributive lattice

ConR(B).

Suppose that θBR(a, b) t θBR(a, b)∗ 6= ∇B. Since R is relatively semisimple,

there is γ ∈MaxConR(B) satisfying θBR(a, b)tθBR(a, b)∗ ⊆ γ. So we have that

(a, b) ∈ γ and by (*) we obtain that (a, b) /∈ γ, which is absurd.

We shall prove that

(***) θBR(a, b)∗ ∩ θBR(c, d) is a compact element of ConR(B).

To prove this, first we shall prove that the sets

d(a, b) ∩MaxConR(B)+

e(c, d) ∩MaxConR(B)+

d(u, v) ∩MaxConR(B)+, with (u, v) ∈ θBR(a, b)∗ ∩ θBR(c, d)

form a covering of MaxConR(B)+. Note that ∇B ∈ e(c, d)∩MaxConR(B)+.

Let γ ∈ MaxConR(B). Suppose that γ /∈ d(u, v) ∩MaxConR(B)+, for ev-

ery (u, v) ∈ θBR(a, b) ∩ θBR(c, d)∗. Thus γ ⊇ θBR(a, b)∗ ∩ θBR(c, d) and hence

γ ⊇ θBR(a, b)∗ or γ ⊇ θBR(c, d), which by (*) says that either γ ∈ d(a, b) ∩
MaxConR(B)+ or γ ∈ e(c, d)∩MaxConR(B)+. Thus the τed-compactness of

MaxConR(B)+ says that there are (u1, v1), ..., (uk, vk) such that

d(a, b) ∩MaxConR(B)+

e(c, d) ∩MaxConR(B)+

d(ui, vi) ∩MaxConR(B)+, i = 1, ..., k

is a covering of MaxConR(B)+ and the reader can check that

θBR(a, b)∗ ∩ θBR(c, d) = θBR(u1, v1) t ... t θBR(uk, vk).

Let F be theR-free algebra freely generated by x, y, z, w. Let ri, si, i = 1, ...,m,

be terms such that

θFR(x, y)∗ ∩ θBR(z, w) = θFR(r1, s1) t ... t θFR(rm, sm).

By (*) we have that for every γ ∈MaxConR(F), the following are equivalent

(i) x/γ 6= y/γ or z/γ = w/γ.

(ii) ~rF/γ(x/γ, y/γ, z/γ, w/γ) = ~sF/γ(x/γ, y/γ, z/γ, w/γ).

Thus for every B ∈ RRS = ISPuS4(K)− we have that

B � ~r(x, y, z, w) = ~s(x, y, z, w)↔ (x 6= y ∨ z = w)

and hence

(****) ISPu(K) � ~r(x, y, z, w) = ~s(x, y, z, w)↔ (x 6= y ∨ z = w).

Since S≤4(K) ⊆ RRS and R has EDPM Theorem 2.3 of [5] says that there are

terms pi, qi, i = 1, ..., n, such that

S≤4(K) � ~p(x, y, z, w) = ~q(x, y, z, w)↔ (x = y ∨ z = w).

Thus

ISPu(K) � ~p(x, y, z, w) = ~q(x, y, z, w)↔ (x = y ∨ z = w).

By Lemma 10

Q(K)RFSI � ~p(x, y, z, w, z) = ~q(x, y, z, w, z)↔ (x = y ∨ z = w)
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which combining Corollary 2.4 of [5] with Theorem 2.3 of [5] says that Q(K)

is relatively congruence distributive and Q(K)RFSI = ISPu(K)−. Finally we

note that for B ∈ Q(K) and a, b, c, d ∈ B, we have

B � ~r(a, b, c, d) = ~s(a, b, c, d)

iff

(ri(a, b, c, d), si(a, b, c, d)) ∈ γ, for every γ ∈MIConQ(K)(B), i = 1, ...,m

iff (by (****))

(a, b) ∈ γ implies (c, d) ∈ γ, for every γ ∈MIConQ(K)(B)

iff

(c, d) ∈ θBQ(K)(a, b)

which says that Q(K) has EDRPC via the terms ri, si, i = 1, ...,m. Thus

(****) implies that ISPu(K)− ⊆ Q(K)RS and hence

Q(K)RS = ISPu(K)− = Q(K)RFSI .

