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Abstract

Above-threshold ionization of atoms by XUV short laser pulses with frequencies close to the
resonant 1s—2p transition is investigated. We present a theory based on a variational
expression using trial wavefunctions for the final and the initial states. For the former we use a
Coulomb-Volkov wavefunction, and for the latter a close-coupling solution of the
time-dependent Schrodinger equation considering a few bound states. The close-coupling
Coulomb—Volkov theory, fully accounting for the important 1s—2p transition, explains the
photoelectron spectrum as well as the total ionization cross sections for the resonant case. We
also compare the partial wave populations and angular distributions given by the theory with
the numerical solutions of the time-dependent Schrédinger equation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Three decades ago, the observation of photoelectron energy
spectra containing series of equispaced peaks exceeding the
photon minimum number needed to reach the ionization
threshold, known today as above-threshold ionization (ATI),
was the first experimental manifestation of non-perturbative
strong-field light-matter interactions [1]. The atomic or
molecular electron ionization by a short and intense laser pulse
takes place through sequential absorption of several photons.
At each step, the electron acquires a higher energy usually
lying far from any field-dressed state energy. Consequently,
the electron spends only a short time there (of the order of
an optical cycle) before eventually decaying to lower energy
levels unless it absorbs another photon. If, on the contrary,
the photon frequency is tuned close to an intermediate field-
dressed state resonance, the electron will remain in that state
much longer, enhancing the probability of the multiphoton
process [2, 3].

Nowadays, resonance enhanced ATI has been observed
in different contexts. Experiments with rare gases exhibit
a rescattering plateau enhancement for sharply defined laser
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intensities [4-6]. In several theoretical works [7-9], the
enhancements are explained by multiphoton resonance with
the ponderomotively upshifted threshold. These types of
resonances, known as Freeman resonances [10], are usually
regarded as multiphoton ionization indicators. They are
evident in photoelectron spectra when multiphoton excitation
leads to a population of Rydberg states ionized afterwards. A
note of caution should be made on the interpretation of the
origin of the enhancements since this phenomena have been
explained by other authors as a channel-closing effect [6, 11].

Resonance signatures with a bouquet-like pattern have
been recently observed in noble-gases ATI parallel-transverse
low-momentum distributions [12]. Surprisingly, the measured
longitudinal momentum distributions with ATI-like structures
survive deep in the tunnelling regime. The atomic structure
plays a minor role in the formation of the low-energy
photoelectron spectra even in the high-intensity regime, as
proved in [13]. The observed spectral structures in the
longitudinal momentum distributions have been interpreted
using a resonant ionization model [14]. The measurements
have been understood as resonant-enhanced ionization through
Rydberg states [10].  Moreover, the inspection of the

© 2011 IOP Publishing Ltd  Printed in the UK & the USA
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electron kinetic energy spectra and the angular distributions
of the resonantly ionized electrons allowed the intermediate
Rydberg states involved in the ionization process to be reliably
identified. These results are in agreement with theoretical
analysis in [15] where experiments were interpreted by means
of direct and resonant ionization models. Thus, identification
of specific resonant Rydberg states at particular intensities has
been achieved.

The ATI photoelectron spectrum also shows resonance
effects due to deeper bound field-dressed states. In
[16], the photoelectron spectra of positronium irradiated
by short laser pulses present doublets in relation to the
bound-bound resonance known as Autler—Townes doublets
[17]. The ATI peak splitting, a consequence of Rabi
oscillations, was described by means of a two-state Coulomb—
Volkov approximation [16]. Previous non-perturbative semi-
analytical theories [18, 19] have considered the time-
dependent final continuum wavefunction as a Coulomb—
Volkov approximation and the initial state as a field-
unperturbed bound state. This simple description of the
initial state is not reliable for processes where an intermediate
field-dressed state is populated by a resonant tuned laser
frequency. For this reason, the initial state description was
improved by an exact two-state close-coupling calculation,
when the positronium 1s—2p, transition was investigated in
[16]. The same process was studied in [20] for hydrogen
atoms. Their results for the exact solution of the time-
dependent Schrodinger equation (TDSE) were interpreted
by a simple model considering Rabi flopping dynamics as
the zeroth-order solution to the problem of infinite number
of bound states coupled to the continuum by a laser field.
However, the rotating wave approximation was considered.

