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In this paper we propose a family of robust estimates for isotonic regression: isotonic

M-estimators. We show that their asymptotic distribution is, up to an scalar factor, the

same as that of Brunk’s classical isotonic estimator. We also derive the influence

function and the breakdown point of these estimates. Finally we perform a Monte Carlo

study that shows that the proposed family includes estimators that are simultaneously

highly efficient under Gaussian errors and highly robust when the error distribution has

heavy tails.
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1. Introduction

Let x1, . . . ,xn be independent random variables collected along observation points t1r � � �rtn according to the model:

xj ¼ mðtjÞþuj, ð1Þ

where the uj’s are i.i.d. random variables with distribution G. In isotonic regression the trend term mðtÞ is monotone non-
decreasing, i.e., mðt1Þr � � �rmðtnÞ, but it is otherwise arbitrary. In this set-up, the classical estimator of mðtÞ is the function
g which minimizes the L2 distance between the vector of observed and fitted responses, i.e, it minimizes

Xn

j ¼ 1

½xj�gðtjÞ�
2 ð2Þ

in the class G of non-decreasing piecewise continuous functions. It is trivial but noteworthy that Eq. (2) posits a finite
dimensional convex constrained optimization problem. Its solution was first proposed by Brunk (1958) and has received
extensive attention in the statistical literature (see, e.g., Robertson et al., 1988 for a comprehensive account). It is also
worth noting that any piecewise continuous non-decreasing function which agrees with the optimizer of (2) at the tj’s will
be a solution. For that reason, in order to achieve uniqueness, it is traditional to restrict further the class G0 to the subset of
piecewise constant non-decreasing functions. Another valid choice consists of the interpolation at the knots with non-
decreasing cubic splines or any other piecewise continuous monotone function, e.g., Meyer (1996). We will call this
estimator the L2 isotonic estimator.
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The sensitivity of this estimator to extreme observations (outliers) was noted by Wang and Huang (2002), who propose
minimizing instead using the L1 norm, i.e., minimizingXn

j ¼ 1

9xj�gðtjÞ9:

This estimator will be call here L1 Isotonic estimator. Wang and Huang (2002) developed the asymptotic distribution of the
trend estimator at a given observation point t0 and obtained the asymptotic relative efficiency of this estimator compared
with the classical L2 estimator. Interestingly, this efficiency turned out to be 2=p¼ 0:637, the same as in the i.i.d. location
problem.

In this paper we will propose instead a robust isotonic M-estimator aimed at balancing robustness with efficiency.
Specifically we shall seek the minimizer ofXn

j ¼ 1

r
xj�gðtjÞbsn

� �
, ð3Þ

where bsn is an estimator of the error scale previously obtained and r satisfies the following properties:
A1
 (i) rðxÞ is non-decreasing in 9x9, (ii) rð0Þ ¼ 0, (iii) r is even, (iv) rðxÞ is strictly increasing for x40, (v) r has two
continuous derivatives and c¼ r0 is bounded and monotone non-decreasing, and (vi) Eðcðu=s0Þ ¼ 0.
Note that in the case that Eðcðu=s0ÞÞ ¼ ca0, Assumption A1 (vi) holds changing the trend function m by mþc. If we
assume errors with symmetric distribution, A1 (vi) holds automatically when c is even. Clearly, the L2 choice corresponds
to taking rðxÞ ¼ x2 while the L1 option is akin to opting for rðxÞ ¼ 9x9. These two estimators do no require the scale
estimator bsn. Note also that the class of M-estimators satisfying A1 does not include estimators with a redescending choice
for c. We believe that the strict differentiability conditions on r required in A1 are not strictly necessary, but they make
the proofs for the asymptotic theory simpler. Moreover, some functions r which are not twice differentiable everywhere
such as 9x9 or the Huber’s functions defined below in (7) can be approximated by functions satisfying A1.

The asymptotic distribution of the L2 isotonic estimators at a given point was found by Brunk (1970) and Wright (1981)
and the one of the L1 estimator by Wang and Huang (2002). They prove that the distribution of these estimators
conveniently normalized converge to the distribution of the slope at zero of the greatest convex minorant of the two-sided
Brownian Motion with parabolic drift. In this paper, we prove a similar result for isotonic M-estimators. The focus of this
paper is on estimation of the trend term at a single observation point t0. We do not address the issue of distribution of the
whole stochastic process fm̂nðtÞ,t 2 T g. Recent research along those lines are given by Kulikova and Lopuhaä (2006) and a
related result with smoothing was also obtained simultaneously in Pal and Woodroofe (2006). The isotonic regression
problem has been also addressed with modern techniques of empirical processes. We refer the reader here to Van de Geer
(2000, p. 58), who shows the uniform consistency of the classical isotonic regression estimator within a class of functions
utilizing methods based on entropy with bracketing.

In order to place this paper within the Statistical Literature, it is worth mentioning that the literature on estimation of a
monotone regression function is by now enormous. In an attempt to describe it, one can broadly distinguish between two
main approaches, based on the type and extent of smoothness assumed for the underlying trend function, denoted by mð�Þ.
The first approach, which we will call the raw isotonic regression approach, only assumes that m is monotonic, with the
result that its estimate m̂ is a non-decreasing piecewise constant function. As mentioned, the main difference within the
raw approach is the choice of r-function in Eq. (3), which yields either classical isotonic regression, median isotonic
regression or the estimators that we propose here in this paper. Those three options also share the property that when t0 is
a point for which m0ðt0Þ exists and is positive, the asymptotic distribution of n�1=3½m̂ðt0Þ�mðt0Þ�, is proportional to the slope
at zero of the greatest convex minorant of two-sided Brownian motion with parabolic drift. Better rates could be obtained
within the classical approach at the expense of stronger smoothness assumptions (e.g., Leurgans, 1982). In this paper we
present estimators that are highly efficient under Gaussian errors as well as highly robust when the error distribution has
heavy tails, and we measure the quantitative robustness by the a version of the influence function and by the asymptotic
breakdown point.

An important advantage of the raw isotonic approach is that it facilitates graphically the detection of change-points or
abrupt changes in the trend mð�Þ, which is of interest in many applications, such as the Global Warming data presented in
Section 7. However, the estimate m̂ð�Þ, being piecewise constant, is less attractive visually than alternative methods that
yield smooth curves as estimates. Moreover, the lack of smoothness of the raw isotonic estimate seems unnatural in such
situations where abrupt changes appear physically unlikely, such as plant or children growth. Accordingly, there has been
interest in the literature in combining smoothness and monotonicity. Friedman and Tibshirani (1984), Mukherjee (1988)
and Mammen (1991) were early contributors, and Ramsey (1998) is a more recent method. All these methods, to which we
will generically refer as the smooth isotonic approach need to assume that mð�Þ is smooth. In this line of work there are two
main choices, namely the selection of a method for smoothing and a technique to achieve a monotone estimate. The usual
options for smoothing include local polynomials, splines, and kernel estimators. Each of these methods regulate the
smoothness of the resulting m̂ð�Þ in its own way, for example by choosing the kernels and the bandwidth in the kernel
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method, or by choosing either the basis of splines, the number of knots, or a penalty term in the splines method. Härdle
and Tsybakov (1988) and Boente and Fraiman (1988) proposed smooth curve robust estimation procedures based on
M-estimators.

The other choice involved in the smooth isotonic approach is the method for monotonization, i.e., a transformation of
the smooth estimates m̂ i so that they are monotone. Basic choices here are an application of the min-max algorithm and the
technique proposed by Dette et al. (2006), which basically exploits a type of duality between isotonic regression and
density estimation. Another necessary decision within the smooth approach consists on the order of the operations, i.e.,
the question of whether it is better to smooth first and isotonify later, to isotonify first and smooth later, or to achieve both
simultaneously for example by incorporating monotonicity constraints in the smooth estimation method (e.g., Hall and
Huang, 2001; He and Shi, 1998). When a two-step method is chosen, there seems be consensus that it is better to smooth
first and monotonify later, because otherwise there is a danger of loosing the monotonic structure (as could happen for
example when smoothing is done by kernels estimator). The smooth isotonic approach differs also with the raw isotonic
approach in a second way (the first difference being that m̂ is smooth). The asymptotic distributions are normal and the
convergence rates depend on the smoothness of m, as given for instance by the number of the continuous derivatives of
mð�Þ, and on the smoothing parameters (such as the bandwidth in the kernel method).

