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We study the problem of classification for multivariate repeated measures data
with structured correlations on both time and spatial repeated measurements. This
is a very important problem in many biomedical as well as in engineering field.
Classification rules as well as the algorithm to compute the maximum likelihood
estimates of the required parameters are given.
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1. Introduction

We develop classification rules for multivariate repeated measures data with
structured correlations on repeated measurements on both spatial as well as
over time. The available classification rules (Roy and Khattree, 2007) for
multivariate repeated measures data consider structured correlation only on
repeated measurements over time. Nevertheless, in many biomedical applications
just one variable is measured on different parts of the body and repeatedly
over time, where use of structured correlations on repeated measurements on
spatial as well as over time would be natural or beneficial. These problems are
computationally very challenging, as it is not possible to tract them analytically or
find any closed-form solution.
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1412 Roy and Leiva

Classification problems on multivariate repeated measures data, where
measurements on a number of variables are measured repeatedly over time, was
first studied by Gupta (1980, 1986). Roy and Khattree (2007) considered the
problem in small sample situation by assuming Kronecker product structure on a
variance–covariance matrix. They assumed equicorrelated or compound symmetry
as well as autoregressive of order one (AR(1)) correlation structure on the repeated
measurements on a single variable and an unstructured covariance matrix on the
variables at a particular time point. As mentioned before in many clinical trial
problems, it is found that the measurements on a single variable are measured on
different body positions and repeatedly over time. For example, positron emission
tomography (PET) imaging aids in diagnosing different types of dementia. A
healthy brain shows normal metabolism levels (measurements) throughout the scan.
Low metabolism in the temporal and parietal lobes (sides and back) on both
sides (sites) of the brain is seen in Alzheimer’s disease. Repeated measurements
of PET scan over time may diagnose a patient with Alzheimer’s disease. Another
example is the classification of patients between two different osteoporosis drug
treated populations in two clinical trials. Osteoporosis can be detected by a test of
bone mineral density (BMD), the assessments of which are obtained at different
anatomical locations of the body, such as the spine, radius, femoral neck, and the
total hip, and all the measurements are observed repeatedly over time. In this article,
we develop classification rules for these kinds of data. Different time points (p) as
well as different sites (u) may have different measurement variations for the variable,
and we should take these variations into account while analyzing these kinds of
data. It is well known (Harville, 1997) that the correlation structure on the repeated
measurements follows a simple pattern such as compound symmetry or a first-order
autoregressive AR(1) structure as opposed to the unstructured variance–covariance
matrix, where the mean vectors, and the variances and covariances among the
pu measurements are arbitrary. Therefore, for both data sets it is expected that
both measurement variations over time as well as over sites will have patterned
covariance structures. In other words, marginal variance–covariance matrices over
different time points as well as over different sites will have patterned covariance
structures. In this article, we develop classification rules for multivariate repeated
measures data for two classes where both the marginal variance–covariance matrices
over different time points as well as over different sites have patterned covariance
structures.

Let yjr�ts be the measurement on the rth individual at the sth site (location)
and at the tth time point in the jth population, r = 1� � � � � nj , s = 1� � � � � u, t =
1� � � � � p� j = 1� 2. Let yjr�t be the u-variate vector of all measurements corresponding
to the rth individual at the tth time point, that is, for each r, and t, yjr�t is
obtained by stacking the response of the rth individual at the tth time point
at the first site (location), then stacking the response at the second site, and so
on. Let yjr = �y′jr�1� y

′
jr�2� � � � � y

′
jr�p�

′ be the pu-variate vector of all measurements
corresponding to the rth individual in the jth population. For two populations
let Yj = �yj1� yj2� � � � � yjnj � be nj independent random samples from populations
Npu��j��j�, where �j ∈ �pu and the matrix �j is assumed to be pu× pu positive
definite matrix. When �j is unknown and completely unspecified, a total of pu�pu+
1�/2 unknown parameters must be estimated for any statistical inference. This
number increases very rapidly with p and u. Estimation of so many parameters will
require a very large sample (nj > pu), which may not always be feasible for many
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Classification Rules for Repeated Measures Data 1413

biomedical researchers. We circumvent this problem by imposing some structure
on �j . We assume the form of the covariance matrix �j as

