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In the computation of a three–dimensional steady
creeping flow around a rigid body, the total body
force and torque are well predicted using a Bound-
ary Integral Equation (BIE) with a single con-
centrated pair Stokeslet- rotlet located at an in-
terior point of the body. However, the distribu-
tion of surface tractions are seldom considered.
Then, a completed indirect velocity BIE of Fred-
holm type and second-kind is employed for the
computation of the pointwise tractions, and it is
numerically solved by using either collocation or
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Galerkin weighting procedures over flat triangles.
In the Galerkin case, a full numerical quadrature
is proposed in order to handle the weak singu-
larity of the tensor kernels, which is an extension
for fluid engineering of a general framework (Tay-
lor, D. J., 2003, “Accurate and efficient numer-
ical integration of weakly singulars integrals in
Galerkin EFIE solutions”, IEEE Trans. on Anten-
nas and Propag., 51(7):1630-1637). Several nu-
merical simulations of steady creeping flow around
closed bodies are presented, where results com-
pare well with semi-analytical and finite-element
solutions, showing the ability of the method for ob-
taining the viscous drag and capturing the singu-
lar behavior of the surface tractions close to edges
and corners. Also, deliberately intricate geome-
tries are considered.
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1 Introduction
Numerical simulations of steady creeping flows,
or Stokes flows, around closed rigid bodies can
be of interest in fluid engineering and biomedi-
cal engineering problems. Two numerical methods
frequently used are the boundary element method
(BEM) and the finite element method (FEM) [1].

In particular, BEM is based on the formulation
of a boundary value problem (BVP) of elliptic type
as a boundary integral equation (BIE) [2]. In gen-
eral, BEM can be more suitable for problems in-
volving a low ratio of boundary surface to volume,
high accurate boundary stresses, or with incom-
pressible materials, while FEM can be well suited
in the opposite cases. Besides, mixed BEM-FEM
analysis are commonly used [1]. Among the most
relevant differences between BEM and FEM, the
following stand out [1, 2]:

1. Geometry discretization: (i) the mesh genera-
tion for BEM is simpler than for FEM in three-
dimensional (3D) spatial domains with intri-
cate geometries, since in the former only a sur-
face mesh of the domain must be performed in-
stead of a full volume mesh; (ii) an unbounded
domain is immediate to handle with BEM,
while FEM requires a volume mesh on an un-
bounded domain; (iii) identifying connectivity
errors in volume meshes can be more difficult
than in surface meshes;

2. Material properties: (i) the BEM approach
generally uses the Green function in an infi-
nite domain; therefore, it is only applicable
to problems that can be approximated by lin-
ear differential operators; (ii) in homogeneous,
isotropic, linearized 3D elasticity, the funda-
mental solution and mapping properties of the
boundary integral operators remain unchanged

in the incompressible limit, i.e. in the passage
from the Lamé-Navier equations to the Stokes
equations, while the function spaces for FEM
change in the incompressible limit, due to the
appearance of the incompressibility constraint
div(u) = 0 in the domain, which is accounted
for exactly by the Kelvin tensor. As a conse-
quence, a BEM for incompressible materials
(solid or viscous fluids) does not exhibit the so-
called locking effect, a well-known problem in
FEM;

3. Numerical methods: (i) the matrix system in
BEM is dense (fully populated) and, in gen-
eral, non-symmetric, while the FEM system
matrix is much larger, although sparse; (ii) the
linear system obtained with a second kind BIE
has, in general, a better condition number than
that obtained with FEM.

The standard discretization procedure of a BIE
consists of three parts [3]: the tessellation of the
boundary surfaces, the approximation of the solu-
tion field with a linear combination of polynomial
basis functions, and the minimization of the error
of the approximate solution with respect to some
weighting functions. A simple tessellation of the
boundary surface can be performed with flat sim-
plex triangles, or elements, where their vertices are
also the nodes of the boundary mesh. The basis
functions can be defined either on the elements,
the nodes or the edges of the boundary mesh. In
order to find an approximate solution, the residue
is minimized with respect to a set of linearly in-
dependent weighting functions, using e.g. point
collocation or Galerkin weighting techniques.
A point collocation technique minimizes the
residue at a discrete set of points that, in the case of
using constant basis functions, typically consists
of the centroids of the elements. Single surface
integrations are used generating a non-symmetric
system of algebraic equations. Several schemes for
fast integration have been developed for colloca-
tion techniques. For instance, analytic expressions
for surface potentials using isoparametric piece-
wise linear shape functions over flat triangles were
developed in [4], whereas non-linear transforma-
tions for nearly singular integrals over planar tri-
angles were used in collocation techniques in [5].
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Closed forms derived from a side local frame strat-
egy are also commonly employed [6], where the
surface integral over an element is replaced by its
closed contour integration, and a side local frame
is used for each side contribution, with applica-
tions, e.g. in free surface flows [7], seakeeping [8]
and exterior flows [9].
In the Galerkin weighting technique, the residue
is minimized by averaging over the boundary sur-
face, with weighting functions chosen to be identi-
cal to the basis functions. This leads to a symmet-
ric system of linear equations, at the expense of
performing double surface integrations. Examples
of weighted residual techniques in a BIE include
the variational BEM [10], the symmetric BEM,
and the symmetric Galerkin BEM [11–13].
Several boundary integral equations are of Fred-
holm type of first or second kind, and they are
obtained either through direct or indirect integral
formulations [2]. On the one hand, a direct BIE
uses as starting point the weighted residual expres-
sion [2]. All derivatives acting on the unknown
field variables are passed by integration by parts
to the weight functions. When the selected weight
function is a fundamental solution of the differen-
tial equation, an equivalent BIE formulation of the
BVP is obtained. It should be noted that the actual
physical quantities of interest are used from the
outset in this formulation. On the other hand, an
indirect BIE uses as a starting point the potentials
produced by surface layers of (fictitious) singulari-
ties [2]. The surface singularity layers generate the
physical fields of interest, and they are associated
with the so-called influence functions. The surface
singularity layers are distributed on the boundary
and their intensities have to be determined such
that the integrated response is equal to the pre-
scribed boundary data. Next, the surface singu-
larity layers are inserted into the associated po-
tentials, giving the solution fields of the boundary
value problem. Therefore, in this formulation, the
physical variables of interest in the boundary value
problem are not the solution of the BIE, but they
are obtained afterwards by post-treatment. From a
mathematical point of view, the unknowns in the
direct BIE are the traces of the solution of the un-
derlying partial differential equation and its normal
derivative, while the unknowns in the indirect BIE