From the robustness point of view, a natural way to obtain a robust, smooth and isotonic estimate of m could be
achieved by first applying Härdle and Tsybakov (1988) or Boente and Fraiman (1988) methods to obtain a robust and
smooth m̂ð�Þ, followed by the isotonification procedure of Dette et al. (2006). We call this proposal the robust-smooth-
isotonic alternative. Our method is better suited to situations in which mð�Þ could be inflicted by change points, while the
robust-smooth-isotonic technique would be a better choice when one desires a smoother estimate m̂ð�Þ.

This paper is structured as follows. In Section 2 we propose the robust isotonic M-estimator. In Section 3 we obtain the
limiting distribution of the isotonic M-estimator when the error scale is known. In Section 4 we prove that under general
conditions the M-estimators with estimated scale have the same asymptotic distribution than when the scale is known. In
Section 5 we define an influence function which measures the sensitivity of the isotonic M-estimator to an infinitesimal
amount of pointwise contamination. In Section 6 we calculate the breakdown point of the isotonic M-estimators. In
Section 7 we analyze two real dataset using the L2 and the isotonic M-estimators. In Section 8 we compare by Monte Carlo
simulations the finite sample variances of the estimators for two error distributions: normal and Student’s with three
degrees of freedom. Appendix A contains the proofs.
2. Isotonic M-estimators

In similarity with the classical setup, we consider isotonic M-estimators that minimize the objective function (3) within
the class G0 of piecewise constant non-decreasing functions. As in the L2 and L1 cases, the isotonic M-estimator is a step
function with knots at (some of) the tj’s. In Robertson and Waltman (1968) it is shown that maximum-likelihood-type
estimation under isotonic restrictions can be calculated via min-max formulae. Assume first that we know that the scale
parameter (e.g., the MAD of uj) is s0. Since we are considering M-estimators with c non-decreasing (see A1), they can be
view as the maximum likelihood estimators corresponding to errors with density:

gðuÞ ¼

exp �
1
s0

R u
0 cðv=s0Þ dv

� �
R1
�1

exp �
1
s0

R u
0 cðv=s0Þ dv

� �
du

� � :
Then we can compute the isotonic M-estimator at a point t using the min-max calculation formulae:

m̂nðtÞ ¼max
ur t

min
vZ t

m̂nðu,vÞ ¼min
vZ t

max
ur t

m̂nðu,vÞ, ð4Þ

where m̂nðu,vÞ is the unrestricted M-estimator which minimizesX
j2Cðu,vÞ

r
xj�m
s0

� �
; ð5Þ

and Cðu,vÞ ¼ fj : 1r jrn;urtjrvg. Alternatively, if r is convex and differentiable, as we are assuming, the terms m̂nðu,vÞ
in (4) can be represented uniquely as a zero of

Snðu,v,mÞ ¼
X

j2Cðu,vÞ

c
xj�m
s0

� �
: ð6Þ

In particular, when rðuÞ ¼�logðgðuÞÞþ logðgð0ÞÞ, where g is a probability density, the isotonic M-estimator coincides with
the maximum likelihood estimator when is u is assumed to have density g. In particular if g is the Nð0,s2

0Þ density, the MLE
is the M-estimator defined by rðuÞ ¼ u2 and therefore it coincides with the classical L2 estimator. When g is the density of a
double exponential distribution, the MLE is the M-estimator defined by rðuÞ ¼ 9u9, and therefore it coincides with the L1

isotonic estimator. In these two cases the estimators are independent of the value of s0. One popular family of c functions
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to define M-estimators is the Huber family:

cH
k ðuÞ ¼ signðuÞminð9u9,kÞ: ð7Þ

Clearly, when s0 is replaced by bsn, Eqs. (4)–(6) still hold with s0 replaced by bsn. Since c is non-decreasing, the function
Snðu,v,mÞ defined in Eq. (6) is non-increasing as a function of m. This entails the fundamental identities given below:

Snðu,v,aÞ40 if and only if m̂nðu,vÞ4a, ð8Þ

Snðu,v,aÞo0 if and only if m̂nðu,vÞoa: ð9Þ

These identities will be very useful in the development of the asymptotic distribution.
3. Asymptotic distribution

In this section we derive the asymptotic distribution of the isotonic M-estimator m̂nðt0Þ of mðt0Þ. We first make the
sample size n explicit in the formulation of the model by postulating:

xn,i ¼ mðtn,iÞþun,i, ð10Þ

where the errors fun,i,1r irng form a triangular array of i.i.d. random variables with distribution G and ftn,i,1r irng is a
triangular array of observation points. Their exact location is described by the function HnðtÞ ¼ n�1

Pn
i ¼ 1 1ðtn,irtÞ. The

values tn,j may be fixed or random but we will assume that there exists a continuous distribution function H which has as
support a finite closed interval such that

sup
t
9HnðtÞ�HðtÞ9¼ oPðn

�1=3Þ: ð11Þ

Without loss of generality we shall assume in the sequel it is the interval [0,1].
We will study the asymptotic distribution of m̂nðt0Þ where t0 is an interior point of [0,1]. The classical L2 isotonic

estimator m̂nðt0Þ, with t0 at the boundary of the support of H, is known to suffer from the so-called spiking problem (e.g., Sun
and Woodroofe, 1999), i.e., m̂nðt0Þ is not even consistent. We further make the following assumptions.
A2
 The function H is continuously differentiable in a neighborhood of t0 with hðt0Þ ¼H0ðt0Þ40.

A3
 For a fixed t0, we assume the function mðtÞ has two continuous derivatives in a neighborhood of t0, and m0ðt0Þ40.

A4
 The error distribution G has a continuous density g with g(0)o0.
We consider first the case where s0 is known. Our first aim is to show that isotonic M-estimation is asymptotically a
local problem. Specifically, we will see in Lemma 1 that m̂nðt0Þ depends only on those xj corresponding to observation
points tj lying in a neighborhood of order n1=3 about t0. This result is similar to Prakasa Rao (1969, Lemma 4.1) who stated
it in the context of density estimation. Our treatment here will parallel that of Wright (1981), who worked on the
asymptotics of the L2 isotonic regression estimator when the smoothness of the underlying trend function mð�Þ is specified
via the number of its continuous derivatives.

Specifically, since H0ðt0Þ40 we may choose for an arbitrary c and n sufficiently large, positive numbers alðnÞ and auðnÞ

for which

Hðt0Þ�Hðt0�alðnÞÞ ¼Hðt0þauðnÞÞ�Hðt0Þ ¼ 2cn�1=3:

With this, define the localized version of the isotonic M-estimator as

mn

nðt0Þ ¼ max
t0�alðnÞour t0

min
t0 rvo t0þauðnÞ

m̂nðu,vÞ: ð12Þ

Then we have the following Lemma

Lemma 1. Assume A1–A4 and (11). Then if m̂nðt0Þ is defined by (4), we have,

lim
c-1

lim sup
n-1

P½m̂nðt0Þamn

nðt0Þ� ¼ 0: ð13Þ

Is is also noteworthy that the estimator in Eq. (12) is not computable, for al and au depend on the distribution H which
is generally unknown. For computational purposes this implies that the calculation of these estimators will indeed be
global for fixed sample sized. Lemma 1 is, however, crucial to study the asymptotic properties of m̂nðtÞ.

Given an stochastic process fZðvÞ,�1ovo1g, we denote by ‘‘slogcm½ZðtÞ�’’ the random variable that corresponds to
the slope at zero of the greatest convex minorant of ZðtÞ. The following theorem gives the asymptotic distribution of m̂nðt0Þ.
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Theorem 1. Assume A1–A4 and (11), Let m̂nðt0Þ be given by (4), then

1

2
m0ðt0ÞH

0
ðt0Þs2

0

EGðc
2
ðu=sÞÞ

½EGðc
0
ðu=sÞÞ�2

" #�1=3

n1=3ðm̂nðt0Þ�mðt0ÞÞ ) slogcm ðWðvÞþv2Þ, ð14Þ

where WðvÞ is a two-sided standard Brownian motion.