In this paper, a further improvement of [16] is performed
using an n-state exact close-coupling initial state and
applying it to investigate enhancements in the total ionization
probability. The appearance of new structures in the ATI
photoelectron spectra of hydrogen atoms due to the influence
of intermediate states is analysed.

The paper is organized as follows. In section 2, we
introduce our theoretical formulation. Results showing the
main qualitative features of the photoelectron spectra and
the total ionization probability are presented in section 3.
Section 4 contains our main conclusions and perspectives.
Atomic units are used throughout unless otherwise stated.

2. Theory

We consider here the ionization of a one-active electron atom
by an external laser radiation with the electric field F(¢) given
by

F(t) = Fy sin(wt + ¢) sin’ (”{) , (D

between ¢+ = 0 and 7, and zero otherwise. In equation (1),
T is the pulse duration, w is the laser carrier frequency and
Fy determines the field amplitude and polarization direction.
Under non-relativistic conditions and within the electric dipole

approximation the electron wavefunction W(r, ) satisfies the
TDSE which, written in the length gauge, reads

AW (r, 1)
11— =
dr

where r is the position of the electron with respect to the much
heavier positive ion and V(r) is the interaction between the
electron and the rest of the target.

The transition amplitude from the state i at t = 0 to the
state f att = T may be approximated by the prior and post
forms of the following variational expression [21]:

-—

_ . _ + " _ .dy
ay; :}gr(}(xf (t)|xi (t))—l/o dt()(f (l‘)|H—la|Xl’ (f)>
3

[—%vz + V() + r-F(t)} v, ), (2

c
s = lim ;O @) =1 [ dnley 0]~ 0),
—T 0
@

respectively, where the arrows on the right-hand side indicate
the state on which the non-Hermitian operator applies; x ; (1)
and x/(¢) are trial functions to the exact solutions to equation
(2), subject to the initial and final state conditions:

lim x; () = ¢ (r,0) = p; (M exp (—ie;n), (5
lim (1) = ¢} (r, 1) = ¢} () exp (—ie;). ©)

In (5) and (6), @ (r) and ¢} (r) are eigenfunctions of the
atomic Hamiltonian associated with the eigenenergies € and
€;, respectively. Equations (3) and (4) provide exact transition
amplitudes when one of the two trial functions are exact
solutions of equation (2). In [18, 19], the Coulomb—Volkov
wavefunction was used as the trial final wavefunction

X (1) =¢;(r,t)exp |:iA_(t) r—ik- / dt'A=(t)

T

—% / dt/A_z(t/)}, (7

where A~ (1) = ftt dt’ F(¢') is the vector potential and K is
the electron momentum. Introducing the Coulomb—Volkov
wavefunction of equation (7) in the transition amplitude (3),
we can easily obtain the expression

T k2
ay = / dr exp {i—t +ik
J 0 2

. / dt’A*(t’)+% / dz’Aza’)}

X /dr X (x,t)exp[IA~(r) - r]A™(7) - [ik + V](p;*(r). (8)

The choice of the appropriate trial wavefunction x}(r, t)
in equation (8) will depend on the process to be described.
For photon energies above the ionization threshold and
for intensities small enough to ensure a total ionization
probability far from the saturation regime, the unperturbed
initial wavefunction ¢ (r) exp (—ie;?) can be safely used. This
has been performed in the framework of the Coulomb—Volkov
(CV27) theory where a favourable comparison with exact
TDSE computations has been found within the aforementioned



J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 125603

V D Rodriguez et al

conditions [18, 19]. However, for photon energies below
the ionization threshold a better description of the initial trial
wavefunction is required. In this case, the electron will absorb
several photons during the ionization process, passing through
many virtual intermediate states. Even when the photon
energy is not in tune, the wide spectrum of the short laser
pulse allows population of the excited states. This effect is
observed in the appearance of secondary peaks on the ATI
photoelectron spectrum and can be interpreted as different
multiphoton ionization channels launched from every relevant
field-dressed excited state. A simple way to improve the CV2~
taking these channels into account is to consider a different
choice for the trial wavefunction [22]

