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a b s t r a c t

We present a numerical approach using the finite element method to discretize the equations that allow
getting a first-principles description of multi-electronic systems within DFT and TD-DFT formalisms. A
strictly local polynomial function basis set is used in order to represent the entire real-space domain.
Infinite elements are introduced to model the infinite external boundaries in the case of Hartree’s
equation. The diagonal mass matrix is obtained using a close integration rule, reducing the generalized
eigenvalue problem to a standard one. This framework of electronic structure calculation is embedded in
a high performance computing environment with a very good parallel behavior.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

There exist several numerical approaches to density functional
theory (DFT) based on real-space discretization of the Kohn–Sham
equations that result in very useful tools for first-principles
electronic structure calculations. The basic idea of all those
treatments is either the use of a strictly local function basis
set to discretize the real space, or the direct use of some
kind of discretization for the differential equations, or a hybrid
combination of both. For example, the SIESTA method [1,2] uses
a numerical linear combination of atomic orbitals (LCAO) basis set
and a uniform regular real-space grid to calculate potentials and
matrix elements. The basis functions and the electron density are
projected on a real-space grid, in order to calculate the Hartree
and exchange–correlation potentials and matrix elements. The
density gradient operator is discretized and evaluated by using
the finite difference method. Poisson’s equation is typically solved
using Fast Fourier Transforms (FFT) on a periodic unit cell by
a supercell construction. As an alternative, a finite difference
scheme can also be used on a Cartesian grid together with fixed
boundary conditions, obtained from the multipole expansion of
the charge density. This can be done in O(N) operations, in
contrast with the FFT that scales as O(N logN). The size of the
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grid is determined by the number of plane waves which can be
represented without aliasing. No explicit orthogonalization of the
LCAObasis set is needed. In its place theminimization of amodified
energy functional that produces orthogonal wave functions is
used. Due to the sparsity of the Hamiltonian and overlap matrices
minimal basis sets are needed and order-N methods (algorithms)
are used with a number of operations that scale linearly with the
size of the system, i.e. O(N) scaling.

As another alternative, the finite difference method is used to
solve ab initio electronic problems [2–4]. For example, OCTOPUS [3]
provides a very useful tool to approach both stationary and time-
dependent problems: all the quantities are represented on a
uniform real-space grid and almost all equations are fully solved
on it, except for Poisson’s equation for the Hartree potential, which
is treated using FFT (as in SIESTA). This program is well suited for
solving periodic and confined electronic quantum systems with
time-dependent classical electromagnetic fields. In order to start
the self-consistent cycle (SCF), an initial trial wave function can
be generated from a linear combination of atomic pseudo-orbital
basis set. In this approach, the sparsity of the Hamiltonian matrix
is determined by the finite difference stencil for the kinetic energy
and by the non-local projectors of the pseudo-potentials. In the
time-dependent DFT formalism, the maximum time step of the
wave function propagation in real-time is limited by the grid
spacing. Another tool that doesn’t use an explicit basis set to solve
the Kohn–Sham equation in real space is PARSEC (Pseudopotential
Algorithm for Real-Space Electronic Calculations) [5,6]. This tool
handles a large variety of boundary conditions and reaches a
great accuracy and parallel efficiency in the SCF using a non-
linear subspace filtering method. OCTOPUS and PARSEC, were
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both designed to reach an efficientmassive parallelization, making
them highly effective for the treatment of very large systems.

In the real-space approach the use of a regular mesh would
be desirable for computational considerations because it produces
a sparse, local, and highly structured Hamiltonian matrix, which
enables the effective use of iterative numerical methods, very
convenient from the point of view of parallel computation.
However, to obtain accurate solutions, mesh refinements in
the vicinity of the nuclei positions are required in many
cases, and non-regular meshes are also necessary. Another
possibility is the use of adaptive curvilinear coordinates [7,8].
This approximation improves the efficiency without losing the
computational advantages of a regular mesh, by a change of
coordinates that condenses mesh grid points in the vicinity of
a nucleus to an adaptive mesh. Anyway, the use of the mesh
refinement and the change of coordinates both increase the
complexity of the calculus if pseudo-potentials are used.