Remark 1. Notice that in the case of the L2 isotonic estimator the function rðxÞ ¼ x2, so cðxÞ ¼ 2x and c0ðxÞ ¼ 2 so that
EG(c0ðuÞÞ ¼ 2 and s2

c ¼ s
2
2u ¼ 4s2. Then the standardizing constant is given by

1

2
m0ðt0ÞH

0
ðt0Þ

EGðc
2
ðuÞÞ

ðEGðc
0
ðuÞÞÞ2

¼
1

2
m0ðt0ÞH

0
ðt0Þs2,

as it is known for the L2 isotonic estimator.

Remark 2. In the case of L1 isotonic regression notice that in the function rðxÞ ¼ 9x9, so cðxÞ ¼ signðxÞ for xa0 or else is left
undefined. Our method is thus not applicable as the assumptions on c do not hold. However, consider a sequence of
functions cmðxÞ for which

cmðxÞ ¼

�1, xr�1=m

mx, �1=mþ1=m2oxo1=m�1=m2

1, xZ1=m

8><>: , ð15Þ

and so that there is a continuity of the first 3 derivatives everywhere; for a construction of such type of functions it is
enough to consider quartic splines (e.g., De Boor, 2001). In this setup we get

lim
m-1

EGðc
2
mðuÞÞ ¼ 1,

lim
m-1

EGcm
0
ðuÞ ¼ lim

m-1
m½Gð1=m�1=m2Þ�Gð�1=mþ1=m2Þ� ¼ 2G0ð0Þ:

Letting m-1 and n-1 so that m=n-1, we obtain

lim
n-1

1

2
m0ðt0ÞH

0
ðt0Þ

EGðc
2
nðuÞÞ

ðEGðcn
0
ðuÞÞÞ2

¼
1

8

m0ðt0Þ

½G0ð0Þ�2
H0ðt0Þ,

as it is known in the case of L1 isotonic regression (see Wang and Huang, 2002).

Remark 3. A similar construction to Eq. (15) may be applied to the functions cH
k in the Huber’s family.

4. Robust isotonic M-estimators with a previous scale estimator

We will consider now the more realistic case where s0 is not known and it is replaced by an estimator bsn previously
calculated. Then, in order to obtain an scale equivariant estimator we should replace s0 in (5) and (6) by a robust scale
equivariant estimator bsn. In Remarks 4 and 5 we give some possible choices for bsn.

In the next theorem it is shown that under suitable regularity conditions, it can be proved that if bsn converges to s0 fast
enough, both isotonic M-estimators, the one using the fixed scale s0 and the one using the scale bsn, have the same
asymptotic distribution. Making explicit the scale in the notation, denote the isotonic M-estimator of mðtÞ based on a fixed
scale s by m̂nðt,sÞ. Then

m̂nðt,sÞ ¼min
ur t

max
vZ t

m̂nðu,v,sÞ ¼max
ur t

min
vZ t

m̂nðu,v,sÞ,

where m̂nðu,v,sÞ solves

Snðu,v,sÞ :¼
X

j2Cðu,vÞ

c
xj�m̂nðu,v,sÞ

s

� �
¼ 0, ð16Þ

over Cðu,vÞ :¼ fj : 1r jrn;urtjrvg.
We need the following Additional Assumptions:
A5
 There exists k40 such that c0ðuÞ40 for 9u9ok and c0ðuÞ ¼ 0 if 9u94k.

A6
 The estimator ŝn satisfies n1=3ðŝn�s0Þ ¼ oPð1Þ. ()
Then we have the following theorem:

Theorem 2. Assume A1–A6. Then

n1=39m̂nðt,s0Þ�m̂nðt,ŝnÞ9¼ oPð1Þ:

Assume also that (11) holds, then both estimators have the same asymptotic distribution.
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Remark 4. In the context of nonparametric regression, Ghement et al. (2008) propose to use as scale estimator bsn given by

bsn ¼
1ffiffiffi
2
p sðx2�x1, . . . ,xn�xn�1Þ,

where s is an M-estimator of scale, i.e., sðu1, . . . ,unÞ is defined as the value s satisfying

1

n

X
i ¼ 1

w ui

s

� �
¼ b, ð17Þ

where wðuÞ is a function which is even, non-decreasing for u Z0, bounded and continuous. The right hand side is generally
taken so that if u is N(0,1), EwðuÞ ¼ b. This condition makes the estimator converging to the standard deviation when
applied to a random sample of the N(0,1) distribution. A popular family of functions w to compute scale M-estimators is the
bisquare family given by

wcðuÞ ¼
1� 1�

u

c

� �2
� �3

if 9u9rc,

1 if 9u94c:

8><>: ð18Þ

Ghement et al. (2008) prove that if mðtÞ is continuous under general conditions on w Assumption A6 is satisfied with s0

defined by

EGwc

u

s0

� �
¼ b: ð19Þ

Remark 5. An alternative scale estimator, which does not require the continuity of m, is provided by

bsn ¼
1

F�1
ð3=4Þ

median ð9bu19, . . . ,9bun9Þ

where bu1, . . . ,bun are the residuals corresponding to the L1 isotonic estimator. We conjecture but we do not have a proof
that this estimator also satisfies Assumption A6 with s0 ¼medianGð9u9Þ=F�1

ð3=4Þ.

5. Influence function

In order to obtain the influence function of the isotonic M-estimator at a given point t we need to assume that the pair
(x,t) is random. In this case the isotonic regression model assumes that x¼ mðtÞþu, where u is independent of t and mðtÞ is
non-decreasing. We assume that the error term u has a symmetric density g, and that the observation point t has a
distribution with density h.

We start assuming that s0 is known and suppose that we want to estimate mðt0Þ. Given an arbitrary distribution L of
(t,x), the isotonic M-estimating functional of mðt0Þ which we henceforth denote by Tt0

ðLÞ is defined in three steps as
follows. First for r,sZ0 let mðt0,r,s,LÞ be defined as the value m satisfyingZ 1

�1

Z t0þ s

t0�r
c
ðx�mÞ

s0

� �
dL¼ 0:

Let

m�ðt0,r,LÞ ¼min
sZ0

mðt0,r,s,LÞ

and then Tt0
ðLÞ is defined by

Tt0
ðLÞ ¼max

rZ0
m�ðt0,r,LÞ:

Let Ln be the empirical distribution of fðxn,j,tn,jÞ,1r jrng, then if m̂nðtÞ is the estimator defined in (4), we have

m̂nðtÞ ¼ TtðLnÞ:

It is immediate that if L0 is the joint distribution corresponding to model (1) we have Tt0
ðL0Þ ¼ mðt0Þ, so that the

isotonic M-estimator is Fisher-consistent. Consider now the contaminated distribution:

Le,tn ,xn ¼ ð1�eÞL0þedðtn ,xnÞ,

where dðtn ,xnÞ represents a point mass at ðtn,xnÞ. In this case we define the influence function of Tt0
by

IFn
ðTt0

,tn,xnÞ ¼ lim
e-0

ðTt0
ðLe,tnxn Þ�Tt0

ðL0ÞÞ
2

e : ð20Þ
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Then, we have the following theorem:

Theorem 3. Consider the isotonic regression model given in (1) and let Tt0
be an isotonic M-estimating functional, where t0 is an

interior observation point. Then, under Assumptions A1–A4 we have

IFn
ðTt0

,tn,xnÞ ¼

2m0ðt0Þs09cððx�mðt0ÞÞ=s0Þ9
hðt0ÞEGðc

0
ðu=s0ÞÞ

if tn ¼ t0,

0 if tnat0:

8><>: ð21Þ

Notice that in the numerator of (20) appears the square of the bias instead of the plain bias as in the classical definition
of Hampel (1974). Therefore for the isotonic M-estimator Tt0

the bias caused by a point mass contamination ðt0,xnÞ is of
order e1=2 instead of the usual order of e.

Alternatively, it is also of interest to know what happens when we are estimating mðt0Þ and contamination takes place
at a point tnat0. According to (21), the influence function in this case is zero. This occurs because in this case for e
sufficiently small Tt0

ðLe,tnxn Þ ¼ Tt0
ðL0Þ.

It is easy to show that when we use a scale bsn-s0 defined by a continuous functional, the influence function of the
isotonic M-estimator is still given by (21).