X0 =Y bit)g;(r, 1), ©)
J

where bj;(t) is the transition amplitude at time ¢ from
the initial state ¢; to the intermediate state ¢;. In [22],
bj;(t) was estimated by the first Born approximation giving
place to the so-called modified Coulomb—Volkov (MCV2™)
approximation.  Although MCV2~ allows us to describe
the position of the emergent secondary peaks, some sizable
quantitative differences with TDSE remain. In this work,
we improve MCV2™ further, computing b;; (¢) by solving the
TDSE for x;*(r, t) in an exact N + I-state (the initial plus N
excited states) close-coupling scheme:

b = —i(Hy + V)b, (10)

where bl = (by;, by, ..., bys1i), Ho is a diagonal matrix
with the corresponding N + 1 unperturbed energies, and
Vi = (¢;|[F() - r|¢;) is the perturbation potential matrix.
This first-order ordinary differential equation system has been
solved using the splitting operator iterative procedure

b(t + At) = exp (—iHoA?/2) exp (—iVA?)
x exp (—iHoAt/2)b(t). (11)

The exponential of the diagonal Hj is trivial. The exponential
of the non-diagonal V is made by diagonalizing the V. Note
that for linear polarization this has to be done only once as the
time-dependent part can be factorized.

Thus, the transition amplitude for the new close-coupling
Coulomb-Volkov (CC-CV27) theory takes the form

N+1

T
afy eV = Z / dt bj; (1) exp {ikzt/2+ik
j=1 70

: f dr'A~ () +i/2 f dt’Az(t’)}

X fdr @;(r,t)exp[iA~ () - r]A™ (1) - [i(k+ V]g3(r), (12)

where j stands for the set of quantum numbers corresponding
to the initial (j = 1) and the first N excited states (2 < j <
N +1). We observe that the first term in the sum goes to the
standard CV2~ when the simplest choice b1;(¢) = 1 has been
made. Other terms in the sum represent a series of CV2~-like
amplitudes for transitions starting from intermediate states j.
These amplitudes are time integrals weighed by the close-
coupling transition amplitudes at any time during the laser
pulse. The interpretation of equation (12) is straightforward;
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Figure 1. Total ionization probability as a function of the frequency
w of a laser pulse of 30-cycle duration and maximum amplitude

Fy =2 x 1072 au, corresponding to an intensity I = 1.4 x

10" W cm2. Dotted line, CV2~; dashed line, MCV2~; solid line,
CC-CV27; symbols, TDSE. The arrow indicates the resonance wy.

every bound state is populated with an amplitude given by
bj;(t), achieved in this case through a close-coupling scheme
among N+1 bound states. From every considered state a
multiphoton promotion to the continuum is considered here by
using a CV2~-like amplitude. In this work, we have checked
that the convergence is achieved in equation (12) for principal
quantum numbers n < 5. The magnetic quantum number
is a constant of motion. Thus, in what follows all states are
understood to have m = 0. We find that secondary peaks for
higher intermediate states vanish in the background.

3. Results

In order to probe the CC-CV2~ we focus on the ionization
process of a hydrogen atom subject to a linearly polarized
short-laser pulse, and compare the CC-CV2~ results with
previous and less elaborate CV2~ and MCV2™ [18, 19, 22].
As a final test of the CC-CV2™, we also compare the above-
mentioned approximations with the TDSE numerical solution
[13]. Along this work, the laser frequencies considered are
near the hydrogen 1s—2p resonance wy = 0.375 au.