�j
pu×pu

= Vj
p×p

⊗ �j
u×u

� (1)

where Vj and �j , respectively, are p× p and u× u positive definite matrices and ⊗
represents the Kronecker product. Several authors (Boik, 1991; Chaganty and Naik,
2002; Galecki, 1994; Huizenga et al., 2002; Mardia and Goodall, 1993; Naik and
Rao, 2001; Roy, 2006a,b; Shults, 2000) have observed many advantages of using
this Kronecker product (separable) structure over usual unstructured variance–
covariance matrix for analyzing multivariate repeated measures data to model the
dependence among spatio-temporal repeated measurements.

Note that if �j = Vj ⊗ �j� then �j =
(
1
�
Vj

)⊗ (
��j

)
, for any non zero real

number �, and therefore parameters in each matrix Vj and �j are not jointly
identifiable unless we impose an appropriate condition. There are several possible
ways to handle this. It is always possible to obtain an estimate of either of them by
taking one of the diagonal elements of either of the component matrices Vj and �j

to be one. Normally, the first or the last diagonal element of Vj is taken to be one.
SAS PROC MIXED (SAS Institute, 2004) always takes the first diagonal element of
Vj to be one when both Vj and �j are unstructured covariance matrices.

As mentioned before, the repeated measurements on the same unit or subject
are correlated on each other and it is often modeled through patterned covariance
structures such as autoregressive of order one AR(1), antedependence, ARMA,
or equicorrelated covariance structure. Among these structures equicorrelation is
a commonly applied assumption in the analyses of many medical and biomedical
univariate repeated measures data. We thus assume both Vj and �j in (1) have
equicorrelated or compound symmetry structures. However, this may result in an
identifiability problem as discussed above. We evade this problem by taking Vj as
an equicorrelated correlation structure so that all diagonal elements of it are one,
and �j as an equicorrelated covariance structure. The matrix �j has the form

�j =
(
�2
j�0 − �2

j�1

)
Iu + �2

j�1Ju�

where Iu is the u× u identity matrix, 1u is an u× 1 vector containing all elements
as unity, Ju = 1u1

′
u, and the correlation matrix Vj , j = 1� 2 has the form

Vj = �1− 	j�Ip + 	jJp�

In this way, �j inherits the benefit of both structures (equicorrelation and
separability) yields an enormous reduction in the number of parameters. Also note
that the matrix �j has the form

�j = Vj ⊗ �j

= Ip ⊗
(
�j�0 − �j�1

)+ Jp ⊗ �j�1
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1414 Roy and Leiva

=



�j�0 �j�1 · · · �j�1

�j�1 �j�0 · · · �j�1
���

���
� � �

���

�j�1 �j�1 · · · �j�0


 �

where

�j�0 = �j�

and

�j�1 = 	j�j �

That is, �j = Vj ⊗ �j is a particular case of the blocked compound symmetry (BCS)
structure. Hypothesis testing on this BCS structure is discussed in Roy and Leiva
(2011). It is clear that �j�0 models the dependence among the components in each
vector yjr�t, and �j�1 models the dependence among the components of different
vectors yjr�t and yjr�t∗ with t �= t∗.

It is well known that

�−1
j = (

�2
j�0 − �2

j�1

)−1
Iu +

1
u

[(
�2
j�0 + �u− 1��2

j�1

)−1 − (
�2
j�0 − �2

j�1

)−1
]
Ju�

That is, �−1
j also has the form

�−1
j = hjIu + kjJu� (2)

where

hj =
(
�2
j�0 − �2

j�1

)−1
�

and

kj =
1
u

[(
�2
j�0 + �u− 1��2

j�1

)−1 − (
�2
j�0 − �2

j�1

)−1
]
�

The determinant of �j is given by

∣∣�j

∣∣ = ∣∣�2
j�1 − �2

j�0

∣∣u−1 ∣∣�2
j�0 + �u− 1��2

j�1

∣∣ � (3)

Now, the elements vlmi of V−1
j are given by

vlmj =




1+ �p− 2�	j

�1− 	j�
1+ �p− 1�	j�
� if l = m�

− 	j

�1− 	j�
1+ �p− 1�	j�
� if l �= m�

(4)

and the determinant of Vj is given by

�Vj� =
(
1+ �p− 1�	j

)
�1− 	j�

p−1� j = 1� 2�
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Classification Rules for Repeated Measures Data 1415

Since Vj has to be positive, we should have − 1
p−1 < 	j < 1. However, we further

assume that 0 < 	j < 1.