6. Breakdown point

Roughly speaking the breakdown point of an estimating functional Tt0
of mðt0Þ is the smallest fraction of outliers which

suffices to drive 9Tt0
9 to infinity. More precisely, consider the contamination neighborhood VL0 ,e of the distribution L0 of

size e defined as

VL0 ,e ¼ fL : L¼ ð1�eÞL0þeLn
g,

where Ln is an arbitrary distribution of (x,t) such that t takes values in [0,1] and x in R. The asymptotic breakdown point of
Tt0

at L0 is defined by

enðTt0
,L0Þ ¼ inf e : sup

L2VL0,e

9Tt0
ðLÞ9¼1

8<:
9=;:

We start considering the case that s0 is known. Then we have the following theorem.

Theorem 4. Consider the isotonic regression model given in (1) and let Tt0
be an isotonic M-estimating functional where t0 is an

interior observation point. Then under Assumptions A1–A4 we have

enðTt0
,L0ÞZ min

Hðt0Þ

1þHðt0Þ
,
1�Hðt0Þ

2�Hðt0Þ

	 

:

In the special case when H is uniform, this becomes

enðTt0
,L0ÞZ min

t0

1þt0
,
1�t0

2�t0

	 

, ð22Þ

which takes a maximum value of 1=3 at t0 ¼ 1=2.

In the case that s0 is replaced by an estimator bsn derived from a continuous functional S, it can be proved that the
breakdown point of Tt0

satisfies

enðTt0
,L0ÞZ min

Hðt0Þ

1þHðt0Þ
,
1�Hðt0Þ

2�Hðt0Þ
,enðL0Þ

	 

,

where enðL0Þ is the asymptotic breakdown point of the scale estimator.
Ghement et al. (2008) showed that if bsn is defined as in Remark 4, where s is defined by (17)–(19) with c¼0.7094 and b¼3/4,

then enðL0Þ ¼ 0:5. Moreover in this case s0 coincides with the standard deviation when the error has a normal distribution.

7. Examples
Example 1. In this section we consider data on Infant Mortality across Countries. The dependent variable, the number of
infant deaths per each thousand births is assumed decreasing in the country’s per capita income. These data are part of the
R package ‘‘faraway’’ and was used in Faraway (2004). The manual of this package only mentions that the data are not
recent but it does not give information on the year and source. In Fig. 1 we compare the L2 isotonic regression estimator
with the isotonic M-estimator computed with the Huber’s function with k¼0.98 and bsn as in Remark 2, where s is defined
by (17)–(19) with c¼0.7094 and b¼3/4. There are four countries with mortality above 250: Saudi Arabia (650),
Afghanistan (400), Libya (300) and Zambia (259). These countries, specially Saudi Arabia and Libya due to their higher
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Fig. 1. Infant Mortality Data. The solid line corresponds to the classical isotonic regression and the dashed line to the isotonic M-estimate.
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Fig. 2. Word annual weather anomalies 1958–2000. Classical vs. robust estimators.
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relative income per capita, exert a large impact on the L2 estimator. The robust choice, on the other hand, appears to be
resistant to these outliers and provides a good fit.

Example 2. We reconsider the Global Warming dataset first analyzed in the context of isotonic regression by Wu et al. (2001)
from a classical perspective and subsequently analyzed from a Bayesian perspective in Alvarez and Dey (2009). The original
data is provided by Jones et al. (see http://cdiac.esd.ornl.gov/trends/temp/jonescru/jones.html) containing annual temperature
anomalies from 1858 to 2000, expressed in degrees Celsius and are relative to the 1961–1990 mean. Even though the global
warming data, being a time series, might be affected by serial correlation , e.g., Fomby and Vogelsang (2002), we opted for
simplicity as an illustration, to ignore that aspect of the data and model it as a sequence of i.i.d. observations.

In Fig. 2 we compare the L2 isotonic estimator with the L1 alternative. We also computed the isotonic M-estimator used
in Example 1. This estimator cannot be distinguished graphically from the L2 estimator. Inspection of the QQ-plot in the

http://cdiac.esd.ornl.gov/trends/temp/jonescru/jones.html


Table 1
Sample MSE and avar for isotonic regression estimators.

Estimator n¼100 n¼500 Avar

Normal Student3 Normal Student3 Normal Student3

L2 1.93 3.78 1.85 3.65 1.92 3.98

L1 2.38 2.89 2.67 2.76 2.59 2.89

M 2.04 2.86 2.11 2.51 2.06 2.53
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right hand side of the figure reveals a lightly tailed distribution for the residuals. This seems to indicate that the
phenomenon of Global Warming is not due to isolated outlying anomalies, but it is due instead to a steady increasing trend
phenomenon. In our view that validates from the point of view of robustness, the conclusions of other authors on the same
data (e.g., Wu et al., 2001; Alvarez and Dey, 2009) who have rejected the hypothesis of constancy in series of the worlds
annual temperatures in favor of an increasing trend.

8. Monte carlo results

Interestingly the limiting distribution of the Isotonic M-estimator is based on the ratio

EGðc
0
ðu=s0ÞÞ

2

EGðc
2
ðu=s0ÞÞ

as in the i.i.d. location problem (e.g., Maronna et al., 2006). The slower convergence rate, however, entails that the
respective asymptotic relative efficiencies are those of the location situation taken to the power 2/3. Specifically, note that
from Theorem 1 for any isotonic M-estimator:

avarfn1=3½m̂nðt0Þ�mðt0Þ�g ð23Þ

¼
1

2
m0ðt0ÞH

0
ðt0Þ

EG½cðuÞ2�
½EGc

0
ðuÞ�2

" #2=3

var½slogcmðWðvÞþv2Þ�, ð24Þ

where avar stands for asymptotic variance and var for variance.
In order to determine the finite sample behavior of the isotonic M-estimators we have performed a Monte Carlo study.

We took i.i.d. samples from the model (1) with trend term mðtÞ ¼ 10þ5t2 and where the distribution G is N(0,1) and
Student’s t distribution with three degrees of freedom. The values fti ¼ i=ðnþ1Þ,1r irng correspond to a uniform limiting
distribution HðtÞ ¼ t for 0oto1.

We estimated mðt0Þ at t0 ¼ 1=2, the true value of which is mðt0Þ ¼ 11:25 using three isotonic estimators: the L2 isotonic
estimator, the L1 isotonic estimator and the same isotonic M-estimator that was used in the examples. We performed
N¼500 replicates at two sample sizes, n¼100 and 500. Dykstra and Carolan (1998) have established that the variance of
the random variable ‘‘slogcmðWðvÞþv2Þ’’ is approximately 1.04. Using this value, we present in Table 1 sample mean
square errors (MSE) times n2=3 as well as the corresponding asymptotic variances.

We note that for both distributions, the empirical MSEs for n¼500 are close to the avar values. We also see that under
both distributions the M-estimator is more efficient that the L1 one, that the M- estimator is more efficient than the L1 one
for both distributions and that the L1 estimator is slightly less efficient than the L2 estimator for the normal case but much
more efficient for the Student distribution. In summary, the isotonic M-estimate seems to have a good behavior under both
distributions.
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Appendix A

A.1. Proof of Lemma 1

Without loss of generality we can assume that s0 ¼ 1. Given c40, for sufficiently large n there exist positive numbers
blðnÞ and buðnÞ for which

Hðt0Þ�Hðt0�blðnÞÞ ¼Hðt0þbuðnÞÞ�Hðt0Þ ¼ cn�1=3:



E.E. Álvarez, V.J. Yohai / Journal of Statistical Planning and Inference 142 (2012) 2351–23682360
As in Wright (1981), we first argue that

P½m̂nðt0Þam̂n

nðt0Þ�rPðO1nÞþPðO2nÞ,

where

O1n ¼ min
vZ t0

m̂nðt0�blðnÞ,v�o max
ur t0�alðnÞ

m̂n½u,t0�blðnÞ�

	 

, ð25Þ

O2n ¼ max
ur t0

m̂n½u,t0þbuðnÞÞ4 min
vZ t0 þauðnÞ

m̂n½t0þbuðnÞ,v�

	 

: ð26Þ

To see this, note that the complement of O2n is the set in which, for all urt0 and all vZt0þbuðnÞ we have that
fm̂n½u,t0þbuðnÞÞr m̂n½t0þbuðnÞ,v�g. Since c is non-decreasing we can write

m̂n½u,t0þbuðnÞÞr m̂n½u,v�:

This in turn entails that in Oc
2n

mn

nðt0Þ ¼max
ur t0

min
t0 rvo t0þauðnÞ

m̂n½u,v�:

Using the fact that the maximum and the minimum may be reversed in computing these estimators (e.g., Robertson and
Waltman, 1968) and a similar argument for O1n in Eq. (25) one can show that

PfOc
1n \O

c
2ngrPfmn

nðt0Þ ¼ m̂nðt0Þg:

So we need to prove that

lim
c-1

lim supn-1PðO1nÞ ¼ lim
c-1

lim supn-1PðO2nÞ ¼ 0:

We will prove limc-1 lim supn-1PðO1nÞ ¼ 0. The result for O2n can be obtained in a similar manner.
Let

L1n ¼ min
vZ t0

m̂nðt0�blðnÞ,v�omðt0�blðnÞÞ

	 

, ð27Þ

L2n ¼ max
ur t0�alðnÞ

m̂n½u,t0�blðnÞ�4mðt0�blðnÞÞ

	 

: ð28Þ

Since

PðO1nÞrPðL1nÞþPðL2nÞ,

it will be enough to prove that

lim
c-1

lim supn-1PðLinÞ ¼ 0,i¼ 1;2: ð29Þ

Since the proofs of (29) for i¼1 and 2 are similar, (29) will be only proved for i¼1. By the fundamental identity (9) we have

L1n ¼ min
vZ t0

Snðt0�blðnÞ,v,mðt0�blðnÞÞÞo0

	 

: ð30Þ

In the sequel in order to simplify notation we will omit the subindex n writing xn,j ¼ xj, tn,j ¼ tj and un,j ¼ uj making it
explicit only when there is a risk of confusion. We can write

Snðt0�blðnÞ,v,mðt0�blðnÞÞÞ ¼
X

j2Cðt0�blðnÞ,vÞ

cðxj�mðt0�blðnÞÞ ¼
X

j2Cðt0�blðnÞ,vÞ

cðxj�mðtjÞþmðtjÞ�mðt0�blðnÞÞ

¼
X

j2Cðt0�blðnÞ,vÞ

cðujþðmðtjÞ�mðt0�blðnÞÞÞ;

and by a Taylor expansion we get

Snðt0�blðnÞ,v,mðt0�blðnÞÞÞ ¼
X

j2Cðt0�blðnÞ,vÞ

½cðujÞþc
0
ðujþan

j ÞðmðtjÞ�mðt0�blðnÞÞ�,

where 0ra%
j rmðtjÞ�mðt0�blðnÞ. Put t¼ sup c0, then

Snðt0�blðnÞ,v,mðt0�blðnÞÞÞr
X

j2Cðt0�blðnÞ,vÞ

cðujÞþt
X

j2Cðt0�blðnÞ,vÞ

ðmðtjÞ�mðt0�blðnÞÞ:
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Thus, since mðtÞ is increasing we get

min
vZ t0

Snðt0�blðnÞ,v,mðt0�blðnÞÞÞrmin
vZ t0

X
j2Cðt0�blðnÞ,vÞ

cðujÞþt
X

j2Cðt0�blðnÞ,t0Þ

ðmðtjÞ�mðt0�blðnÞÞ: ð31Þ

Put nlðvÞ :¼ #fj : t0�blðnÞrtnjrvg. As nlðvÞZnlðt0Þ, we obtain

min
vZ t0

Snðt0�blðnÞ,v,mðt0�blðnÞÞÞrmin
vZ t0

1

nlðvÞ

X
j2Cðt0�blðnÞ,vÞ

cðujÞþ
t

nlðt0Þ

X
j2Cðt0�blðnÞ,t0Þ

ðmðtjÞ�mðt0�blðnÞÞ: ð32Þ

Therefore the event L1n defined in (30) is included in the event Dn defined by

Dn ¼ max
vZ t0

1

nlðvÞ

X
j2Cðt0�blðnÞ,vÞ

�cðujÞ4
t

nlðt0Þ

X
j2Cðt0�blðnÞ,t0Þ

ðmðtjÞ�mðt0�blðnÞÞ

8<:
9=;:

The equation above can be rewritten in terms of integrals with respect to the empirical distribution of the t’s as

max
vZ t0

1

nlðvÞ

X
j2Cðt0�blðnÞ,vÞ

�cðujÞ4t
Z t0

t0�blðnÞ
9mðsÞ�mðt0�blðnÞÞ9dHnðsÞ: ð33Þ

Since ui, . . . ,un are i.i.d., relabelling the uj’s on the left hand side we get that

PðL1nÞrPðDn

nÞ, ð34Þ

where

Dn

n ¼ max
nlðt0Þrkrn

1

k

X
nlðt0Þr jrk

�cðujÞ42t
Z t0

t0�blðnÞ
9mðsÞ�mðt0�blðnÞÞ9dHnðsÞ

8<:
9=;: ð35Þ

Adding and subtracting dH(s) we can writeZ t0

t0�blðnÞ
½mðsÞ�mðt0�blðnÞÞ�dHnðsÞ ¼

Z t0

t0�blðnÞ
½mðsÞ�mðt0�blðnÞÞ�dHðsÞþ

Z t0

t0�blðnÞ
½mðsÞ�mðt0�blðnÞÞ�dðHnðsÞ�HðsÞÞ: ð36Þ

Using (11), for n large enough, the second term in the above equation is bounded byZ t0

t0�blðnÞ
½mðsÞ�mðt0�blðnÞÞ�dHnðsÞ�HðsÞÞ

�����
�����r2ðmðt0Þ�mðt0�blðnÞÞ sup

t
9HnðtÞ�HðtÞ9r2m0ðt0ÞblðnÞn

�1=3oð1Þ,

and since by the inverse function theorem blðnÞ ¼ c½H0ðt0Þ�
�1n�1=3½1þoð1Þ�, we obtain that for some constant A which does

not depend on c we can writeZ t0

t0�blðnÞ
½mðsÞ�mðt0�blðnÞÞ�dðHnðsÞ�HðsÞÞ

�����
�����rAcn�2=3oð1Þ: ð37Þ

Consider now the first term in the right hand side of Eq. (36). Using (11) we haveZ
ðt0�blðnÞ,t0 �

½mðsÞ�mðt0�blðnÞÞ�dHðsÞ ¼

Z t0

t0�blðnÞ
½mðt0Þ�mðt0�blðnÞÞ�dHðsÞ�

Z t0

t0�blðnÞ
½mðt0Þ�mðsÞ�dHðsÞ

¼ ½mðt0Þ�mðt0�blðnÞÞ�½Hðt0Þ�Hðt0�blðnÞÞ��

Z t0

t0�blðnÞ
½mðt0Þ�mðsÞ�dHðsÞ

r
mðt0Þ�mðt0�blðnÞÞ

blðnÞ

� �
Hðt0Þ�Hðt0�blðnÞÞ

blðnÞ

� �
blðnÞ

2

¼ m0ðt0Þ½1þoð1Þ�H0ðt0Þ½1þoð1Þ�blðnÞ
2
¼ m0ðt0Þ½H

0
ðt0Þ�

�1c2n�2=3½1þoð1Þ�:

ThereforeZ t0

t0�blðnÞ
½mðsÞ�mðt0�blðnÞÞ�dHnðsÞrm0ðt0Þc

2½H0ðt0Þ�
�1n�2=3ð1þoð1ÞÞþ2m0ðt0Þc½H

0
ðt0Þ�

�1n�2=3oð1Þ

rm0ðt0Þc
%½H0ðt0Þ�

�1n�1=3fn�1=3½1þoð1Þ�þ2n�1=3oð1Þg

with c% ¼maxðc,c2Þ. Then, for some constant B which does not depend on c we can writeZ t0

t0�blðnÞ
½mðsÞ�mðt0�blðnÞÞ�dHnðsÞrBc%n�1=3: ð38Þ

Using (30), (33)–(38) we derive that there exists a constant D independent of c such that for n large enough and c41

PðL1nÞrP max
nlðt0Þrkrn

1

k

X
1r jrk

�cðujÞ4Dc2n�1=3

8<:
9=;: ð39Þ
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At this point, we use the H�ajek-Renyi Maximal Inequality (e.g., Shorack, 2000) which asserts that for a sequence y1, . . . ,yn

of independent random variables with mean 0 and finite variances and for a positive non-decreasing real sequence
fbk,k 2 Ng:

P max
mrkrn

Pk
j ¼ 1 yj

bk

�����
�����Zl

( )
r

1

l2

Xm

k ¼ 1

Eðy2
k Þ

b2
m

þ
Xn

k ¼ mþ1

Eðy2
k Þ

b2
k

( )
: ð40Þ

Using this inequality from (39) we get that

PðL1nÞrP max
nlðt0Þrkrn

X
1r jrk

�cðujÞ

k
4Dc2n�1=3

8<:
9=;r

EGðc
2
ðuÞÞ

1

nlðt0Þ
þ
Pn

k ¼ nlðt0Þ

1

k2

� �
D2c4n�2=3

: ð41Þ

Approximating the Riemann sum we obtainXn

k ¼ nlðt0Þ

k�2r
1

nlðt0Þ
ð42Þ

and since by (11) nlðt0Þ ¼ cn2=3ð1þoð1ÞÞ, for n large enough we have

nlðt0Þ
�1r2c�1n�2=3: ð43Þ

Using (41)–(43) we derive that for n large enough

PðL1nÞr
2EGðc

2
ðuÞÞ

D2c4n�2=3nlðt0Þ
r

4EGðc
2
ðuÞÞ

D2c5
:

Then the Lemma follows immediately.