(3)⇒(4) Trivial.

(4)⇒(5) Suppose ~p(x, y, z, w) = ~q(x, y, z, w) defines (z, w) ∈ θQ(x, y) in Q.

It is clear that

K � ~p(x, y, z, w) = ~q(x, y, z, w)↔ (x = y → z = w).

(5)⇒(6) By [7, Remark 2.4] we have that there are terms ri, si, i = 1, ...,m,

such that

K � ~r(x, y, z, w) = ~s(x, y, z, w)↔ (x = y ∨ z = w).

Thus we have that (6) holds for every open formula O(x1, ..., xm) of the form∨l
j=1 tj = kj . Since every trivial satisfiable open formula is equivalent to a

conjunction of formulas of the form

u1 = v1 →
(
u2 = v2 →

(
...→

(
uk = vk →

∨l
j=1 tj = kj

)
...
))

with k, l ≥ 1, an inductive argument proves (6).

(6)⇒(1) Let pi, qi, i = 1, ..., n and ri, si, i = 1, ...,m, be such that

K � ~p(x, y, z, w) = ~q(x, y, z, w)↔ (x = y → z = w)

K � ~r(x, y, z, w) = ~s(x, y, z, w)↔ (x = y ∨ z = w).

Note that the system

~p(x1, x2, z, x3) = ~q(x1, x2, z, x3) ∧ ~r(x1, x2, z, x4) = ~s(x1, x2, z, x4)

witnesses the fact that the discriminator is implicitly definable in every member

of K.

Finally we shall prove that (6)⇒(6̃), when Q(K) satisfies some of the equiv-

alent conditions of Proposition 3. Let ~0(w) and ~1(w) be terms such that

Q(K) � ~0(w) = ~1(w)→ x = y.

Let O(x1, ..., xm) be an open formula. First suppose m ≥ 1. Note that

K �
(
~0(x1) = ~1(x1) ∨O(x1, ..., xm)

)
↔ O(x1, ..., xm)

(remember that K has no trivial algebra). Since ~0(x1) = ~1(x1)∨O(x1, ..., xm)

is trivial satisfiable, we can apply (6) to obtain (6̃). For the case m = 0, the

language need to have a constant and hence we can make a similar argument.

�

Corollary 16. Let Q be a quasivariety. The following are equivalent
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(1) Q has EDPM and QRFSI = QRS.

(2) Q is relatively semisimple and has EDRPC.

(3) Q has EDPM and θAQ(x, y) is a complemented element of ConQ(A), for

every A ∈ Q, and x, y ∈ A.

(4) Q = Q(K), for some class K satisfying some of the equivalent conditions

of Theorem 15.

We observe that if we consider an infinite field F as a model of the language

of rings with identity, then the quaternary discriminator is not implicitly de-

finable in F. This is because if (6̃) of Theorem 15 holds for K = {F}, then

there exist terms pi, qi, i = 1, ..., n, such that

F � (
∧n
i=1 pi(x) = qi(x))↔ x 6= 0

which is impossible. In contrast, it is well known that in every finite field the

discriminator is given by a term.

To give another application of Theorem 15, consider a relatively subdirectly

irreducible algebra A of a quasivariety Q with EDRPC. Let a, b ∈ A be such

that θAQ(a, b) is a monolith of ConQ(A). Let Le be the language of Q expanded

by adding two new distinct constants ca and cb. Let Ae = (A, a, b). We

shall prove that the quaternary discriminator is implicitly definable in Ae. Let

Qe = Q(ISPu (Ae)). We observe that θBQ(cBa , c
B
b ) is a monolith of every non

trivial algebra B ∈ ISPu (Ae). Also note that every homomorphism between

members of ISPu (Ae) must be injective. Thus

(Qe)RSI = (Qe)RS = ISPu (Ae).