We start by analysing the total ionization probability
of a hydrogen atom initially in its ground state due to the
laser field of equation (1) with a peak field Fy = 0.02 au
and total duration t corresponding to 30 optical cycles. In
figure 1, the total ionization probability as a function of
the laser frequency may be seen. Whereas the CV2~
results smoothly decrease with frequency, MCV2~ results
exhibit, as expected, an enhancement around w; (indicated
with an arrow) due to the ionization from the 2p state,
included in the theory within the first Born approximation.
Nevertheless, when compared with the TDSE results, the
MCV2~ overestimates the enhancement. On the other hand,
the more complete CC-CV2~, which improves the MCV2~
by considering the populations of the bound states with a
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Figure 2. Energy distribution of ejected electrons as a function of
the electron energy for three laser field frequencies: (a), w = 0.35
au; (b) w =0.375 au; and (¢) w = 0.4 au. Dotted line, CV2~; dashed
line, MCV27; solid line, CC-CV2~; thick (red) solid line, TDSE.
The maximum amplitude of the electric field is Fy = 2 x 1072 au
corresponding to an intensity I = 1.4 x 10'> W cm™2; the number
of cycles is 30. CC-CV2~ and TDSE curves are indistinguishable in
this figure.

close-coupling approach, not only shows the enhancement
around the resonance w = wy, but also displays an excellent
quantitative agreement with the TDSE computations.

In order to trace back the broad resonance in the
total ionization probabilities, we examine the photoelectron
spectrum. Figure 2 shows the electron energy distributions
for three different frequencies: (a) below (w = 0.35), (b) at
(w = 0.375) and (c) above (w = 0.4) the resonant case. In
all cases, the CV2~ provides multiphoton peaks well below
those given by TDSE calculations. On the other hand, MCV2~
appears to overestimate the ATI peaks, in particular, for the
resonant case (b). The reason is that MCV2~ has been
calculated having by;(¢) = 1 in equation (12), which is not
true as the initial ground state depopulates due to excitation
and ionization. The condition by;(f) = 1 also holds for
CV2~ which underestimates exact results. For a more realistic
calculation, we used the CC-CV2~ theory, which accounts
accurately for all the ATI peaks when compared with TDSE
in figure 2 for all frequencies considered.

In figure 2(a), a shoulder to the right of each main
ATI peak and two resolved secondary peaks to the right of

the first shoulder are observed. The shoulders arise from
unresolved multiphoton ionization from the 2p level, and the
secondary peaks come from multiphoton ionization from 3p
and 4p states. This is corroborated by their locations at
energies £y, = Mw — 1/(2n?), where M is the number of
absorbed photons. In the case of the one-photon transition
(M = 1) from 2p, 3p and 4p states, the secondary peaks
are located at E = 0.225, 0.294 and 0.319, respectively.
The two-photon process (M = 2) from the 2p, 3p and 4p
states gives rise to one shoulder and two peaks at energies
E = 0.575, 0.644 and 0.669, respectively. The MCV2~
theory accounts for these pathways through intermediate states
and, therefore, its results show the shoulders and the structure
albeit with some numerical discrepancy. However, the present
CC-CV2~ theory, accounting for a more accurate population
of the intermediate states, provides much better agreement
when compared with the TDSE. The same pattern is valid for
figure 2(c), but in this case the shoulders are actually to the
left of the main ATI peaks, and the secondary peaks from
3p and 4p states are not well resolved. The corresponding
positions are given for the one-photon transitions at 0.275 (2p),
0.344 (3p) and 0.369 (4p), and for the two-photon transitions
at 0.675 (2p), 0.744 (3p) and 0.769 (4p).

The previous analysis allows us to understand the resonant
case in figure 2(b). In this case, the location for the M-photon
peak from the 2p state is the same as the (M + 1)-photon peak
from the 1s state. But, the smaller the number of photons,
the higher the probability and, therefore, a clear dominance of
the population through the intermediate 2p state is expected.
The CV2~ theory is two orders of magnitude smaller than the
TDSE results since it does not take into account the pathway
through the resonant 2p-intermediate state (figure 2(b)). The
positions of the first (M = 1) secondary peaks are resolved,
and their values are 0.319 (3p) and 0.344 (4p). However, the
second set (M = 2), located at 0.694 (3p) and 0.719 (4p), is not
fully resolved. Again, CC-CV2~ shows the best agreement
when compared to the TDSE energy distributions, while the
MCV2~ shows the correct photoelectron structure, although
it overestimates the TDSE results.