are the jumps of the traces across the boundary of
the Cauchy data of both the interior and the exte-
rior BVP [2]. From a practical point of view, the
difference between both methods is in the source
points: in the direct method, the free point xxx is the
source point, while in the indirect method the inte-
gration points yyy are the source points.
Indirect formulations for creeping (or Stokes)
flows, with Reynolds numbers Re < 1, are
commonly related to hydrodynamic single- and
double-layer potentials [14–16]. Examples of
creeping flows in fluid engineering and biomedi-
cal engineering include multilevel BEM for steady
Stokes flows in irregular domains [17]; low
Reynolds number flows in spiral microchannels
used in DNA identifying lab-on-a-chip devices
[18]; creeping flow regime in oscillatory-flow mix-
ers with flexible chambers [19], micro-electro-
mechanical systems (MEMS) [20,21], and laminar
flow in compact heat exchangers and microcoolers
in electronics packaging [22].
Ingber and Mammoli [23] have analyzed the case
of BIE for creeping flows, and showed compar-
isons among three different formulations:

(i) Direct velocity BIE (DV-BIE) a Fredholm BIE
of first kind for the velocity is proposed, where
the boundary conditions are given in terms of
velocity components;

(ii) Completed indirect velocity BIE (CIV-BIE)
[24] (or completed double-layer (CDL-BIE)
[25]): it fixes the deficient range of the integral
operator of a double-layer velocity potential,
obtaining a well posed problem and giving the
total force and torque acting on the rigid body;

(iii) Uncompleted direct traction BIE (UDT-BIE)
[26, 27]: an hypersingular BIE for the traction
is developed that is calculated using a regu-
larization technique, with an exterior colloca-
tion scheme to constrain out the six rigid body
eigenmodes.

Furthermore, Keaveny and Shelley [28] employed
a completed indirect traction BIE (CIT-BIE).
Hebeker [29] and Gonzalez [30] proposed related
formulations with smooth surfaces in simple ge-
ometries, and were able to determine the total force
and torque acting on the rigid body, although the
pointwise value of surface traction was not directly
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accessible, nor a Galerkin weighting had been em-
ployed.

In the present work, a completed indirect ve-
locity BIE (CIV-BIE) of Fredholm type and sec-
ond kind is employed to determine the pointwise
value of traction in steady creeping flows around
3D rigid bodies with sharp corners and edges. The
BIE is numerically solved by using either collo-
cation (BEM) or Galerkin weighting procedures
(GBEM). In the Galerkin case, a systematic full
numerical quadrature is employed in order to han-
dle three types of surface integrals with a weak
singularity that arise when calculating the interac-
tion among all the elements of the boundary mesh,
which is an extension for fluid engineering of a
particular framework proposed by Taylor [31] for
the Helmholtz equation. Gauss-Legendre quadra-
ture formulas, and flat simplex triangles are used
in all cases. For easiness of presentation, the
formulation for an isolated rigid body and New-
tonian incompressible viscous fluid is developed.
The present approach is applied to closed surfaces,
and uses either collocation with constant shape
functions or Galerkin weighting with linear shape
functions. Numerical examples display calcula-
tion of the steady creeping flow around several
closed bodies, including, as validation cases, the
unit sphere, the unit cube and the unit torus, other
bodies with edges and corners, and some deliber-
ately intricate geometries. Results are compared to
analytical solutions for several inflow conditions in
the sphere case. In the cube case, comparisons are
made with semi-analytical solutions proposed by
Mustakis-Kim [32] for several inflow patterns. In
other cases, the results are validated using finite el-
ement analysis. Solution convergence under mesh
refinement and numerical stability under mesh per-
turbations with respect to a regular mesh are deter-
mined and compared for all formulations.

2 Boundary integral equation
In this section, the completed indirect veloc-

ity BIE (termed as “completed double-layer BIE”
by [25]) is summarized in the Hebeker [29] ver-
sion, that employs double- and single-layer surface
densities distributed on the body surface.

2.1 Stokes equations for an exterior and
steady creeping flow around a fixed body

When a steady creeping flow passes around a fixed
body of arbitrary shape, the perturbed fluid veloc-
ity vi = vi(xxx), for i = 1,2,3, and pressure p = p(xxx)
fields satisfy the Stokes equations [14]

µ
∂2vi

∂x j∂x j
=

∂p
∂xi

∂vi

∂xi
= 0

(1)

for all points xxx = (x1,x2,x3) in the unbounded ex-
terior domain Ωe to the body surface A, where µ is
the dynamic fluid viscosity. The perturbed veloc-
ity vi(xxx) satisfies the no-slip boundary condition on
the body surface A given by

vi(xxx)+ui(xxx) = 0 for all xxx ∈ A, (2)

where ui(xxx) is the unperturbed velocity, and the
asymptotic behavior at infinity

vi(xxx) = O(1/R)

p(xxx) = O(1/R2)
as R→ ∞ (3)

where R = ‖xxx‖2 is the Euclidean distance from the
origin O(x,y,z).