Let

G = {(B, a, b) : a, b ∈ B and B ∈ Q}.
Note that G is a relatively congruence distributive quasivariety (since so is Q)

and that

GRSI = {(B, a, b) : a, b ∈ B and B ∈ QRSI}
Also we note that

(Qe)RSI ⊆ GRSI
which by Lemma 12 says that Qe is relatively congruence distributive. Thus

(2)⇒(1) of Theorem 15 implies that the quaternary discriminator is implicitly

definable on Ae

Relatively permutable members

Let Q be a quasivariety and let A ∈ Q. We say that A is relatively permutable

if for any θ, δ ∈ ConQ(A) we have that θ ◦ δ = δ ◦ θ = θ t δ.

Theorem 17. Let Q be a relatively semisimple quasivariety with EDRPC.

Let ri, si, i = 1, ..., n, be quaternary terms such that ~r(x, y, z, w) = ~s(x, y, z, w)

defines (z, w) ∈ θQ(x, y) in Q and let pi, qi, i = 1, ...,m, be quaternary terms

such that θQ(x, y)∩ θQ(z, w) = θQ(~p(x, y, z, w), ~q(x, y, z, w)), in every member

of Q. Then for every A ∈ Q, the following are equivalent

(1) A is relatively permutable.



12 M. A. Campercholi and D. J. Vaggione Algebra univers.

(2) A � ∀xyzw∃!u ~r(x, y, u, z) = ~s(x, y, u, z) ∧ ~p(x, y, u, w) = ~q(x, y, u, w).

(3) A � ∀xyzw∃u ~r(x, y, u, z) = ~s(x, y, u, z) ∧ ~p(x, y, u, w) = ~q(x, y, u, w).

(4) A is isomorphic to a Boolean product whose factors belongs to (QRS)+.

(5) A is isomorphic to the algebra of global sections of a sheaf whose stalks

belongs to (QRS)+.

(6) θAQ(a, b) ◦ θAQ(a, b)∗ = ∇A, for every a, b ∈ A.

Moreover, if A is relatively permutable, then

(7) ConQ(A) = Con(A, NA), where NA is defined by

NA(a, b, c, d) = only u such that ~r(a, b, u, c) = ~s(a, b, u, c) ∧ ~p(a, b, u, d) =

~q(a, b, u, d).

(8) If θ ∈ Con(A, NA), then A/θ is relatively permutable and (A, NA)/θ =

(A/θ,NA/θ).

Proof. The implications (1)⇒(6), (2)⇒(3) are trivial. It is well known that

Boolean products are specialized sheaves and hence (4)⇒(5) follows.

Next, for A ∈ Q, and a, b, c, d ∈ A, note that u is a solution of the system

~r(a, b, u, c) = ~s(a, b, u, c) ∧ ~p(a, b, u, d) = ~q(a, b, u, d)

iff

(u, c) ∈ θAQ(a, b) and (u, d) ∈ θAQ(a, b)∗.

Furthermore, such a u is unique. Thus we have that (2), (3) and (6) are

equivalent.

Also note that every member of QRS satisfies (2). Since S (QRS)
+ ⊆

(QRS)
+

and sheaves preserve sentences of the form ∀∃!
∧
p = q, when the

algebra of global sections is a subdirect product of the stalks [12], we have

that (5)⇒(2) holds.

In what follows, for an algebra A satisfying (2), let NA denote the function

NA(a, b, c, d) = only u such that ~r(a, b, u, c) = ~s(a, b, u, c) ∧ ~p(a, b, u, d) =

~q(a, b, u, d).

Note that if A is relatively permutable, then NA = dA.

Suppose (6) holds. We shall use some terminology of [11]. Note that condi-

tion (6) says that ConQ(A) is a factorial projective. Since the closure operator

on A×A:

S →
⋂
{θ ∈ ConQ(A) : S ⊆ θ}

is algebraic we have that ConQ(A) is a congruencially algebraic projective.