Now, we will analyse the background in the photoelectron
spectra, i.e. the distribution for energies far from the mentioned
eymn- For both non-resonant cases (figures 2(a) and (c)), the
simple CV2~ roughly agrees with the more elaborate MCV2~
and CC-CV2~ theories, and with the TDSE computations in
the background. However, differences among the theories
arise at resonance even at the background level. TDSE
computations in figure 2(b) display a considerable increase of
the background in addition to the important enhancement of
the ionization peaks. In this way, the simple CV2~ drastically
fails, underestimating the probability density by several orders
of magnitude. Other features can be readily observed: the
shape of the first peak within the MCV2™ and the CC-CV2~
around £ =~ 0.25 in figure 2(b) has a resemblance to the
broad resonance observed in the first Born approximation for
a single-photon transition to the continuum state. In turn,
as stated before, the first CV2~ peak is narrow, since it is
formed by a two-photon process directly from the initial state
and CV2~ does not take into account the pathway through
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Figure 3. 1s and 2p populations for a 32-cycle laser pulse of
maximum amplitude Fy = 2 x 1072 au at the resonance frequency
o = 0.375 au. Solid line: CC-CV2~, symbols: TDSE right after
each of the cycles.

intermediate states. In addition, the case w = 0.4 au in
figure 2(c) reveals that the first peak within the MCV2~ (also
CC-CV2~ and TDSE) is broader and higher than the one
corresponding to the CV2~. This is due to the fact that it
is not possible, in this case, to resolve between the first ATI
peak (E = 0.3, coming from a two-photon transition from the
Is state) and the secondary peak (E = 0.275, coming from a
single-photon transition from the 2p state). The contribution of
the two ionization pathways leads to a shift of the multiphoton
peaks to lower electron kinetic energies. However, some
quantitative differences appear in MCV2~ with respect to CC-
CV2~ and TDSE, since the former considers the transition
amplitudes b;;(t) in equation (9) only within the first Born
approximation.

So far, we find no detectable differences between
TDSE and the more elaborate CC-CV2~ energy distributions
independent of the laser frequency. Only when the pathways
through the transient intermediate states are accurately
accounted for, in particular when the resonant 2p is properly
included, can the theory describe the exact computations. This
is particularly true when the field is weak and the pulse is short,
so that no saturation of ionization probability exists. For the
cases studied here, ionization probabilities are about or below
2% (see figure 1).

In order to prove that the correct inclusion of the 2p
state is crucial to obtain right ionization yields, we compare
the close coupling with TDSE populations of the 1s and 2p
states as a function of time (figure 3). Both results resemble
a typical Rabi oscillation which is partially washed out by
the finite duration of the pulse. Close-coupling population
looks like counter-rotating oscillations. TDSE populations
were only computed when the electric field is zero and once
per cycle. Figure 3 exhibits an excellent agreement between
the close-coupling and TDSE probabilities. In recent works,
the influence of Rabi oscillations on the splitting of ATI peaks
has been considered in relation to the Autler—Townes effect,
which has proven to be a splitting of the ATI peaks in the

F,=0.02 ©=0.375 32cyc
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Figure 4. CC-CV2~ (a) 3p and (b) 3d populations for a 32-cycle
laser pulse of maximum amplitude Fy = 2 x 1072 au at the
resonance frequency @ = 0.375 au. The symbols indicate the value
of the populations right after each of the 32 cycles. Inset:
comparison of CC-CV2~ (open symbols) and TDSE (full symbols)
populations right after each cycle. Connecting lines in the insets are
only for eye guidance.

photoelectron spectrum [16, 20]. Nevertheless, this non-
perturbative effect is not present here since the pulse duration
is shorter than one Rabi cycle. The only way to observe more
Rabi cycles for a fixed pulse duration is by increasing the laser
intensity, which would necessarily require a better treatment
accounting for the depletion of the bound states.