2.2 Potential of a double-layer surface density
The potential due to a Double-Layer (DL) surface
density ψψψ is defined as [14]

wDL
i (xxx;ψψψ) =

Z
A

K̃i j(xxx,yyy)ψ j(yyy) dAyyy

with K̃i j(xxx,yyy) =− 3
4π

rir jrk

r5 nk(yyy)
(4)

where dAyyy = dA(yyy) is the differential of area,
yyy = (y1,y2,y3) is the source point, rrr = xxx− yyy =
(r1,r2,r3) is the relative position, and r = ‖rrr‖2,
while nnn(yyy) is the external unit normal to the sur-
face A at yyy.
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2.3 Potential of a single-layer surface density
The potential due to a Single-Layer (SL) surface
density φφφ is defined as [14]

wSL
i (xxx;φφφ) =

Z
A

Ŝi j(xxx,yyy)φ j(yyy) dAyyy

where Ŝi j(xxx,yyy) =− 1
8πµ

[
δi j

r
+

rir j

r3

] (5)

2.4 Double and single layer potentials in exte-
rior flows

It is well-known that the velocity wDL
i (xxx;ψψψ) and

pressure pDL(xxx;ψψψ) fields due to a DL potential
generated by a surface density ψψψ decrease as

wDL
i (xxx;ψψψ) = O(1/R2)

pDL(xxx;ψψψ) = O(1/R3)
(6)

as R→ ∞, and cannot exert neither a net force nor
a net torque on the surface A. Since a DL potential
produced by a density ψψψ alone cannot reproduce an
arbitrary regular Stokes flow in the exterior domain
Ωe, Odqvist added an ad-hoc combination of six
SL potentials produced by density layers φφφi to fix
this shortcoming [14, 24]. The densities of these
SL potentials are the eigenfunctions of the adjoint
integral operator of the DL potential. However, in
general they are not explicitly known [24].

2.5 Completed double-layer BIE
The “completed double-layer boundary integral
equation method” [25] completes the deficient
range of the DL potential without recourse to the
eigenfunctions of its adjoint integral operator. It
can be regarded as a compound DL representation
for external flows and it is written as ( [33], Sec.
4.7, p. 127)

vi(xxx) = wDL
i (xxx;ψψψ)+Vi(xxx) (7)

where Vi is a supplementary flow that is required
to be regular in the exterior of the body surface A
and to produce a finite force and torque on A.

2.5.1 The Hebeker alternative
Hebeker ( [33], Sec. 4.7, p. 127, and [29] , Sec. II,
p. 277), identified the supplementary flow V with

the one due to a SL potential, whose density φφφ is
proportional to the density ψψψ of the DL potential
one, i.e.

φφφ(xxx) = χH ψψψ(xxx) (8)

where χH is an arbitrary positive free parameter.
This “Hebeker coupling parameter” takes into ac-
count that the physical units of both surface densi-
ties are different, because φφφ is a force surface den-
sity, or pressure, while ψψψ is a perturbation velocity
surface density. The Hebeker alternative can be
written as the BIE (see appendices A-B)

Z
A

K̃i j ψ j(x) dAy−
Z

A
H̃i j ψ j(y) dAy = ui(x) (9)

for all xxx ∈ A, where

H̃i j = K̃i j +χH S̃i j (10)

with K̃i j and S̃i j given by Eqs. (4-5), respectively.
Equation (9) is a boundary integral equation for
ψψψ(xxx) for all xxx ∈ A and, using matrix notation, is
rewritten as

ggg(xxx) = uuu(xxx) for all xxx ∈ A (11)

which is a BIE of Fredholm type and second kind
with source term uuu(xxx), whereas

ggg(xxx) =
Z

A

[
K̃KKψψψ(xxx)− H̃HHψψψ(yyy)

]
dAyyy for all xxx ∈ A

(12)
is a boundary integral operator with kernels
K̃KK(xxx,yyy) and H̃HH(xxx,yyy). These kernels couple the
double-layer surface density ψψψ at the integration
point yyy and at the field point xxx. In the Hebeker
work [29], an analysis of the influence of the
choice of χH in the numerical solution was per-
formed, using collocation with piecewise bilinear
shape functions on smooth 3D surfaces, showing
little sensitivity around the unit value. Therefore, a
unit value χH = 1 is used in all the examples shown
in this work.
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2.6 Forces and surface traction field computa-
tion

The total body force FFF = (F1,F2,F3) and torque
CCC = (C1,C2,C3) with respect to the origin O(x,y,z)
of the Cartesian coordinate system, are computed
by the surface integrals [24]

FFF =
Z

A
φφφ(yyy) dAyyy and CCC =

Z
A
[yyy×φφφ(yyy)] dAyyy

(13)
The traction field on the body surface is the super-
position of the tractions caused by the single- and
double-layer potentials. The direct value of these
tractions (on the body surface) can be obtained by
computing a boundary integral that is weakly sin-
gular in the first case, and hypersingular in the sec-
ond [30]. Since this work is mainly oriented to a
numerical scheme for the first case, then, as a first
approximation, only the contribution of the single-
layer potential is computed. With this simplifica-
tion, the traction field ti(xxx) = σi j(xxx)n j(xxx) at the
field point xxx, where σi j(xxx) is the stress tensor, is
obtained using (e.g. see [16], Sec. 3.2, Eq. 24, p.
58),

ti(xxx)(e) =−1
2

φi(xxx)−
3

4π

Z
A

K̃ ji(yyy,xxx)φ j(yyy) dAyyy

(14)
for xxx ∈ A, where K̃ ji(yyy,xxx) is the transposed ker-
nel from Eq. (4), and φ j(yyy) is the single-layer sur-
face density given in Eq. (8). It should be noted
that Eq. (14) assumes that the unit normal nnn(xxx) is
well defined at the field point xxx. This restriction
precludes the use of this equation for the compu-
tation of the traction field at points with geomet-
ric discontinuities, such as nodes, edges or vertices
of the polyhedral surface mesh, at least in a clas-
sical sense. This shortcoming is simply avoided
by computing tractions at the element centroids.
Nondimensional body force F̂ , body torque Ĉ and
surface traction τ are defined as