Thus (4)⇒(1) of [11, Th 6.2] implies that ConQ(A) is a locally Boolean pro-

jective. By [11, Th 6.4] we have that MaxConQ(A) is a locally Boolean

spectra and hence the canonical embedding A → Πγ∈MaxConQ(A)A/γ is a

locally Boolean representation. It is well known that if we add a trivial

factor, then we obtain a Boolean representation, i.e. the embedding A →
Πγ∈MaxConQ(A)∪{∇A}A/γ is a Boolean representation. Note that, in partic-

ular, we have proved (6)⇒(4). By (2) of [11, Th 5.3] we have that there is a

quaternary operation c : A4 → A such that

ρ : (A, c)→ Πγ∈MaxConQ(A)(A/γ, d
A/γ)
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is an irredundant fully expanded subdirect representation. Since dA/γ =

NA/γ , for γ ∈ MaxConQ(A), we have that c = NA. As ρ is fully ex-

panded we have that Con(A, NA) ⊆ ConQ(A). Since ρ is an embedding of

the extended language, it follows that MaxConQ(A) ⊆ Con(A, NA), which

implies that ConQ(A) = Con(A, NA). But the algebras (A/γ, dA/γ), with

γ ∈ MaxConQ(A) generate a discriminator variety and hence (A, NA) is

congruence permutable. Thus we have proved (6)⇒(1) and (7).

We leave to the reader the proof of (8). �

Let Q be a relatively semisimple quasivariety with EDRPC and let L be

the language of Q. Let LN be the language L expanded by adding the new

4-ary function symbol N . Define

PN = {(A, NA) : A is relatively permutable}
We note that PN is a quasivariety since it can be axiomatized by a set of

quasiidentities axiomatizing Q plus the identities

~r(x, y,N(x, y, z, w), z) ≈ ~s(x, y,N(x, y, z, w), z)

~p(x, y,N(x, y, z, w), w) ≈ ~q(x, y,N(x, y, z, w), w)

(use (3)⇒(1) of Theorem 17). But by (8) of Theorem 17, PN is closed under

quotients which says that it is a variety. Also note that (7) of Theorem 17

implies that

(PN )SI = (PN )S = {(A, dA) : A ∈ QRS}
and hence PN is a discriminator variety. One can think of N as a ’missing

operation’ in the relatively permutable algebras in Q, that once added makes

the class of these algebras into a variety.

If A ∈ Q and E ∈ PN , we say that E is a relatively permutable extension

of A if A is a subalgebra of the reduct of E to the language of Q and E is

generated by A. Of course, since every algebra in Q is embeddable in a direct

product of relatively simple algebras, every A ∈ Q has at least a relatively

permutable extension. Moreover, every A ∈ Q has a free relatively permutable

extension, i.e. a relatively permutable extension E with the property that

for every onto homomorphism f : A → B, and every relatively permutable

extension G of B, there exists a unique homomorphism f̄ : E→ G such that

f̄ |A= f . This is because we can take E to be the LN -reduct of the R-free

algebra generated by the empty set of free generators, where R is the variety

defined as follows

- the language of R is LN expanded by adding a new constant ca for each

a ∈ A.
- R is axiomatized by a set of axioms for PN plus the identities

F (ca1 , ..., can) = cFA(a1,...,an), F ∈ L, a1, ..., an ∈ A.
If E1 and E2 are two relatively permutable extensions of A, then we say that

E1 and E2 are equivalent if there is an isomorphism f : E1 → E2 such that

f |A is the identity on A.
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Theorem 18. Let Q be a relatively semisimple quasivariety with EDRPC.

Every A ∈ Q has, modulo equivalence, exactly one relatively permutable ex-

tension. Moreover if E is the relatively permutable extension of A, then the

map
Con(E) → ConQ(A)

θ → θ |A
is a lattice isomorphism.

Proof. First note that

(*) If E is a relatively permutable extension of A and A is relatively per-

mutable, then E = (A, NA).

Next, suppose E is a relatively permutable extension of A and let Er be the

reduct of E to the language of Q. If θ ∈ Con(E), we shall use A/θ to denote

the subalgebra of Er/θ whose universe is the set {a/θ : a ∈ A}. Note that

(**) E/θ is a relatively permutable extension of A/θ.