We have also calculated other bound state populations
different from the resonant 2p and initial ground states. In
particular, time-dependent populations of the 3p state and
the one corresponding to the 3d state calculated within the
close-coupling approach are shown in figures 4(a) and (b),
respectively. The oscillating pattern is more evident than in
the populations of 1s and 2p states. The symbols show the
values for discrete times when the electric field of equation (1)
is zero and once per cycle, i.e. t; = i2n/w,i =1, ..., Neyc,
(where Ny, is the total number of cycles equal to Tw/27). Two
main features may be observed. First, bound state populations,
different from resonant 2p and initial 1s, are below 0.015 and,
therefore, play practically no role in the ionization dynamics.
Second, a minimum in the 3p population is observed close
to t+ = 350 au and it coincides with the minimum of the
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Table 1. CC-CV2~ and TDSE (between parenthesis) normalized

partial wave populations of the first ATI peak: £ = 0.199
(w =0.35), E =0.249 (w = 0.375), E = 0.288 (w = 0.4).

I 0=035 w = 0.375 0 =04

0 0.014 (0.018) 0.130(0.131)  0.139 (0.588)
1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
2 0.985(0.982) 0.870(0.869) 0.861 (0.412)
3 0.000 (0.000)  0.000 (0.000) 0.000 (0.000)
4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Table 2. CC-CV2~ and TDSE (between parenthesis) normalized
partial wave populations of the second ATI peak: E = 0.548

(w =0.35), E =0.624 (w = 0.375), E = 0.691 (w = 0.4).

I 0=035 o = 0.375 =04

0 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
1 0.304(0.183) 0.206 (0.544) 0.226 (0.943)
2 0.000 (0.000)  0.000 (0.000) 0.000 (0.000)
3 0.696(0.816) 0.794 (0.455) 0.774 (0.057)
4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

1s population taking into account that about this time the
population has almost completely been transferred to the
resonant 2p state (see figure 3). The insets show a comparison
of close-coupling and TDSE populations at discrete times
t;. Again, we note that the simple close-coupling procedure
explains the full TDSE calculations. It should be remarked
that only a small set of TDSE results is considered and,
therefore, the oscillating structure shown by the close-coupling
calculation cannot be accounted for.

For a more detailed test of the CC-CV2~ theory, we
analyse the angular momentum of ejected electrons. In
table 1 (2) the partial wave populations for energies
corresponding to the first (second) ionization peak for three
laser frequencies are shown. Only CC-CV2~ and TDSE
(between parenthesis) results are shown. Table 1 shows that
the first ATI peak is dominated by d- followed by s-electrons
for the frequencies analysed. On the other hand, the second
ionization peak consists of p- and f-electrons. The dominance
of even orbital quantum numbers at the first ATI peak
(table 1) and odd orbital quantum numbers at the second
ATI peak (table 2) is a direct consequence of the quantum
selection rules which are strictly true for infinitely long pulses.
The overall explanation is clear. Near resonance, the process
around the first (second) ATI peak is dominated by a two-
(three-)step process. In the first step, the resonant p-state is
populated, a further photon absorption leading to either s- or
d-states (table 1) gives rise to the first ATI peak and finally
a two-photon absorption for the second ATI peak leads to
p- and f-states (table 2). For the first ATI peak, the CC-
CV2~ theory describes this general behaviour fairly well
and accounts accurately for the partial wave populations for
frequencies below the resonance but quantitatively fails for
frequencies above. For the resonance frequency, the partial
wave populations of the first peak are reproduced by the CC-
CV2~ very well. However, there are differences between the
CC-CV2™ and the exact TDSE calculations for the second ATI
peak. The CC-CV2~ partial wave populations turned out to

dP/dcos 6

dP/dcos 6

0.01 . . .
-1.0 -0.5 0.0 0.5

cos 6

Figure 5. Angular distribution d P /d cos(#) as a function of the
cosine of the ejection angle 6 for electrons emitted with kinetic
energy (a) E = 0.199 (red), E = 0.249 (green) and E = 0.288
(blue), corresponding to the first ATI peak for laser frequencies

w = 0.35, w = 0.375 and w = 0.4, respectively; and (b) £ = 0.548
(red), E = 0.624 (green) and £ = 0.691 (blue), corresponding to
the second ATI peak, for laser frequencies w = 0.35, w = 0.375 and
o = 0.4, respectively. The remaining laser parameters are the same
as in figure 1. Lines: CC-CV2~; symbols: TDSE.

be rather more insensitive to frequency than what exact TDSE
results show.