F̂i =
Fi

µU∞L
and F̂ =

F
µU∞L

Ĉi =
Ci

µU∞L2 and Ĉ =
C

µU∞L2

τi(xxx) =
ti(xxx)

µU∞L−1 and τ(xxx) =
t(xxx)

µU∞L−1

(15)

dA
x

A
(q)

y
dA

e
Ω

x
2

x
3

x
1

A
(p)

A
x n(x)

y

n(y)

r=x−y

O

u(x’)

Fig. 1. Sketch of a closed and piecewise smooth surface A with an

exterior flow domain Ωe: the field point xxx, the source point yyy, the

relative position rrr = xxx−yyy, the unit normals nnn(xxx),nnn(yyy), and the

differential areas dAxxx, dAyyy

where U∞ is the (unperturbed) speed, L is a typical
length, F = ‖FFF‖2, C = ‖CCC‖2 and t = ‖ttt‖2. The
subindex i = 1,2,3 indicates the corresponding xi
Cartesian component.

3 Numerical formulations
Two numerical formulations are considered for
solving the integral boundary equation given by
Eq. (9). First, a collocation technique is employed
and, then, a GBEM is used [2, 14]. Numerical re-
sults were found using both methods. In GBEM,
a full numerical quadrature on the four coordi-
nates over triangles is applied, in order to handle
the weak singularity of the kernels. These tech-
niques use a doubly nested loop over the elements
p,q = 1,2, ...,E, where the points xxx and yyy are re-
lated to the elements p,q, respectively, see Fig. 1.
Element and nodal values are denoted with supra
and sub indexes, respectively. The implementation
details are given to Appendix C.

4 Numerical examples
The creeping flows around rigid bodies are con-
sidered, whose centers are placed at the origin of
coordinates. First, a sphere, a torus, and a rigid
cube with flat sides are considered for validation
purposes. In the sphere case, results are com-
pared to analytical solutions for several inflow con-
ditions. In the torus case, results are compared
to a semi-analytical solution developed by Ama-
rakoon et al. [34]. In the cube case, comparisons
are made with semi-analytical solutions proposed
by Mustakis and Kim [32], for several flow pat-
terns in order to check the traction laws close to
the edges and vertices. The results for the paral-
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Table 1. Number of nodes N and number of elements E for each mesh. Meshes 1-11 are structured meshes for the sphere and cube

cases, while mesh 12 is an unstructured mesh built for the cube

Mesh 1 2 3 4 5 6 7 8 9 10 11 12

N 218 386 602 866 1178 1538 2402 3458 4706 5402 6938 674

E 432 768 1200 1728 2352 3072 4800 6912 9408 10800 13072 1344

Table 2. Steady creeping flow around a sphere of radius R . Analytical expressions for the viscous force and torque, with respect to the

center of the sphere, for three incoming flows ( [33])

Incoming Unperturbed Force FFF Torque CCC

flow velocity uuu∞

uniform (U∞,0,0) (6πµU∞R ,0,0) 000

shear U∞(x2,−x1,0)/R 000 (0,0,8πµU∞R 2)

paraboloidal U∞(x2
1 + x2

2,0,0)/R 2 (4πµU∞R ,0,0) 000

Fig. 2. Colormaps of the nondimensional relative traction

τ
(GBEM)
1 /τ

(analytic)
1 (top) and L2 norm of the relative percent

error (bottom), on the sphere surface using GBEM with a Q22
quadrature rule and uniform BEM meshes 5 (left) and 11 (right)

lel flow around the unit cube are also compared
with results of a computation based on solving the
Navier-Stokes equations using FEM. Next, other
geometries with edges and corners, as well as an-
other ones with more intrincate shapes are consid-
ered. The numerical results obtained with BEM
and GBEM are also validated using FEM in some
cases.

4.1 General data

The numbers of nodes N and of elements E for
each BEM mesh z in the sphere and cube cases
are shown in Table 1; meshes 1-11 are structured,
whereas mesh 12 is an unstructured one only used
for the cube case. The modified Taylor “black
box” integrator uses a Gauss-Legendre integration
rule, with n1d quadrature points along each di-
rection implying a total of n4

1d points per inter-
action pair. The effect of varying the number of
quadrature points was analyzed, taking into ac-
count that typically, more Gauss points are needed
for the inner layers. The notation QIJ is intro-
duced, where the first subindex I notes the num-
ber of Gauss-Legendre (GL) points used for the
self-integral and for the first layer of neighboring
elements, and the second subindex J is the num-
ber of Gauss points used for the remaining lay-
ers. For instance, a Q11 integration rule means
one GL point is used for all interaction integrals.
Any suitable direct method for linear systems can
be used in both cases, although collocation gives
a non-symmetric system matrix, whereas Galerkin
weighting leads to a positive definite system ma-
trix. In both cases, the system matrices are full and
well-conditioned. In particular, Gauss or House-
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Fig. 3. Colormaps of the nondimensional traction

τ
(GBEM)
1 /τ

(analytic)
1 (top) and L2 norm of the relative

percent error (bottom), on the sphere surface using GBEM with a

Q22 quadrature rule and perturbed BEM meshes 8 (left) and 11
(right)

holder solvers can be employed in all cases, and
a Cholesky in the second one. In the examples,
the absolute value of the relative error |er| for
the nondimensional body force F̂ is computed as
|er| = |F̂num/F̂(semi)analytical− 1|. It is plotted
as a function of the type of incoming flow, the
quadrature rule QIJ and the number of degrees of
freedom M, where M = 3E in collocation schemes
and M = 3N in Galerkin schemes. A unit value is
used for the Hebeker coupling parameter in all the
examples (χH = 1).