A.2. Proof of Theorem 1

Without loss of generality we can assume that s0 ¼ 1. Since alðnÞ ¼ auðnÞ ¼ 2c½H0ðt0Þ�
�1n�1=3½1þoð1Þ�, and c is arbitrary,

we will consider the localized estimator:

m̂c
nðt0Þ ¼ max

t0�cn�1=3 our t0

min
t0 rvo t0þ cn�1=3

m̂nðu,vÞ ¼max
ur t0

min
vZ t0

m̂c
nðu,vÞ, ð44Þ

where m̂c
nðu,vÞ is defined as the root of

Sc
nðu,v,mÞ ¼

X
j2Dðu,vÞ

cðxj�mÞ ð45Þ

over Dðu,vÞ ¼ fj : 1r jrn; t0�cn�1=3ourtjrvot0þcn�1=3g. Note that the localized estimator depends on the tj’s that lie
on a neighborhood about t0 which shrinks at a rate n�1=3. To proceed with the development of the asymptotic distribution
let now wj ¼ n1=3ðtj�t0Þ, r¼ n1=3ðu�t0Þ and s¼ n1=3ðv�t0Þ. With this notation, m̂c

nðu,vÞ is a root of the partial sums in the
parametrization:

_S
c

nðr,s,mÞ ¼
X

j2Bðr,sÞ

cðxj�mÞ ¼ 0, ð46Þ

where Bðr,sÞ ¼ fj : 1r jrn; rrwjrs; r,s 2 ½�c,c�g. So that the relabelling implies m̂c
nðu,vÞ � _mc

nðr,sÞ. Consequently,

m̂c
nðt0Þ ¼max

rr0
min
vZ0

_mc
nðr,sÞ:

Now a Taylor expansion of mðtjÞ around t0 for any j 2 Bðr,sÞ gives

mðtjÞ ¼ mðt0Þþm0ðt0Þðtj�t0Þþoð9tj�t09Þ ¼ mðt0Þþm0ðt0Þn
�1=3wiþojðn

�1=3Þ

which entails that

xj ¼ mðt0Þþm0ðt0Þn
�1=3wjþujþojðn

�1=3Þ,

where

9ojðn
�1=3Þ9rK1c2n�2=3,

and K1 ¼max c00.
Using the equivariance of M-estimators, the monotonicity of c and the fact that c00 is bounded, it can be proved that

_mc
nðr,sÞ ¼ mðt0Þþ ~mc

nðr,sÞþorsðn
�1=3Þ,
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where ~mc
nðr,sÞ solves

~S
c

nðr,s,mÞ ¼
X

j2Bðr,sÞ

cðn�1=3m0ðt0Þwjþuj�mÞ ¼ 0 ð47Þ

and

9orsðn
�1=3Þ9rK1c2n�2=3:

Thus, using that the wj are bounded over �crrrwirsrc we have

m̂c
nðt0Þ ¼ mðt0Þþ max

�cr rr0
min

0rvr c
~mc

nðr,sÞþoðn�1=3Þ:

This entails that

n1=3½m̂c
nðt0Þ�mðt0Þ� ¼max

rr0
min
vZ0

n1=3 ~mc
nðr,sÞþon

rsð1Þ,

where

9on

rsðn
�1=3Þ9rK2c2:

Then, we only need to obtain the asymptotic distribution of

Dn,c ¼ n1=3 max
rr0

min
sZ0

~mc
nðr,sÞ:

Let ~mcn
n ðr,sÞ be the solution ofX

j2Bðr,sÞ

cðuj�mÞ ¼ 0:

Since 9n�1=3m0ðt0Þwj9rn�1=3m0ðt0Þc we have that

~mc
nðr,sÞ ¼ ~mcn

n ðr,sÞþdnrs, ð48Þ

where

9dnrs9rK3cn�1=3: ð49Þ

We will approximate now nrs as follows:

nrs

n
¼

1

n
#f1r jrn : rr0rwjrsg ¼

1

n
#f1r jrn : t0�rn�1=3rt0rtjrt0þsn�1=3g

¼Hnðt0þsn�1=3Þ�Hnðt0�rn�1=3Þ ¼ ½Hnðt0þsn�1=3Þ�Hðt0þsn�1=3Þ�

þ½Hðt0þsn�1=3Þ�Hðt0�rn�1=3Þ��½Hnðt0Þ�Hðt0Þ� ¼H0ðt0Þðs�rÞn�1=3þoðn�1=3Þ ¼ n�1=3H0ðt0Þðs�rÞ½1þoð1Þ�; ð50Þ

and therefore

nrs ¼ n2=3H0ðt0Þðs�rÞ½1þoð1Þ�, ð51Þ

n1=2
rs ¼ n1=3H0ðt0Þ

1=2
ðs�rÞ1=2

ð1þoð1ÞÞ, ð52Þ

and

n1=3

nrs
¼

1

n1=2
rs H0ðt0Þ

1=2
ðs�rÞ1=2

ð1þoð1ÞÞ
: ð53Þ

Then, taking nrs-1 and applying the law of large numbers is easy to show that ~mcn
n ðr,sÞ-m0 a.s. and therefore by (48) and

(49) ~mcn
n ðr,sÞ-pm0 too. Since ~mc

nðr,sÞ satisfies (47), by a Taylor expansion of ~S
c

nðr,sÞ we getX
Bðr,sÞ

cðujÞ�
X
Bðr,sÞ

c0ðujÞð ~mc
nðr,sÞ�n�1=3m0ðt0ÞwjÞþ

X
Bðr,sÞ

c00ðenj Þð ~m
c
nðr,sÞ�n�1=3m0ðt0ÞwjÞ

2
¼ 0:

Then, we obtain

~mc
nðr,sÞ ¼

P
j2Bðr,sÞcðujÞþm0ðt0Þn

�1=3
P

j2Bðr,sÞwjc
0
ðujÞþn�2=3m0ðt0Þ

2P
j2Bðr,sÞw

2
j c
00
ðenj ÞP

j2Bðr,sÞc
0
ðujÞ� ~mc

nðr,sÞ
P

j2Bðr,sÞc
00
ðenj Þ

2
�2n�1=3m0ðt0Þ

P
j2Bðr,sÞwjc

00
ðenj Þ

and then

n1=3 ~mc
nðr,sÞ ¼

n1=3

n2=3

P
j2Bðr,sÞcðujÞþm0ðt0Þ

1

n2=3

P
j2Bðr,sÞwjc

0
ðujÞþn�1=3m0ðt0Þ

2 1

n2=3

P
j2Bðr,sÞw

2
j c
00
ðenj Þ

1

n2=3

P
j2Bðr,sÞc

0
ðujÞ� ~mc

nðr,sÞ
1

n2=3

P
j2Bðr,sÞc

00
ðenj Þ

2
�2n�1=3m0ðt0Þ

1

n2=3

P
j2Bðr,sÞwjc

00
ðenj Þ

: ð54Þ
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By (47), the Law of the Large Numbers, 9wj9rc and c00 bounded we have

n�1=3m0ðt0Þ
2 1

n2=3

X
j2Bðr,sÞ

w2
j c
00
ðenj Þ-0,

2n�1=3m0ðt0Þ
1

n2=3

X
j2Bðr,sÞ

wjc
00
ðenj Þ-0,

~mc
nðr,sÞ

1

n2=3

X
j2Bðr,sÞ

c00ðenj Þ
2-0

and

1

n2=3

X
j2Bðr,sÞ

c0ðujÞ-ðs�rÞH0ðt0ÞEGðc
0
ðuÞÞa:s::