Several approaches based on the finite element method (FEM)
have been reported, in all-electron [9–11] and pseudo-potential
approximations [12,13] as well. These works show the adequacy
of the FEM to the requirements of the electronic structure
calculations. Among other advantages the FEMgives the possibility
of using non-uniform and unstructured meshes [11] near the
atomic positions, i.e. the possibility to refine themesh [12],without
the need of making coordinate changes. Besides, it will be shown
below that there is a great flexibility in the selection of the
boundary conditions. Finally, the efficiency of the parallelization
via the mesh partition technique is very high. By using METIS [14],
as we did in our implementation, the partition of the domain
is well-balanced by the number of degrees of freedom, without
losing the advantages of the unstructured meshes in parallel
environments.

A general numerical approach based on FEM to TD-DFT and
DFT equations is proposed in this paper, focusing on some points
related to the resolution of difficulties not treated in the literature
(to the author’s knowledge). In Section 2 we expose the use of
the FEM to solve the DFT equations with particular emphasis
on the boundary condition treatments. Section 3 presents some
convergence studies, the eigen solver and the parallelization
scheme of the self-consistency cycle. Section 4 is devoted to a
single and preliminary numerical approach to TD-DFT equations
and implementation details are described. Finally, in the last
section, we make a summary and list some conclusions of this
work.

2. The stationary Kohn–Sham equation’s treatment

In density functional theory, the total energy of an electronic
system is expressed as a functional of the charge density as,

E [ρ(r)] = Ts [ρ(r)] +


dr Veff ([ρ] ; r)ρ(r) (1)

where Ts is the kinetic energy of a noninteracting electronic system
under an effective external potential given by

Veff ([ρ] ; r) = Vion(r)+ Vhartree([ρ] ; r)+ Vxc([ρ] ; r) (2)

this being the sum of ionic (Coulombian nuclear or pseudo-ionic),
Hartree and exchange–correlation potentials, respectively. The
effective potential depends on the density.

In this framework, also named stationary DFT, the ground state
is a Slater determinant of orbitals ψKS

k obtained by minimizing
the total energy by the self-consistent solution of Kohn–Sham
equations [15],

−
1
2
∇

2
+ Veff (r)


ψk(r) = ϵkψk(r) (3)
and the electronic density is built according to

ρ(r) =

nodes
k=1

Nocck |ψk(r)|2 (4)

i.e., using the wave functions of each Kohn–Sham state k with
occupation number Nocck.

To solve the set of Eqs. (1)–(4), all involved quantities are
represented in the real cartesian space, discretized on a finite
element mesh. The Kohn–Sham orbitals ψKS

k are approximated
using local basis functions φj such that

ψ(r) =

nodes
j=1

φj(r)ϕj (5)

where ϕj are the nodal unknowns of the problem. In the FEM,
the basis functions φj are defined only within individual elements
and have continuity with the neighboring elements. The number
of nodes per element and their relative internal positions depend
on the family of elements selected. In this work, we use three-
dimensional hexahedral with interpolation functions of 27 nodes
(cubic) or of 64 nodes (biquadratic) per element. After applying
the discretization to Eq. (3), we end up with a sparse system for
the nodal unknowns [16,17], treatable as a generalized eigenvalue
problem over the entire domain, of the form:
Hφ = ϵMφ (6)
where the coefficients Hij of the Hamiltonian matrix H, and the
coefficientsMij of the mass matrixM, are computed as:

Hij =
1
2


Ω

∇ϕi∇ϕjdΩ +


Ω

ϕiVeff ϕjdΩ, Mij =


Ω

ϕiϕjdΩ.

(7)
The different steps to build the Hamiltonian matrix and the

boundary conditions of the problem will be given below.

2.1. Hartree potential

As usual in DFT, the Hartree potential operator is represented
through the solution of the Poisson equation for a charge
distribution ρ(r),

− ∇
2Vhartree = 4πρ(r). (8)

The discretization of this equation is similar to the kinetic energy
operator shown in the first member of Eq. (7). After integration
by parts, we end up with a set of linear equations for the nodal
unknowns
Lvhartree = d (9)
where the coefficients of the Laplacian operator L and right-hand
side d are computed as

Lij =


Ω

∇ϕi∇ϕjdΩ, di = 4π

Ω

ρ(r)ϕidΩ. (10)

We must provide to these sets of equations some boundary
conditions. We implement two options to do that: the first
possibility consists in calculating the value of the potential in the
boundary of a bounded simulation domain by making use of the
multipole expansion of the charge density inside it. The potential
for points in the boundary’s domain is obtained from:

Vhartree (∂Ω) =

lmax
l=0

l
m=−l

4π
2l + 1

1
r l+1

Ylm (∂Ω)Qlm (11)

Qlm =


Ω

r lYlm(r)ρ(r)dΩ (12)

where Qlm is the m-component of the l-pole moment (usually
monopole, dipole, up to quadrupole is enough), and Ylm are the
respective spherical harmonics.
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In many problems of quantum mechanics, we face unbounded
domainswhere several relevant physicalmagnitudes decay to zero
at infinity. For magnitudes in where the decay towards the domain
boundary is exponential, the use of a relatively big domain and
finite elements of a different size provides adequate solutions and
great accuracy by discretizing with small elements in the main
region and large elements far away. However, in the case of the
Poisson equation, for example, where the solutions can decay as
1/r , this approach is not the best one. In the last two decades, the
infinite element method has emerged as an alternative solution
technique [18–20] and we implement this option to model the
far-field region in Eq. (8). The main advantage of the use of this
kind of element is that the solution of the Poisson equation is
numerically exact, i.e. the representation by infinite elements on
the external part of the domain implies a mapping from boundary
nodes to infinity. Thus, the computation of the multipole integrals
is not necessary. A mesh with infinite elements on all the external
boundaries is used to solve the Hartree contributions in Eq. (8),
while a mesh with finite elements is considered for the problem
defined in Eq. (7).

In a parallel computing environment an integral involves a
global communication event, so that their reduction results a great
advantage from the computational point of view. That is why the
use of infinite elements instead of Eqs. (11)–(12) is a good option.
Here, we use the original formulation proposed by Bettes [21]
for the infinite elements. There, the domain is extended to the
infinite by substituting the classical interpolation function with an
alternative set, which maps the finite domain into the infinite one.
A detailed list of these functions for numerous types of elements
is shown in [21]. Taking the Lagrange family of elements, in the
general three dimensional box domain, we can have three types of
infinite elements depending on the number of infinite directions:
one (in a face), two (in the edges) or three (in the vertices). In
Table 1 we list the general mapping functions for the single case
of just one direction. These functions can be used to build cases
of more dimensions, by direct product [17]. A great advantage in
the use of these mapping functions is that a Gauss integration rule
could be used as in the finite case. Just for clarification, taking
the case of one infinite direction, the elements have one infinite
coordinate (x) (in practice x is very large), an application for the
finite domain −1 ≤ ξ ≤ 1 onto one semi-infinite x1 ≤ x ≤ ∞ is
defined, using a mapping function ξ = f (x). Then

x =

nodes
i=1

Zixi (13)

with the introduction of this change into the integral equation, the
derivatives are included into the Jacobian matrix

∂x
∂ξ

=

nodes
i=1

∂Zi
∂ξ

xi. (14)

A commonmapping is ξ = 1−1/(x−x0)x0 being the pole of the
element (i.e. the origin of the decay). If the infinite direction is the
opposite semi-axis, the mapping needs to be redefined taking into
account this sign change. For the case of more than one dimension,
the shape functions in the infinite direction are multiplied by the
one-dimensional functions in the finite direction as usual. The
mapping functions for the nodes in the ‘‘infinite’’ point are not
constructed. Eqs. (15) and (16) show the schematic application of
infinite elements into Eq. (8). As explained previously, the infinite
shape functions appear only in the elemental Jacobian matrix
calculation. For a hexahedron, the contribution L(e)ij of an element
(e) to Lij is

L(e)ij =

 1

−1

 1

−1


∞

−1
∇ϕi∇ϕjJ−1dΩ (15)
Table 1
Parents (ϕk) and infinite (Zk) shape functions for one dimension and positive
infinite position ξ = 1.0.