4.2 Collocation vs. Galerkin BEM. Perfor-
mance considerations and computational
cost

The following considerations can be drawn
when comparing performance of collocation and
Galerkin implementations: (i) the net forces ob-
tained with Galerkin BEM are more accurate than
those obtained with collocation BEM; (ii) Galerkin
BEM exhibits monotonic convergence while col-
location BEM does not have this property; (iii) the
system matrix with Galerkin BEM is symmetric
whereas in the case of collocation BEM, it does not
have this property; (iv) in Galerkin BEM, the size
of the solution vector ψψψ is 3N, while it is 3E in col-
location BEM; since N � E for 2D BEM meshes
immersed in 3D, then the Galerkin BEM is less
expensive than collocation BEM in core-memory

resources, especially when dense matrices are em-
ployed, e.g. In general, a Galerkin BEM approach
allows to use more refined meshes for a given size
of the core memory. All these considerations are
supported by the following examples.

4.3 Unit sphere
The sphere test case has analytical solutions for
several inflow conditions. In particular, three in-
flow distributions are considered: uniform, shear,
and paraboloidal [33]). Analytical expressions for
the unperturbed velocity, force, and torque for each
case are summarized in Table 2 [25]. The follow-
ing values are adopted in the numerical simula-
tions: fluid density ρ = 1 kg/m3, kinematic viscos-
ity ν = 1 m2/s, incoming velocity U∞ = 0.001 m/s
along the x1 direction, and sphere radius R = 1 m.
The typical length for the computation of nondi-
mensional force, torque and traction is taken equal
to the sphere diameter, i.e. L = 2R = 2 m.

The exact value of traction on the sphere sur-
face under uniform flow is constant and equal to
ttt = (3/2)µU∞/R eee0

1, where eee0
1 is the unit Carte-

sian vector in the x direction. Figure 2 shows
the colormaps of the nondimensional traction τ1 =
t1/(µU∞L−1) for the uniform BEM meshes 1, 5
and 11 using GBEM with a Q22 quadrature rule.

In order to check the numerical stability of the
solution, computations have also been made with
perturbed meshes obtained by a random displace-
ment of the nodal positions without leaving the
surface of the unit sphere. Figure 3 shows the col-
ormaps of the nondimensional traction τ1 for the
perturbed BEM meshes 6, 8 and 11 using a Q22
quadrature rule.

Regarding the sizes of the solution vector
with collocation and Galerkin implementations of
GBEM, for instance, in the case of mesh 11 in
Table 1, there are 20 814 unknowns when us-
ing Galerkin BEM (3N) and 39 216 unknowns
when using collocation BEM (3E), i.e. approxi-
mately a ratio of 2 to 1. Finally, Fig. 4 shows
the elapsed real time [s] (left) and main com-
puter memory (read/write random-access memory
(RAM)) in [GB] (right), as a function of the num-
ber of elements E, employing a Q22 quadrature
rule and a direct solver (Gauss method) on 4 of
the 6 cores of a Xeon W3690 of 3.47 GHz.
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Fig. 5. Sketch for the axisymmetric creeping flow around a torus

4.4 Unit torus
The axisymmetric creeping flow around a torus of
unit outer diameter D is considered. In this case,
a semi-analytical expression for the drag F1 exists,
given by [34]

F1 = 4
√

2πµU∞c
∞

∑
n=0

(nBn +Cn)

c = a
√

s2
0−1

(16)

where s0 = D/d− 1 = b/a + 1 is a geometric as-
pect parameter, a = d/2 and b = D/2−d, while D
and 2b are the major and the minor diameters, see
sketch in Fig. 5. The coefficients Bn and Cn are ob-
tained solving a system of linear equations where
the coefficients are related to the toroidal harmon-
ics. Equation (16) has been validated by laboratory
measurements of the drag at low Reynolds num-
bers [34].

In the numerical example, a torus with diam-
eters D = 1 and 2b = 0.4 is chosen, which is dis-
cretized using a boundary mesh with 2904 nodes

Table 3. The five flow patterns around a rigid cube defined by

Mustakis-Kim [32]

Name flow pattern uuu∞ m/s

FP-1 parallel flow to edges J− J′′′ (1,0,0)

FP-2 splitting flow (1,0,1)

FP-3 symmetric flow (1,1,1)

FP-4 antisymmetric flow I (1,0,−1)

FP-5 antisymmetric flow II (1,−2,1)

and 5408 elements. The values of the fluid density
ρ, kinematic viscosity ν and incoming velocity uuu∞

are the same as in the unit sphere.

The nondimensional body force F̂1 =
F1/(3πU∞D), with F1 given by Eq. (16), is
F̂1 ≈ 0.9141, while the obtained in the numerical
simulations, using the Q22 quadrature rule, are:
F̂1 ≈ 0.8947 with collocation, and F̂1 ≈ 0.8940
with GBEM (relative errors -2.12 % and -2.20 %,
respectively). Further details are given in [35].