We shall prove that

(***) γ |A∈MaxConQ(A), for every γ ∈MaxConQ(Er).

Since A/γ |A is embeddable in Er/γ ∈ (QRS)
+
, we have that

γ |A∈ MaxConQ(A)+. Suppose γ |A= ∇A. By (**) we have that E/γ

is a relatively permutable extension of a trivial algebra, which implies that

E/γ is trivial since PN � N(x, x, x, x) = x. But this is absurd since γ ∈
MaxConQ(Er) and hence we have that γ |A∈MaxConQ(A), concluding the

proof of (***).

Next we prove that

(****) For every γ ∈MaxConQ(A) there is exactly one λ ∈MaxConQ(Er)

satisfying γ = λ |A.

Since MaxConQ(Er)
+ is τe-compact (Corollary 9), we have that {λ |A: λ ∈

MaxConQ(Er)
+} ⊆ MaxConQ(A) is τe-compact (Corollary 5), which by

Corollary 7 says that {λ |A: λ ∈ MaxConQ(Er)
+} = MaxConQ(A)+ and

hence we have proved the existence part of (****). For γ ∈MaxConQ(A), let

θ =
⋂
{λ ∈MaxConQ(Er) : γ = λ |A}.

Since θ ∈ Con(E) and γ = θ |A, (**) implies that E/θ is a relatively per-

mutable extension of A/θ ∼= A/γ. Since A/γ is relatively simple, it is rel-

atively permutable, which by (*) says that E/θ ∼= (A/γ,NA/γ). Thus θ ∈
MaxConQ(Er). This proves the uniqueness part of (****).

For γ ∈ MaxConQ(A), let γe be the only λ ∈ MaxConQ(Er) satisfying

γ = λ |A. Note that the map

MaxConQ(A) → MaxConQ(Er)

γ → γe
is bijective. Also note that

A/γ → E/γe
a/γ → a/γe
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is an isomorphism between (A/γ,NA/γ) and E/γe. Thus for two LN -terms

t = t(x1, ..., xn) and s = s(x1, ..., xn) and elements a1, ..., an, b1, ..., bn ∈ A we

have have that

tE(a1, ..., an) = sE(b1, ..., bn)

iff

tE(a1, ..., an)/γe = sE(b1, ..., bn)/γe, ∀γ ∈MaxConQ(A)

iff

tE/γe(a1/γe, ..., an/γe) = sE/γe(b1/γe, ..., bn/γe), ∀γ ∈MaxConQ(A)

iff

t(A/γ,N
A/γ)(a1/γ, ..., an/γ) = s(A/γ,NA/γ)(b1/γ, ..., bn/γ), ∀γ ∈MaxConQ(A).

We note that this last property depends only from A which says that the

relatively permutable extension E is uniquely determined by A.

Next we shall prove that
Con(E) → ConQ(A)

θ → θ |A
is a lattice isomorphism. Since (

⋂
i γi) |A=

⋂
i γi |A and every member of

ConQ(A) is intersection of a subset of MaxConQ(A), (****) says that the

above map is onto. To see that this map is injective, suppose that θ, δ ∈
Con(E) are such that θ |A= δ |A and θ 6= δ. W. l. o. g. we can suppose

that δ ⊆ θ. By (**) we have that E/δ is a relatively permutable extension of

A/δ. Note that θ/δ ∈ Con(E/δ) − {∆E/δ} and (θ/δ) |A/δ= ∆A/δ. Thus we

can suppose that δ = ∆E. Since E/θ is a relatively permutable extension of

A/θ ∼= A, there is an isomorphism

g : E/θ → E

such that g(a/θ) = a, for every a ∈ A. Note that g ◦πθ is an isomorphism such

that g ◦ πθ |A= idA and g ◦ πθ 6= idE . But this is an absurd since we could

take E to be the free relatively permutable extension of A. �

In the case in which Q is the variety of bounded distributive lattices the

free relatively permutable extensions are the free Boolean extensions [1].
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