Node, k ξk ϕk Zk

1 −1 −9ξ3+9ξ2+ξ−1
16

9ξ2−1
4(1−ξ)

2 −1/3 27ξ3−9ξ2−27ξ+9
16 −

(ξ+1)(ξ−1)
1−ξ

3 1/3 −27ξ3−9ξ2+27ξ+9
16

(ξ+1)(3ξ+1)
4(1−ξ)

4 1 9ξ3+9ξ2−ξ−1
16 –

with

J =



∂Zi
∂ξ

∂Zj
∂ξ

∂Zk
∂ξ

∂Zi
∂η

∂Zj
∂η

∂Zk
∂η

∂Zi
∂ζ

∂Zj
∂ζ

∂Zk
∂ζ


. (16)

The main drawback of the infinite elements used is the need
for creating a double mesh: an internal mesh entirely formed with
finite elements dedicated to solve the Kohn–Sham equation, and
a second mesh, adding to the first one an external shell built with
infinite elements to solve the Poisson equation. This double mesh,
in order to use the same numbering for the internal mesh in the
SCF cycle and for the Poisson domain, needs to be numbered in
a non-correlative way. But while the bandwidth of the internal
one maintains a good behavior as usual, there is an increase of
the bandwidth in the external mesh used for the Poisson equation.
This disadvantage is not related to the use of infinite elements; it
is just the trouble of our implementation of the mesh generator.
The use of a single meshing for each separate problem (Eqs. (8)
and (10)) gives optimal results. A possible solution to reduce
the mentioned bandwidth is the introduction of an algorithm
of mesh renumbering in our implementations, a point to do in
the future. Fig. 1 shows some solutions to the Poisson equation
using the quadrupole approximation in the boundary and the
infinite element method implemented in this work. The infinite
elements map to 100 and 10,000 atomic units in order to study
the differences as a function of ‘‘position’’ of the infinite. While the
solution near the center of the domain does not exhibit differences
(these points are not shown in the graph), these differences
increase as the distance grows from the center. As we can see in
the graph, for the kind of systems solved here, a change of two
orders of magnitude in the position of the infinite does not shows
appreciable differences in the solution.

2.2. Ionic potential

In an all-electron approach, the ionic potential is the sum of the
Coulomb potential generated by each atomic nucleus present in
the system,

Vion (r) =
Z

|r − R|
(17)

where Z and R are the nuclear charge and the position of a
nucleus, respectively. To exemplify an all-electron calculation,
Table 2 presents the results for an all-electron Si atom calculated
by our method and by the FHI98 pseudo-potential (PP in advance)
package [22].

In a pseudo-potential approximation, the ionic potential in-
volves retaining the angularmomentumdependence by truncating
the sum on angular momentum channels and decomposing into
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Fig. 1. Solution in (0, 0, z) axis, of the Poisson equation with different sizes of
‘‘infinite’’ elements and quadrupole approximation in boundaries.

Table 2
All-electron calculation for Si atom. Total energy and eigenenergies in Hartree units.

FHI98 Current work

Total energy −288.8216 −289.3259
Orbital 1s −65.3573 −65.079
Orbital 2s −5.0987 −5.053

Orbital 2p −3.5136 −3.502

Orbital 3s −0.3998 −0.398

Orbital 3p −0.1530 −0.154

two terms, a local term, that grossly treats the higher angular mo-
mentum components and a nonlocal term in the fully separable
Kleinman–Bylander form [23], that both depends explicitly on an-
gular momentum channels and directly on the pseudo-orbitals of
the semilocal pseudo-potential. The ionic pseudo-potential takes
the form [23],

V PP
ion (r) = Vlocal +

lmax
l=0

m=l
m=−l

δVlψ
PP
lm

 
ψPP

lm δVl


ψPP
lm |δVl|ψ

PP
lm

 (18)

where δVl = Vl − Vlocal is the l-channel semilocal pseudo-
potential and ψPP

lm is the atomic reference pseudo-eigenfunction
with quantum indexes lm. Computationally, the local part does
not involve extra calculation, but the non-local contributions
require angular momentum projections over a spherical regime,
centered at each nucleus. After applying the discretization to the
non-local term, each bra and ket contribution provides a vector.
Then each term in the summation is a single scalar product
within the expectation value of Vl. We use the pseudo-potential
approximation of Troullier and Martin [22,24]. Fig. 2 shows the PP
calculation for the BeH2 molecule.

2.3. Exchange–correlation potential

The exchange–correlation functional used is the standard local
density approximation (LDA), which provides two contributions to
the potential:

Vxc(r) =
∂ELDA

xc [ρ(r)]
∂ρ

= ϵxc(ρ(r))+ ρ(r)
∂ϵxc [ρ(r)]

∂ρ
(19)
Fig. 2. PP calculation of BeH2 molecule. The experimental value was taken
from [25].

with ϵxc(r) = ϵex(r)+ϵc(r)where ϵex(r) = −
3
4

 3
π

 1
3 ρ(r)

1
3 and for

the correlation contribution the Ceperley and Alder analytic forms
are used [3,26].