4.5 Unit cube

A cube of unit edge length and flat sides, whose
center is placed at the origin of coordinates, is an-
alyzed. This example is considered to evaluate
the performance of the method to compute flow
around a sharp body. This test is selected as a
crude simplification of phenomena appearing with
MEMS geometries [20, 21]. In the numerical sim-
ulations, the following values are adopted: fluid
density ρ = 1.22521 kg/m3 and kinematic viscos-
ity ν = 1.4528×10−5 m2/s (air at sea level and at
15 ◦C), and edge length L = 1 µm = 10−6 m.

Five flow patterns are considered, which are
summarized in Table 3. Mustakis and Kim
[32] calculated asymptotic approximations to the
nondimensional surface traction τ = O(sp) for
these cases in terms of the distance s to the closest
vertex, which were verified using low-order, spec-
tral, and B-spline boundary elements.
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Fig. 6. Sketch of the quasi 2D steady creeping flow pattern around

the rigid cube [32]: (i) parallel flow along edges J− J′′′; uuu∞ =
(1,0,0) m/s; (ii) splitting flow uuu∞ = (1,0,1) m/s (symmetric

on edges K,K′ and antisymmetric on edges L,L′)

4.5.1 Parallel and splitting flows
The two first flow patterns considered are sketched
in Fig. 6:

a) FP-1: flow parallel to edges J − J′′′, with
uuu∞ = (1,0,0) m/s, see Fig. 6 (left), giving
p =−0.4555;

b) FP-2: splitting flow with uuu∞ = (1,0,1) m/s,
where the flow is splitted at the symmetric
edges K−K′, giving p =−0.0915, and turning
around the antisymmetric edges L− L′, with
p =−0.3333, see Fig. 6 (right).

Both flow patterns FP-1 and FP-2 are quasi
two–dimensional (2D) in the sense that a 2D
wedge flow approximation can be performed close
to the edges J− J′′′, K−K′ and L−L′.

4.5.2 Symmetric and antisymmetric flow pat-
terns

The third, fourth and fifth flows analyzed are a 3D
symmetric pattern and two 3D antisymmetric pat-
terns, as follows:

c) FP-3: symmetric flow with uuu∞ = (1,1,1) m/s,
giving p =−0.31877;

d) FP-4: antisymmetric flow I with uuu∞ =
(1,0,−1) m/s, giving p =−0.62463;

e) FP-5: antisymmetric flow II with uuu∞ =
(1,−2,1) m/s, giving p =−0.62463.

4.5.3 GBEM solution in the unit cube case
A GBEM solution was obtained using the Q21 and
Q22 quadrature rules and mesh 11 (Table 1). It was
compared to Mustakis and Kim asymptotic laws,
evaluating the nondimensional traction τ along the
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Fig. 7. Meridian, equatorial and diagonal (polygonal) coordinates

on the unit cube. The Cartesian coordinate system O(x,y,z) =
O(x1,x2,x3) is centered
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Fig. 8. Quasi 2D steady creeping flow across the middle section of

the unit cube: nondimensional traction τ as a function of the coor-

dinate: equatorial EF (left), front meridian AB (center), and rear

meridian CD (right). GBEM computation (Q21 and Q22 rules,

mesh 11, Table 1) and semi-analytical laws O(sp) [32], as a func-

tion of the distance s to the edge singularity

polygonal lines: front-meridian AB, rear-meridian
CD, equatorial EF and diagonal WI, see Fig. 7.

Figure 8 (left) displays the nondimensional
traction along the equatorial line EF for the par-
allel flow case FP-1. The same figure shows the
nondimensional traction along the front-meridian
line AB and rear-meridian line CD (center and
right plots, respectively) for the splitting flow FP-
2. The middle plot is close to the symmetric split-
ting edges K−K′, while the right one is close to
the antisymmetric edges L−L′.

Figure 9 displays three flow cases: the sym-
metric flow (FP-3, left), the antisymmetric flow I
(FP-4, middle), and the antisymmetric flow II (FP-
5, right).

To evaluate the coefficients matrix terms, the
Q21 quadrature rule gives a time saving of 32 % of
the CPU-time, compared to the Q22 one.
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4.5.4 FEM solution of the parallel FP-1 case
A FEM computation of the parallel flow
uuu∞ = (U∞,0,0) around the unit cube is
performed for validation purposes us-
ing the open source PETSc-FEM (URL:
http://www.cimec.org.ar/petscfem)
code. This is a parallel multi-physics finite
element code [36–38] based on the Message Pass-
ing Interface (MPI, http://www.mpi-forum.org)
and the Portable Extensible Toolkit for Sci-
entific Computations (PETSc, http://www-
fp.mcs.anl.gov/petsc). This code solves the
Navier-Stokes equations using linear elements
with equal-order interpolations for velocity
and pressure fields, stabilized with Streamline
Upwind/Petrov-Galerkin (SUPG) [39] and Pres-
sure Stabilizing/Petrov-Galerkin (PSPG) [40].
The steady state is solved at once, i.e. without
including the temporal term. Since the FEM
computation includes the inertial terms, a very low
Reynolds number is chosen in order to compare
results with the GBEM ones.