2. Classification Rules

Case 1. �1 = �2 �V1 = V2��1 = �2�.

Sample classification rule is given by:
Classify an individual with response y to Population 1 if

(
�̂1 − �̂2

)′(
V̂−1 ⊗ �̂−1

)
y ≥1

2

(
�̂1 − �̂2

)′(
V̂−1 ⊗ �̂−1

)
��̂1 + �̂2�

′ �

and to Population 2 otherwise.

Maximum likelihood estimation (MLE) of �1, �2, V , and �. Let n = n1 + n2 be the
total number of random samples Yj = �yj1� yj2� � � � � yjnj � from Population j� j = 1� 2�
Here we assume �j = ��j�ts�

′
t=1�����p
s=1�����u. Using (2) and(3) the log likelihood function

lnL��1� �2�V ��
Y1�Y2� is given by

lnL = −npu

2
ln�2��− nu

2
ln �V� − np �u− 1�

2
ln
∣∣�2

0 − �2
1

∣∣− np

2
ln
∣∣�2

0 + �u− 1� �2
1

∣∣
− 1

2

2∑
j=1

nj∑
r=1

p∑
m=1

m+1∑
l=m−1

u∑
s=1

hvlm
(
yjr�ls − �j�ls

) (
yjr�ms − �j�ms

)

− 1
2

2∑
j=1

nj∑
r=1

p∑
m=1

m+1∑
l=m−1

u∑
s=1

u∑
s∗=1

kvlm
(
yjr�ls − �j�ls

) (
yjr�ms∗ − �j�ls∗

)
� (5)

An alternative expression for lnL is

lnL = −npu

2
ln�2��− n

2
ln �V ⊗ �� − 1

2
tr �V ⊗ ��−1 �S1 + S2�

− 1
2
tr �V ⊗ ��−1

2∑
j=1

nj

(
ȳj − �j

) (
ȳj − �j

)′
�

where

Sj =
nj∑
r=1

(
yjr − ȳj

) (
yjr − ȳj

)′
� for j = 1� 2�

and ȳj is the sample mean vector for the jth group. The vector ȳj = �ȳ′j�1,
ȳ′j�2� � � � � ȳ

′
j�p�

′, with ȳj�t = 1
nj

∑nj
r=1 yjr�t = �ȳj·�t1� ȳj·�t2� � � � � ȳj·�tu�′, for t = 1� � � � � p. It is

obvious that the MLEs of �j are �̂j = ȳj for j = 1� 2� Now, replacing �j by �̂j the
log likelihood function reduces to

lnL = −npu

2
ln�2��− n

2
ln ��V �u ���p�− 1

2
tr
(
V−1 ⊗ �−1

)
S�

where S = S1 + S2. By substituting the values of �V � and V−1 in the previous
equation we get

lnL = −npu

2
ln�2��− n�p− 1�u

2
ln�1− 	�− nu

2
ln
1+ �p− 1�	�
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1416 Roy and Leiva

− np

2
ln ��� − 1

2�1− 	�
c∗1 +

	

2�1− 	�
1+ �p− 1�	�
d∗
1� (6)

where c∗1 = tr��Ip ⊗ �−1�S� and d∗
1 = tr��Jp ⊗ �−1�S�. Differentiating (6) with

respect to 	, equating it to zero, and simplifying, we get

�p− 1�k0	
3 + 
k0 − �p− 1�k0 + �p− 1�2c∗1 − �p− 1�d∗

1�	
2

+ 
2�p− 1�c∗1 − k0�	+ �c∗1 − d∗
1� = 0� (7)