2.4. Total energy calculation and external potential contribution

After convergence is reached, the total energy of the system
is the sum of the earlier magnitudes: kinetic, ionic, Hartree and
exchange–correlation contributions, to which we need to add the
negative ion–ion contribution,

Etot = ET + Eion + 0.5Ehartree + Exc − Eion–ion. (20)

Each electronic energy term is obtained from the converged
self-consistent electronic density and the ion–ion interaction
energy is calculated as [3],

Eion–ion =


i=1


j>i

ZiZjRi − Rj
 (21)

summing all pairs of atomic nuclei present in the system.

3. Cycle of self-consistent and parallelization

3.1. Eigen solver

Once the local matrices created by each element are assembled
into global matrices, a generalized eigenvalue system of the form
(6) is built, where φ/ϵ is the auto-state (auto-energy) of the
problem. In the case of the FEM a sparse system is obtained. In DFT,
the Kohn–Sham equation is non-linear in density and it is solved
by self-consistent cycles to reach the electronic ground state. This
self-consistent procedure is stoppedwhen the differences between
the densities of two consecutive cycles are less than a certain
tolerance. There are a lot of tools for solving this kind of problem
when the matrix M is positive definite [27] or semi-definite [28].
If the system does not have this property, a direct solver taken for
example from EisPACK [29] can be used. For some cases, especially
for big matrices, an iterative method can be more convenient from
the point of view of the time for calculation. These methods give
us a few eigenvalues (usually the small ones) [30,31].

The FEM provides a natural way to simplify the eigenproblem,
Eq. (6), making its resolution easier working a little with the
algebra involved in the resolution of the problem. Each localmatrix
associated to each finite element is obtained after evaluating the
integral of each contribution to the Hamiltonian. As we explain
in Section 2.1 the integration uses general Gauss methods using
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a b

Fig. 3. Two examples of refinements in the plane of the molecule: (a) 2.5M elements and (b) 3.7M elements.
standard quadrature points. But, in the case of the mass matrix,
using a close integration rule, diagonal matrices are obtained [17].
Thus the generalized eigenproblem (Eq. (6)) is reduced to a single
problem, less computationally expensive to solve. To do that we
use a deflated conjugate gradient solver [31–34], from which
solution we obtain the small eigenvalues needed.

3.2. Analysis of convergence

In order to analyze the efficiency of the regular/irregular mesh
used, the use of infinite elements or not, and the extension of
the domain, we computed the convergence time for the Poisson
equation and the eigen solver. Table 3 presents a resume of
the most significant results. The logarithmic mesh means that
we use refinement in the central atom following a logarithmic
rule. For this calculus we use hexahedral elements with cubic
interpolation function (27 nodes by element). With increasing
degrees of freedom better results in less iterations are obtained.
The cost is the increase in time, of course. In cases of chosen
infinite elements (last file of Table 3 as an example), we can reduce
the internal domain meshed (reducing the number of nodes), in
comparison with the calculus with regular Dirichlet boundary
condition. In the internal mesh we use logarithmic refinement too.
The added external shell of infinite elements increases the cost
of the Poisson solver in terms of CPU time. But as we explained,
this is due to the discontinuous numbering of our mesh. Other
tests with a continuous numbering give results similar to the ones
obtained with a standard mesh. The number of iterations to reach
convergence is reduced too, but not significantly.

The use of non-refinedmeshes, even in a small physical system,
will not reach convergencewith a number of nodes similar to those
listed in the table. To obtain convergence with a homogenous grid
size, we need to increase the degrees of freedom by one order of
magnitude approximately (107).