The flow case considered is the parallel flow
uuu∞ = (U∞,0,0) m/s, with flow parallel to the edges
J-J′′′ (Fig. 6, left). The Reynolds number is set to
Re = 0.001 by choosing kinematic fluid viscosity
ν = 0.1 m2/s, incoming velocity U∞ = 10−4 m/s
along the x1 direction, and cube side length L = 1
m. The FEM solution is almost insensitive to the
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Fig. 10. Cartesian τ1 component of the nondimensional traction for

the parallel flow uuu = (U,0,0) m/s, as a function of the meridional

and equatorial coordinates sm (left) and se (right), with FEM (solid

line) and GBEM (crosses, using the Q22 quadrature rule and mesh

11). See Fig. 7, left and center, for the position of the points A− I

Reynolds number. The flow is aligned with the
x axis and, due to symmetry considerations, only
one fourth of the domain (y,z ≥ 0) is considered.
The finite element mesh is built by extrusion of a
surface mesh having 50x50 quadrangles on each
side of the cube, i.e. it has 50× 50× 6/4 = 3750
quadrangles on 1/4 of the cube inside a prismatic
domain. The nodal spacing is non-uniform, with
a logarithmic refinement towards the edges of the
cube, where the results show large friction values.
This refinement is such that the linear size h of the
quadrangles near the center of the face is in a ra-
tio of 5:1 to the size near the edges. The surface
mesh is extruded into 50 layers of hexahedral el-
ements in the radial direction from the cube sur-
face, up to an external cube of length Lext = 50
m. The width of layers in the radial direction is
also refined towards the internal cube surface in
such a way that the width of the external layer is
in a ratio of 40:1 to the layer adjacent to the cube
skin. Boundary conditions are as follows: velocity
uuu = uuu∞ m/s at inlet (x =−Lext/2), pressure p = 0 at
outlet (x = Lext/2), slip boundary condition at the
lateral walls y,z =±Lext/2, and non-slip boundary
condition uuu = 000 at the cube.

With this setup the computed value for the
nondimensional body force is F̂1 = F1/(µU∞L) ≈
13.760. The numerical experiment was performed
with several values of Lext and mesh refinement in
order to assess the sensitivity of this result with
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respect to those parameters. These series of exper-
iments have shown that this result is particularly
sensitive to the size of the computational domain
Lext. This is so because the slip boundary condi-
tions are equivalent to a lattice of mirrors of the
cube with a spacing of ∆y = ∆z = Lext. Then, each
cube sees an effective external field given by U∞

plus the velocity induced by the other cubes in the
array. This field decays very slowly (as O(1/Lext))
for Lext → ∞, so that very large domains must be
used in order to reduce the error. For instance, the
error when using Lext = 10 is estimated in 15%.
Computations for a sphere, for which the drag can
be computed analytically, show a similar behavior.

The traction map obtained with GBEM is close
to the FEM one, whereas the nondimensional body
force is approximately 5% lower than the FEM
value. This difference is worth commenting on.
Both results fall within the interval (Kmin,Kmax)
predicted by an analytic computation. In the com-
putation with GBEM, the result is sensitive to the
number of quadrature points, whereas for FEM the
most influential parameter is the size of the com-
putational domain. In both cases, some residual
error may be due to insufficient mesh refinement.
This is especially true in the FEM case because the
strong variation of friction near the edges degrades
the convergence with respect to the mesh refine-
ment. Figure 10 shows the Cartesian τ1 compo-
nent of the nondimensional traction of the parallel
flow uuu∞ = (U∞,0,0), as a function of the merid-
ian (polygonal) coordinate sm (left), and as a func-
tion of the equatorial one se (right), obtained with
FEM (solid line) and GBEM (crosses) computa-
tion, where the last one was obtained with the Q22
quadrature rule and mesh 11.

4.6 Analysis of the solution convergence un-
der mesh refinement

4.6.1 Unit sphere
The absolute value of the relative error |er| for
the total nondimensional body force F̂1 and body
torque Ĉ3 over the unit sphere is plotted for dif-
ferent quadrature rules QIJ , and for noisy meshes
(Fig. 11). Three incoming flow types are con-
sidered: er(F̂1) uniform flow (left), er(Ĉ3) shear
flow (middle) and er(F̂1) paraboloidal flow (right).
Note that when GBEM is used, the convergence is
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Fig. 11. Absolute value of the relative error |er%| of the nondi-

mensional body force F̂1 and body torque Ĉ3 as a function of the

number of degrees of freedom M and the QIJ quadrature rule with

noisy meshes on the unit sphere: F̂1 uniform flow (left), Ĉ3 shear

flow (center) and F̂1 paraboloidal flow (right). Collocation (top) and

GBEM (bottom)

almost monotone whereas collocation BEM does
not show a monotonic convergence in all cases (see
for instance the incoming paraboloidal flow condi-
tion). Note also that, with GBEM convergence is
affected when only one Gauss point is used for in-
tegrating the inner layers and so the Q22 or the Q21
Gauss points rules are recommended.

4.6.2 Unit cube
Since there is no analytical solution for the unit
cube, bounds and semi-numerical values are taken
as a reference. For instance, the drag force is
bounded by Fmin < F < Fmax, with Fmin = 3πµU∞L
and Fmax =

√
3Dmin, where L is the cube edge

length, and U∞ = ||uuu∞||2. The corresponding
nondimensional body force interval is F̂min < F̂ <
F̂max, with F̂min = 3π and F̂max = 3

√
3π. The rela-

tive errors computed taking as reference the results
from the more refined mesh (mesh 11) are plotted
in Fig. 12 with a Galerkin BEM (solid line) and
with a collocation BEM (dashed line) for: uniform
flow (left), shear flow (middle) and paraboloidal
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Fig. 12. Absolute value of the relative error |er%| of the nondi-

mensional body force F̂1 and body torque Ĉ3 as a function of the

number of degrees of freedom M and the QIJ quadrature rule with

smooth meshes on the unit cube: F̂1 uniform flow (left), Ĉ3 shear

flow (center) and F̂1 paraboloidal flow (right). Collocation (top) and

GBEM (bottom)

flow (right). The nondimensional body force F̂1
and body torque Ĉ3 over the unit cube obtained
with the more refined mesh (mesh 11, Table 1)
are: F̂1 ≈ 13.078, Ĉ3 ≈ 8.716 and F̂1 ≈ 3.697 for
uniform, shear and paraboloidal incoming flows,
respectively. It is worth noting that the nondi-
mensional body forces obtained in the uniform
flow case are close to the geometric mean F̂gm =(
F̂min F̂max

)1/2 given by F̂gm = 3π
4
√

3 ≈ 12.404.
The nondimensional traction for the 3D steady
creeping flows around the cube vertex are plotted
in Fig. 9 as a function of the (polygonal) coordi-
nate along the diagonal WI coordinate on the top
plane.