where k0 = nu�p− 1�p. Alternatively, from (5) we get

lnL = −npu

2
ln�2��− nu

2
�V � − np�u− 1�

2
ln
∣∣h−1

∣∣− np

2
ln
∣∣m−1

∣∣
− 1

2
h

(
b∗1�1 −

1
u
b∗1�2

)
− 1

2u
mb∗1�2�

where

h = 1

�2
0 − �2

1

�

m = 1

�2
0 + �u− 1� �2

1

�

b∗1�1 =
2∑

j=1

nj∑
r=1

p∑
m=1

p∑
l=1

u∑
s=1

vlm
(
yjr�ls − ȳj·�ls

) (
yjr�ms − ȳj·�ms

)′
� and

b∗1�2 =
2∑

j=1

nj∑
r=1

p∑
m=1

p∑
l=1

u∑
s=1

u∑
s∗=1

vlm
(
yjr�ls − ȳj·�ls

) (
yjr�ms∗ − ȳj·�ms∗

)
�

Differentiating (Harville, 1997) the previous equation with respect to h−1 and m−1

separately and then equating them to zero, we get

ĥ−1 = 1
np �u− 1�

(
b∗1�1 −

1
u
b∗1�2

)
� and

m̂−1 = 1
np

b∗1�2�

After some simplifications, we get

�̂2
0 =

b∗1�1
npu

� (8)

and �̂2
1 =

b∗1�2 − b∗1�1
npu �u− 1�

� (9)

The MLEs 	̂, �̂2
0 and �̂2

1 are obtained by simultaneously and iteratively solving
(7)–(9), by substituting the values of vlm; l�m = 1� 2� � � � � p, from Eq. (4). The
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Classification Rules for Repeated Measures Data 1417

computations can be carried out by the following algorithm. The MLE of V is
obtained from

V̂ = �1− 	̂�Ip + 	̂Jp� (10)

and the MLE of � is obtained from

�̂ = Iu
(
�̂2
0 − �̂2

1

)+ Ju�̂
2
1� (11)

Algorithm outline:

Step 1. Get the pooled sample variance–covariance matrix G for the repeated
measures. Then obtain an initial estimate of 	 as 	̂o = �1′pG1p − trG�/p�p− 1��

Step 2. Compute �̂2
0 and �̂2

1 from (8) and (9), and then compute �̂ from (11).

Step 3. Compute c∗1 and d∗
1 using �̂ obtained in Step 2.

Step 4. Compute 	̂ by solving the cubic Eq. (7). Ensure that 0 < 	̂ < 1.
Truncate 	̂ to 0 or 1, if it is outside this range.

Step 5. Compute the revised estimate V̂ from 	̂ by using (10).

Step 6. Repeat Steps 2–5 until convergence is attained. This is ensured by
verifying that the maximum of the absolute difference between two successive values
of 	̂, �̂2

0, and �̂2
1 is less than �. Even though 	 is always between − 1

p−1 and 1, we
have assumed 0 < 	 < 1. Still, 	̂ may fall at the boundary 	 = 1, in which case the
standard asymptotic theory may not be directly applicable; see Self and Liang (1987)
for more details.

Case 2. �1 �= �2 �V1 �= V2��1 �= �2�.
Sample classification rule is given by:
Classify an individual with response y to Population 1 if

2∑
j=1

�−1�j−1

[
ȳ′j
(
V̂−1

j ⊗ �̂−1
j

)
y− 1

2
y′
(
V̂−1

j ⊗ �̂−1
j

)
y
]

≥ 1
2

2∑
j=1

�−1�j−1
[
ln
∣∣∣V̂j

∣∣∣u ∣∣∣�̂j

∣∣∣p + ȳ′j
(
V̂−1

j ⊗ �̂−1
j

)
ȳj
]
�

and to Population 2 otherwise.