Then, (54) entails

ðs�rÞEGðc
0
ðuÞÞH0ðt0Þn

1=3 ~mc
nðr,sÞ ¼

1

n1=3

X
j2Bðr,sÞ

cðujÞþm0ðt0Þ
1

n2=3

X
j2Bðr,sÞ

wjc
0
ðujÞþorsð1Þ: ð55Þ

Let

BnðsÞ ¼

m0ðt0Þ

n1=3EGðc
2
ðuÞÞ1=2H0ðt0Þ

1=2

P
j2Bð0,sÞ

cðujÞ if s40

m0ðt0Þ

n1=3EGðc
2
ðuÞÞ1=2H0ðt0Þ

1=2

P
j2Bðs,0Þ

�cðujÞ if so0,

8>>>><>>>>: : ð56Þ

By (52) and the Central Limit Theorem we have that for any set of finite numbers s1,s2, . . . ,sr , �crsirc, the random vector
ðBn,s1

, . . . ,Bn,sr Þ converges in distribution to N(0, SÞ where S¼ ðsijÞ with

sij ¼

si4sj if siZ0,sjZ0,

�si4�sj if sir0,sjr0,

0 if siZ0,sjr0:

8><>:
Moreover, using standard arguments, it can be proved that Bn(s) is tight. Then, we have

BnðsÞ)
D

BðsÞ, ð57Þ

where B is a two sided Brownian motion
As for the second term in the right hand side of (55) define

LnðsÞ ¼

1

n2=3

P
0rwj r s

c0ðujÞwj if s40,

1

n2=3

P
srwj r0

�c0ðujÞwj if so0:

8>>>><>>>>: ð58Þ

For s40 we can write

LnðsÞ ¼
1

n

Xn

j ¼ 1

n2=3c0ðujÞðtj�t0Þ1ðt0rtjrt0þsn�1=3Þ ð59Þ

and then

EðLnðsÞÞ ¼ EGðc
0
ðujÞÞ

Z t0þ sn�1=3

t0

n2=3ðt�t0ÞdHn: ð60Þ

Integrating by parts we getZ t0þ sn�1=3

t0

n2=3ðt�t0ÞdHn ¼ n1=3s2Hnðt0þsn�1=3Þ�

Z t0þ sn�1=3

t0

n2=3HnðtÞ dt ð61Þ

and by (11) we have

n1=3s2Hnðt0þsn�1=3Þ ¼ n1=3s2Hðt0þsn�1=3Þþoð1Þ: ð62Þ

We can writeZ t0þ sn�1=3

t0

n2=3HnðtÞ dt ¼

Z t0þ sn�1=3

t0

n2=3HðtÞ dtþ

Z t0þ sn�1=3

t0

n2=3ðHnðtÞ�HðtÞÞ dt;
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and by (11) we getZ t0þ sn�1=3

t0

n2=3ðHnðtÞ�HðtÞÞ dt

�����
�����rsn�1=3n1=3 sup

t
n1=39HnðtÞ�HðtÞ9¼ oð1Þ: ð63Þ

Therefore by (61)–(63) we getZ t0þ sn�1=3

t0

n2=3ðt�t0ÞdHn ¼ n1=3s2Hnðt0þsn�1=3Þ�

Z t0þ sn�1=3

t0

n2=3HnðtÞ dtþoð1Þ ¼

Z t0þ sn�1=3

t0

n2=3ðt�t0ÞdHþoð1Þ

¼

Z t0þ sn�1=3

t0

n2=3ðt�t0ÞH
0
ðtÞ dtþoð1Þ ¼H0ðt0Þ

Z t0þ sn�1=3

t0

n2=3ðt�t0Þ dtþoð1Þ ¼H0ðt0Þ
s2

2
þoð1Þ

and for (60) we get that for s40

EðLnðsÞÞ ¼ EGðc
0
ðujÞÞH

0
ðt0Þ

s2

2
þoð1Þ: ð64Þ

Now we compute the variance of LnðsÞ. Using (59) we have

LnðsÞ ¼
1

n

Xn

j ¼ 1

n2=3c0ðujÞðtj�t0Þ1ðt0rtjrt0þsn�1=3Þ

varðLnðsÞÞ ¼
varðc0ðuÞÞ

n

Xn

j ¼ 1

n1=3ðtj�t0Þ1ðt0rtjrt0þsn�1=3Þ ¼ n1=3varðc0ðuÞÞ
Z t0þ sn�1=3

t0

ðtj�t0Þ
2dHn

rvarðc0ðuÞÞn1=3s2n�2=3sn�1=3 ¼ varðc0ðuÞÞs3n�2=3 ¼ oð1Þ:

Then by (64) we obtain

LnðsÞ-
pEGðc

0
ðujÞÞm0ðt0ÞH

0
ðt0Þ

s2

2
for s40: ð65Þ

Similarly we can prove that

LnðsÞ-
pEGðc

0
ðujÞÞm0ðt0ÞH

0
ðt0Þ

s2

2
for so0: ð66Þ

Therefore from (55)–(58), (65) and (66) we get that

ðs�rÞ
EGðc

0
ðuÞÞ

EGðc
2
ðuÞÞ1=2

H0ðt0Þ
1=2 n1=3 ~mc

nðr,sÞ)
D
ðBðsÞ�BðrÞÞþ

EGðc
0
ðujÞÞ

EGðc
2
ðuÞÞ1=2

m0ðt0ÞH
0
ðt0Þ

1=2 s2�r2

2
:

Now the rest of the proof is as in Wright (1981).

A.3. Proof of Theorem 2

We require the following Lemma

Lemma 2. Assume A1–A5. Then,

@

@s m̂nðu,v,sÞ
���� ����rk, for all urv: ð67Þ

Proof. Taking the first derivative of Eq. (16) with respect to s yieldsX
j2Cðu,vÞ

c0
xj�m̂nðu,v,sÞ

s

� �
�

1

s2
ðxj�m̂ðu,v,sÞÞ� 1

s
@m̂nðu,v,sÞ

@s

	 

¼ 0

and then

@

@s m̂nðu,v,sÞ ¼�

P
j2Cðu,vÞc

0 xj�m̂nðu,v,sÞ
s

� �
xj�m̂nðu,v,sÞ

sP
j2Cðu,vÞc

0 xj�m̂nðu,v,sÞ
s

� � :

Let Dðu,vÞ ¼ Cðu,vÞ \ fj : 9xj�m̂nðu,v,sÞ9=srkg. Then by A5 we obtain

@

@s
m̂nðu,v,sÞ

���� ����r
P

Dc
0 xj�m̂nðu,v,sÞ

s

� �
xj�m̂nðu,v,sÞ

s

���� ����P
Dc
0 xj�m̂nðu,v,sÞ

s

� � rk:
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Therefore

@

@s
m̂nðu,v,sÞ

���� ����rk, &

Proof of Theorem 2. By the mean value theorem

m̂nðu,v,ŝnÞ ¼ m̂nðu,v,s0Þþ
@

@s m̂nðu,v,sn

nÞðŝn�sÞ,

where sn
n is some intermediate point between s and ŝn. Hence, by Lemma 2 we have

max
ur t

min
vZ t

m̂nðu,v,ŝnÞ�k9ŝn�s09 max
ur t

min
vZ t

m̂nðu,v,sÞrmax
ur t

min
vZ t

m̂nðu,v,ŝnÞþk9ŝn�s09

and A6 implies

n1=39m̂nðt,bsnÞ�m̂nðt,s0Þ9rkn1=39ŝn�s09¼ oPð1Þ: &

A.4. Proof of Theorem 3

Without loss of generality we can assume that s0 ¼ 1. We consider first the case tn ¼ t0. Assume that xnomðt0Þ. Then
dðt0 ,xnÞ represents a contamination model where an outlier is placed at the observation point t0 with value xn which is below
the trend mðt0Þ at the point. Because of that,

m�ðt0,r,Le,t0 ,xn Þ ¼mðt0,r,t0,L0Þ:

Let k¼ kðeÞ be the value such that Tt0
ðLe,t0 ,xn Þ ¼m�ðt0,t0�k,L0Þ ¼mðt0,t0�k,t0,L0Þ. It is immediate that

mðt0�kÞ ¼ Tt0
ðLeÞ ¼mðt0,t0�k,t0,L0Þ: ð68Þ

Then mðt0�k,t0,L0Þ should be the value of m satisfying

ecðx0�mÞþð1�eÞ
Z t0

t0�kðeÞ

Z 1
�1

cðmðtÞþu�mÞhðtÞgðuÞ dt du¼ 0, ð69Þ

and, since by (68) m¼ mðt0�kÞ, we have

ecðx0�mðt0�kðeÞÞÞþð1�eÞ
Z t0

t0�kðeÞ

Z 1
�1

cðmðtÞþu�mðt0�kðeÞÞhðtÞgðuÞ dt du¼ 0: ð70Þ

Applying the Mean Value Theorem to the first term of (70) we can find 0renoe such that

cðxn�mðt0�kðeÞÞÞ ¼cðxn�mðt0ÞÞ�c
0
ðxn�mðt0Þ�kðenÞm0ðt0�kðenÞÞkðeÞ: ð71Þ

As for the second term in (70), we also have thatZ t0

t0�kðeÞ

Z 1
�1

cðmðtÞþu�mðt0�kðeÞÞhðtÞgðuÞ dt du¼

Z xn

t0�kðeÞ

Z 1
�1

cðuÞhðtÞgðuÞ dt du

þ

Z t0

t0�kðeÞ

Z 1
�1

ðmðtÞ�mðt0�kðeÞÞgðuÞhðtÞc0ðuþgÞ du dt,

where 0rgrmðt0Þ�mðt0�kðeÞÞ. By A1 (vi) we have
R1
�1

cðuÞgðuÞ du¼ 0, so that the first term above vanishes. As for the
second term, notice thatZ t0

t0�kðeÞ

Z 1
�1

ðmðtÞ�mðt0�kðeÞÞgðuÞhðtÞc0ðuÞ du dt¼

Z t0

t0�kðeÞ
ðmðtÞ�mðt0�kðeÞÞhðtÞ dt

� � Z 1
�1

c0ðuþgÞgðuÞ du

� �
: ð72Þ

The first integral factor in the right hand side of the above display can be further approximated. By the Mean Value
Theorem, there exists xðtÞ such that t0�kðeÞrxðtÞrt0 andZ t0

t0�kðeÞ
ðmðtÞ�mðt0�kðeÞÞhðtÞ dt¼

Z t0

t0�kðeÞ
m0ðxðtÞÞðt�t0þkðeÞÞhðtÞ dt�

Z t0

t0�kðeÞ
m0ðt0Þðt�t0þkðeÞÞhðtÞ dt

¼
m0ðt0Þhðt0Þ

2
½ðt�t0þkðeÞÞ2�t0

t0�kðeÞ ¼
1

2
m0ðt0Þhðt0Þk

2
ðeÞ: ð73Þ

Using expressions (71)–(73) we obtain that Eq. (70), can be written as

e½cðxn�mðt0ÞÞ�c
0
ðxn�mðt0Þ�kðenÞm0ðt0�kðenÞÞkðeÞ�þð1�eÞ12m

0ðt0Þhðt0Þk
2
ðeÞ
Z 1
�1

c0ðuÞgðuþgÞ du¼ 0:

Dividing both sides of this equation by e and using that kðeÞ-0 and g-0 when e-0 we obtain

lim
e-0

k2
ðeÞ
e ¼�

2cðxn�mðt0ÞÞ

hðt0Þm0ðt0Þ
R1
�1

c0ðuÞgðuÞ du
: ð74Þ
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Finally, according to (68) and using the Mean Value Theorem, we can write

lim
e-0

ðTt0
ðLe,t0 ,xn Þ�Tt0

ðL0ÞÞ
2

e
¼ lim

e-0

ðmðt0�kðeÞÞ�mðt0ÞÞ
2

e
¼ lim

e-0

m02ðtnðeÞÞk2
ðeÞ

e
,

where tnðeÞ-t0. Then using Eq. (74) we obtain that

IFn
ðTt0

,t0,xnÞ ¼ lim
e-0

ðTt0
ðLe,t0 ,xn Þ�Tt0

ðL0ÞÞ
2

e ¼�
2m0ðt0Þcðx0�mðt0ÞÞ

hðt0ÞEGðc
0
ðuÞÞ

¼
2m0ðt0Þ9cðx0�mðt0ÞÞ9

hðt0ÞEGðc
0
ðuÞÞ

:

The proof in the case the that xnomðt0Þ is similar.
We consider now the case tn4t0: To prove this part of the theorem is enough to show that when the contamination

occurs at a point tn4t0, there exists en40, so that eren implies

Tt0
ðLe,tn ,xn Þ ¼ Tt0

ðL0Þ ¼ mðt0Þ

and to prove this is enough to show that

min
sZ0

mðt0,r,s,Le,tn ,xn Þ ¼mðt0,r,0,Le,tn ,xn Þ ¼mðt0,r,0,L0Þ: ð75Þ

When xn
Zmðt0Þ, this is immediate. Consider the case that xnomðt0Þ:

Clearly for 0rsotn

mðt0,r,s,Le,tn ,xn Þ ¼mðt0,r,s,L0Þ4mðt0,r,0,L0Þ: ð76Þ

It is also easy to show that s4tn implies

mðt0,r,s,Le,t,xn ÞZmðt0,r,tn,Le,tn ,xn Þ ð77Þ

and for ro0 and all s

mðt0,r,s,Le,t,xn Þomðt0,0,s,Le,t,xn Þ: ð78Þ

Then, using (76)–(78) and the fact that mðt0,0;0,L0Þ ¼mðt0,0;0,Le,tn ,xn Þ, in order to prove (75), it is enough to show that

mðt0,0,tn,Le,tn ,xn Þ4mðt0,0;0,L0Þ: ð79Þ

Recall that mðt0,0,s,Le,tn ,xn Þ is the solution of

ecðxn�mÞ1ðt0rtnrt0þsÞþð1�eÞVðs,mÞ ¼ 0,

where

Vðs,mÞ ¼

Z 1
�1

Z t0þ s

t0

cðmðtÞþu�mÞdL0ðt,uÞ:

Clearly Vðtn,mð0,tn,L0ÞÞ ¼ 0 and since mðr,t,L0Þ and Vðr,t,mÞ are both increasing in t we get Vðr,tn,mð0;0,L0Þo0. Then,
since c is bounded, we can find en, so that for eoen we have

ecðxn�mÞ1ðt0rtnrt0þsÞþð1�eÞVðs,mð0;0,L0ÞÞo0,

and therefore mð0,tn,Le,tn ,xn Þ4mð0;0,L0Þ. Then (79) holds and this proves the Theorem for the case tn4t0. The proof for
the case tnot0 is similar.

Appendix B. Proof of Theorem 4

Without loss of generality we can assume that s0 ¼ 1. It is easy to see that the least favorable contaminating
distribution is Ln concentrated at dt0 ,x0

where x0 tends to �1 or to 1.
A necessary and sufficient condition for eoen is that the equation:

ecðx0�mÞþð1�eÞ
Z t0

0

Z 1
�1

cðmðtÞþu�mÞhðtÞgðuÞ dt du¼ 0 ð80Þ

have a bounded solution m solution for all x0omðt0Þ and that the equation:

ecðx0�mÞþð1�eÞ
Z 1

t0

Z 1
�1

cðmðtÞþu�mÞhðtÞgðuÞ dt du¼ 0 ð81Þ

have a solution for all x04mðt0Þ.
Taking x0-�1we find that a sufficient condition for the existence of a bounded solution of (80) for all x0omðt0Þ is that

�ekþð1�eÞkHðt0ÞZ0
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and this is equivalent to

er Hðt0Þ

1þHðt0Þ
: ð82Þ

Taking x0-1 we obtain that a sufficient condition for the existence of solution of (81) for all x04mðt0Þ is that

ek�ð1�eÞkð1�Hðt0ÞÞr0

and this equivalent to

er 1�Hðt0Þ

2�Hðt0Þ
: ð83Þ

The theorem follows from (80) and (81).
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