3.3. Parallelization

The parallelization of the solver is based on a mesh partitioning
technique using a Master–Slave strategy. Mesh partitioning is
done by METIS [14] and parallelized with an MPI-based strategy.
Fig. 3 shows an interesting refinement example used to solve the
system benzene. The plane of the molecule is plotted in order
to show the grade of refinements. The use of METIS to make
the subdivision of the domain allows splitting it by numbers of
elements, not by size of the domain. As we do not need to pass
any additional information to each process, we divided the domain
weighting by the amount of calculation to give to each processor.
This point is very advantageous with respect to finite differences
Fig. 4. Parallelization scheme.

because in the last case it is necessary to send a ghost point to
the neighboring processors in order to complete the calculation.
Although it is not discussed in this paper, it is worth mentioning
that a second and deeper degree of parallelization is achieved
by opening threads in internal loops using OpenMP directives,
resulting in a hybrid-parallelization strategy. Iterative solvers are
used to solve all the equations. The Master–Slave strategy consists
of the following. The Master reads the simulation and mesh data,
performs its partition and dumps some output files (for example
of the convergence residuals). The slaves build the local element
matrices (Hamiltonian, mass matrix or Laplacian: we refer to all of
this as the LHS) and right-hand side (RHS in case of the solution
of the Poisson equation) and are in charge of the resulting system
solution in parallel. The scheme is illustrated in Fig. 4.

In a finite element implementation, only two kinds of
communications are necessary between sub-domains. The first
type of communication consists of exchanging arrays between
neighbors with MPISendrecv. The strategy is the following. (1) For
each slave, compute elemental LHS and RHS for each element.
(2) For each slave, assemble (scatter) elemental RHS and LHS
into global LHS and RHS. (3) Exchange RHS of boundary nodes,
the nodes belonging to more than one sub-domain, and sum
the contribution. (4) The operations of an iterative solver are
matrix–vector multiplications. Then, for each slave, compute
matrix–vector multiplication. (5) Exchange the results on the
boundary nodes, as was done for the RHS. The second type of
communication is global and of reduce type with MPIReduce. It is
used to compute: (1) the convergence residual: the sumover all the
nodes of the domain. Residuals are required to check the different
convergence tolerances of the scheme. (2) Scalar products: they
take the part of iterative solvers. There are some critical points of
the parallelization strategy. In order to have an efficient algorithm
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Table 3
Convergence analysis for total energy calculation of the ground state in the system Methano. Different grid sizes and several grades of refinement are tested, either with or
without infinite elements outside of the central domain. Convergence error, cpu time, convergence time and number of iterations are compared.

Degrees of freedom Domain Poisson (s) Eigen solver (s) Total energy (hartree) Iter.

1 · 105 Cube 20 a.u. log. 197 525.35 −0.89E0 31
2.3 · 105 Cube 20 a.u. log. 300.92 523.36 −0.95E0 31
5 · 105 Cube 20 a.u. log. 545.0 890 −0.97E0 30
2 · 106 Cube 20 a.u. log. 980 1450 −0.98E0 28
Total mesh 1.1 · 106

+ Cube 10 a.u. log. + 2090 400 −E0 26
Internal mesh 8.0 · 105 Inf. elements 1000 a.u.
Fig. 5. Scalability measures for a mesh of 2M and 3M nodes. (a) Total time from the complete SFC. (b) Poisson and eigen solver times.
to run on thousands of processors, some important aspects of
the parallelization must be carefully treated: mesh partitioning,
node numbering and communication scheduling. The details of the
implementation of these points are given in [35].

The scalability of the code has been studied maintaining the
size of the problem fixed while the number of processors used in
the simulation has been increased (hard scaling), and increasing
the size of the problem, in order to see the relation with a
bigger number of processors (soft scaling). In Fig. 5(a) and (b),
we plot the speed up of the complete self-consistency cycle and
the separate measures taken for the Poisson and the eigensystem
solvers respectively. In all measures the hard scaling exhibits the
expected lost of speed up, except for the case of the 3M mesh,
as more work is carried out in the elemental loops. In the case
of Fig. 5(b), when the independent time is taken for each solver,
both measures show better results on average in the 2M case than
in the 3M, but only up to 512 processors; after this number, the
3M cases show better results as expected. In the case of complete
SCF, this improvement is shown for any number of processors. It
should be mentioned that we have very few elements per CPU in
the rightmost part of the graphs. In fact, for 512 CPUs on the 2M
mesh, we get on average 3900 elements per CPU.