Maximum likelihood estimation (MLE) of �1, �2, V1, V2, �1, and �2: As before let nj

random samples Yj = �yj1� yj2� � � � � yjnj � be drawn from Population j� j = 1� 2� Here,
we assume �j = ��j�ts�

′
t=1�����p
s=1�����u. Using (2) and (3) the the log likelihood function

lnL��1� �2�V1�V2��1��2
Y1�Y2� is given by:

lnL = −npu

2
ln 2�− n1�p− 1�u

2
ln�1− 	1�

− n2�p− 1�u
2

ln�1− 	2�−
n1u

2
ln
1+ �p− 1�	1�

− n2u

2
ln
1+ �p− 1�	2�−

n1p

2
ln ��1�

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

ex
as

 S
an

 A
nt

on
io

] 
at

 1
5:

54
 1

2 
M

ar
ch

 2
01

2 



1418 Roy and Leiva

− n2p

2
ln ��2� −

1
2�1− 	1�

c1 −
1

2�1− 	2�
c2

+ 	1

2�1− 	1�
1+ �p− 1�	1�
d1 +

	2

2�1− 	2�
1+ �p− 1�	2�
d2� (12)

where cj = tr��Ip ⊗ �−1
j �Sj� and dj = tr��Jp ⊗ �−1

j �Sj�. Differentiating (12) with
respect to 	j� j = 1� 2, equating it to zero, and simplifying, results in the following
equation:

�p− 1�kj0	
3
j + 
kj0 − �p− 1�kj0 + �p− 1�2cj − �p− 1�dj�	

2
j

+ 
2�p− 1�cj − kj0�	j + �cj − dj� = 0� (13)

where kj0 = nju�p− 1�p. Alternatively from (12), we get

lnL = −npu

2
ln�2��− n1u

2
ln �V1� −

n2u

2
ln �V2� −

n1p �u− 1�
2

ln
∣∣h−1

1

∣∣
− n2p �u− 1�

2
ln
∣∣h−1

2

∣∣− n1p

2
ln
∣∣m−1

1

∣∣− n2p

2
ln
∣∣m−1

2

∣∣
− 1

2
h1b1�1 −

1
2
k1b1�2 −

1
2
h2b2�1 −

1
2
k2b2�2� (14)

where

hj =
1

�2
j�0 − �2

j�1

�

mj =
1

�2
j�0 + �u− 1� �2

j�1

�

bj�1 =
nj∑
r=1

p∑
m=1

p∑
l=1

u∑
s=1

vlmj
(
yjr�ls − ȳj·�ls

) (
yjr�ms − ȳj·�ms

)
�

and bj�2 =
nj∑
r=1

p∑
m=1

p∑
l=1

u∑
s=1

u∑
s∗=1

vlmj
(
yjr�ls − ȳj·�ls

) (
yjr�ms∗ − ȳj·�ms∗

)
�

After some algebraic simplification from (14), we get

lnL = −npu

2
ln�2��− n1u

2
ln �V1� −

n2u

2
ln �V2� −

n1p �u− 1�
2

ln
∣∣h−1

1

∣∣
− n2p �u− 1�

2
ln
∣∣h−1

2

∣∣− n1p

2
ln
∣∣m−1

1

∣∣− n2p

2
ln
∣∣m−1

2

∣∣
− 1

2
h1

(
b1�1 −

1
u
b1�2

)
− 1

2
h2

(
b2�1 −

1
u
b2�2

)
− 1

2u
m1b1�2 −

1
2u

m2b2�2�

Differentiating (Harville, 1997) the above equation with respect to h−1
j and m−1

j

separately and then equating them to zero, we get

ĥ−1
j = 1

njp �u− 1�

(
bj�1 −

1
u
bj�2

)
�
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Classification Rules for Repeated Measures Data 1419

and

m̂−1
j = 1

njpu
bj�2�

After simplification, we get

�̂2
j�0 =

bj�1

njpu
� j = 1� 2� and (15)

�̂2
j�1 =

bj�2 − bj�1

njpu �u− 1�
� j = 1� 2� (16)

The maximum likelihood estimates 	̂1� 	̂2� �̂
2
10� �̂

2
11, �̂2

20, and �̂2
21 are obtained by

simultaneously and iteratively solving (13), (15), and (16). The computations can be
carried out by a similar algorithm presented in Case 1. The MLEs of Vj and �j are
obtained as

V̂j = �1− 	̂j�Ip + 	̂jJp�

and �̂j = Iu
(
�̂2
j�0 − �̂2

j�1

)+ Ju�̂
2
j�1�
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