In figure 5 the CC-CV2™ normalized angular distributions
of ejected electrons are compared with the TDSE results.
For the first ATI peak in figure 5(a), the CC-CV2~ results
are in very good agreement with TDSE for frequencies
below and at resonance. In addition to the forward and
backward maxima, a clear maximum is displayed at the centre
(electron angles perpendicular to the polarization direction)
giving rise to an angular distribution with two minima, i.e.
6 ~ 0.31m, and 0.697 proper of d-states. For the frequency
higher than resonance, the present theory departs from TDSE
displaying a behaviour rather independent of the frequency.
The discrepancy comes from the failure of the CC-CV2~
to account properly for the / = 0 component as observed
in table 1. So the d-component regarding the first ATI
peak is overestimated. The angular distribution of ejected
electrons with kinetic energy corresponding to the second ATI
peak becomes more complex in the full TDSE calculations
and some qualitative differences are readily appreciated (see
figure 5(b)). However, both TDSE and CC-CV2~ results
do exhibit a zero in the direction perpendicular to the laser
polarization a characteristic feature of odd orbital quantum
numbers. Whereas TDSE angular distributions show some
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Figure 6. TDSE angular distribution d P /d cos(#) as a function of
the cosine of the ejection angle 6 for electrons emitted with kinetic
energy (a) £ = 0.138 and (b) E = 0.509 for laser frequency

wo = 0.375. The remaining laser parameters are the same as in
figure 1.

Table 3. TDSE normalized partial wave populations at energies on
the left (E = 0.138) and the right (£ = 0.509) of the first ATI peak
at resonant frequency (wy = 0.375).

[ E=0.138 E =0.509
0 0.116 0.173
1 0.005 0.046
2 0878 0.774
3 0.000 0.006
4 0.000 0.000

variations for different frequencies, the CC-CV2~ results are
again rather independent of frequency.

We now focus on the background, where no resonant
behaviour is expected, i.e. energies are quite different from
the already defined €,;,. In table 3, the TDSE results with
the resonant frequency wg = 0.375 are shown. The whole
process involves two photons: the first one populates the
resonant 2p state, and the second one increases the electron
kinetic energy to either the first valley (E =~ 0.14, first
column) or the second valley (E =~ 0.51, second column)
in the photoelectron angular distribution (table 3). Thus,
no major differences are observed between the two cases
where the d-electrons are dominant followed by s-electrons.
This pattern is reflected in the angular distribution shown in
figure 6, displaying a characteristic distribution of an s and
d mixing, almost symmetric with respect to the direction

perpendicular to the field polarization. The small asymmetry
arises from the [ = 1 population (table 3).

4. Conclusions

By comparing CV2~ with TDSE, we have been able to
establish the importance of the pathways through the bound
states when the laser frequency has been tuned accordingly.
CV2~ underestimates both the ionization spectrum and the
total ionization probabilities and has proved to have a
quantitative predicting value only when the laser frequency
is larger than the ionization potential. This is a strong
indication that intermediate states should be included in
the theory, something particularly true when the resonance
condition to any bound state is satisfied. In fact, we have
shown that for moderate laser intensities it was necessary to
employ more accurate transition amplitudes. The MCV2~,
whose transition amplitudes are considered simply within the
first Born approximation, accounts for the 1s—2p resonance
but fails to give accurate total ionization probabilities and
energy distributions. This is why a more elaborate theory
is needed. The CC-CV2~ considers the time-dependent
amplitudes obtained from solving the close-coupling equations
for the TDSE using a few bound sates including at least the
initial and the resonant states. A great improvement in the total
ionization probability and photoelectron spectrum with respect
to the MCV2~ has been achieved with the CC-CV2~. In
order to probe the CC-CV27, the partial wave populations and
angular distributions based on the theory and numerical results
obtained by solving the TDSE are compared. The CC-CV2~
reproduces the general behaviour of TDSE results fairly well,
mainly for frequencies below and at resonance (wy = 0.375)
but the quantitative agreement is poor for frequencies above
the resonance.
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