4. Time-dependent DFT

The time-dependent Kohn–Sham equation takes the form
[36,37],

Ĥ(t)ψ(r, t) =


−

1
2
∇

2
+ Veff (r, t)


ψ(r, t) = i

∂ψ(r, t)
∂t

(22)

where this equation describes the evolution of the wave function
ψ in a system perturbed by a changing external potential and
so defined by a time-dependent Hamiltonian operator, Ĥ(t). In
order to determine completely the dynamics of the system, there
is required an initial value condition fixed by the stationary
Kohn–Sham wave function.

Formally, the solution of Eq. (22) may be written as,

ψ(r, t) = Û(t, 0)ψ(r, 0)

= T exp


−i
 t

0
dτ Ĥ(τ )


ψ(r, 0) (23)

where Û is the so-called evolution operator, or time propagator,
and T exp is the time-ordered exponential. In practice, it is
convenient to split the interval [0, t] into smaller time intervals,
and technically we make it with a constant time-step, 1t . So, in a
short propagation,

ψ(r, t +1t)

= Û(t +1t, t)ψ(r, t) ≈ exp

−i1tĤ(τ )


ψ(r, t) (24)

the time dependence of Ĥ is alleviated and the norm of the T expo-
nential argument is reduced (it increases linearlywith1t). Besides,
if the perturbation is small, the equations can be linearized and the
linear response formalism could be used obtaining the first-order
density–density response in the frequency domain [3,11]. In our
case, following a simple formalism exploring the possibility to use
the FEM in all the fields related to TDDFT, an explicit integration
is used. This approximation requires knowing the Hamiltonian at
times t 6 τ 6 t + 1t , where it is unknown. Assuming the sim-
plest approximation to the exponential propagator, time-reversal
symmetry can be enforced which defines [38],

Û(t +1t, t) ≈ exp


−i
1t
2

Ĥ(t +1t)

exp


−i
1t
2

Ĥ(t)

. (25)

The Hamiltonian at time t +1t must be either extrapolated or
approximated with a previous evolution.

In order to do that, the exponential of Ĥ needs to be calculated.
In the present work, the Taylor expansion of the exponential is
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Fig. 6. Absorption spectra of the H2 molecule from a initial kick applied along its
molecular axis (z direction),which is calculated by our implementation TD-DFT. The
experimental lines are shown for comparison.

truncated at order four:

exp(−i1tĤ) ≈

4
n=0

(−i1t)n

n!
Ĥn. (26)

In the FEM formulation we need to solve for each eigenstate
an implicit time-evolution set of equations of the form Ĥψ t+1

=

ψ t where the known state is at time t and the unknown state
is at the next time step. This implicit equation set is solved
using preconditioned conjugated gradient methods. Only some
examples with small molecules and simple perturbations are
treatable until now. We apply it to the H2 molecule with a small
kick at t = 0 in the orthogonal direction to themolecular axis.With
this simple perturbation,we can obtain an approximate absorption
spectra, exhibiting the two characteristic peaks [39]. (See Fig. 6.)

5. Conclusion

Following previous studies, we developed a numerical ap-
proach for solving the DFT and TD-DFT equations that describe
multi-electronic systems. The method is based on the representa-
tion on real space discretized with infinite and finite elements and
it is embedded in a HPC environment. The focus was placed on two
aspects: versatility and high performance computing. It shows a
high capability and potential to solve big systems with great per-
formance and accuracy, allowing the use of hundreds of proces-
sors almost linearly. The use of the finite element method, both for
all-electron and pseudo-potential approximations, showed a very
comfortable adaptability; besides that, the domain decomposition
follows a natural way of reduced communications and bottleneck
effects. The introduction of infinite elements in order to extend the
numerical domain of Poisson’s equation to infinity has also shown
the versatility of the FEM applied to such types of systems. Need-
less to say, for clarity, the inclusion of the infinite element method
doesn’t mean a better selection than a multipole expansion to set
Dirichlet boundary conditions for Poisson’s equation. The inclusion
of infinite elements does not improve accuracy or speed, because
the domain should be large enough so that no furtherDirichlet con-
dition isworth setting in the eigenvalue problem. The advantage, in
a parallel environment, is the elimination of the communications
required by the second approach. Finally, the approach presented
here is far from being a robust tool yet. The TD-DFT implemen-
tation is still under development and various improvements need
to be added: more sophisticated approximations for the evolution
operator, implementation of the linear response theory for small
perturbations, and parallelization over states to improve the scal-
ability [3], are some of the points that require development.
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