In the case of flow parallel to edges J-J′′′ (par-
allel flow uuu∞ = (1,0,0) m/s, Fig. 8), the nondi-
mensional body force along the x1-Cartesian direc-
tion, computed using mesh 11 and the Q22 quadra-
ture rule, is, approximately, F̂1 ≈ 13.078. While
the proposed scheme is a low-order method, how-
ever, the traction on the unit cube shown in Figs.
8-9 compare favorably well compared to those ob-

tained using elements either low order, spectral
and B-spline used by Mustakis and Kim [32].

4.7 Other geometries with edges and corners
Other geometries with edges and corners are con-
sidered: a concave cube, a hollow cube and a
sculpted sphere. The geometries were meshed us-
ing NETGEN mesher [41] in all cases. The mini-
mum and maximum nodal coordinates are -1/2 and
+1/2, respectively, and the considered flow pattern
is the symmetric flow FP-3 (Table 3). The meshes
are:

(i) Concave cube (CC): the unit cube is deformed
symmetrically in such a way that the six
faces of the cube are concave smooth sur-
faces. For this purpose, the normal displace-
ment δ(ξi,ξ j) = ±0.2cos(πξi)cos(πξ j) is ap-
plied to the nodes of the mesh, where ξi,ξ j are
the local Cartesian coordinates in each plane of
the cube and centered at the center of each face
(4 706 nodes and 9 408 elements);

(ii) Hollow cube (HC) [41] (4 904 nodes and 9 824
elements): the unit cube is intersected by a
sphere and by a complement of a sphere;

(iii) Sculpted sphere (SS) [41] (6 062 nodes and
12 128 elements): the unit sphere is intersected
by a smaller one and three cylinders oriented
according to the coordinate axes.

These cases have been also solved by FEM, us-
ing the PETSc-FEM code by considering a steady
state strategy, with the aim of validating the drag
forces obtained with collocation and GBEM. With
this objective, the fluid domain in each case was
proposed large enough to avoid perturbations orig-
inated at the channel boundaries. Volume meshes
were also generated with NETGEN [41], consid-
ering a refinement towards the body surfaces, and
such that surface meshes were the same for both
BEM and FEM problems. Approximate mesh
sizes are the following: the CC was solved with
779 000 tetrahedra and 132 000 nodes; the HC
with 805 000 tetrahedra and 155 000 nodes; and
the SS with 736 000 tetrahedra and 127 000 nodes.
Since the fluid flow is incompressible, velocity is
fixed at the inlet section of the channel, and pres-
sure is given at the outlet, while null velocity is
applied over all the body surfaces. On the chan-
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Fig. 13. Other geometries with edges and corners: concave cube (left), hollow cube (middle) [41] and sculpted sphere (right) [41]. Colormaps

of the τ1 nondimensional traction for the parallel flow uuu∞ = (1,0,0) m/s using the Q22 quadrature rule. Collocation (top) and GBEM

(bottom)

Table 4. Nondimensional body force F̂1 on the intricate geometries

of Figs. 13-14 under uniform flow (1,0,0) m/s. BEM (left), GBEM

(middle), and FEM (right)

Geometry F̂BEM
1 F̂GBEM

1 F̂FEM
1

CC 12.431 12.232 12.106

HC 12.300 12.448 13.136

SS 8.893 9.551 10.052

nel walls, slip conditions were adopted. Kinematic
viscosity and reference velocities were chosen to
match the same Re number as in BEM simulations.

The GBEM solutions are obtained using the
Q22 quadrature. The colormaps of the nondimen-
sional traction τ1 obtained with collocation and
GBEM are plotted in Fig. 13, showing the max-
imum value and their distribution on the body sur-
face. The nondimensional body force F̂1 along the
x1-Cartesian direction obtained with BEM, GBEM
and FEM are summarized in Table 4.

4.8 Deliberately intricate 3D geometries
Three deliberately intricate 3D geometries are con-
sidered. They are taken from the “180 wrapped
tubes” repository [42]. The wrapped tubes case
can be considered as a first approximation of
twisted fibers or microscopic organisms. The ge-
ometries were meshed for BEM/GBEM using the

NETGEN mesher [41]. In all cases, the surfaces
are not touching each other and enclose a posi-
tive finite volume. As in these deliberately intri-
cate 3D geometries are very complicated to per-
form a volume mesh, the corresponding FEM val-
idations will not be performed. The minimum and
maximum nodal coordinates are -1/2 and +1/2, re-
spectively, and the considered flow pattern is the
symmetric flow FP-3 (Table 3). Adopting the
nomenclature given in both references, the follow-
ing cases and meshes are chosen:

i) Pentagon knots (case (3, 2/3, -5/5) in [42]):
1 681 nodes and 3 362 elements;

ii) Circle knots (case (2, 3/2) in [42]): 2 578 nodes
and 5 156 elements;

iii) Triangle knots (case (1, 3, -6/3) in [42]): 1 364
nodes and 2 728 elements.

The colormaps of the nondimensional traction τ1
obtained with collocation and GBEM are shown
in Fig. 14. The nondimensional traction τ1 shows
an increased intensity near the edges and impact
points, and they do not differ significantly from
those corresponding to the sphere or cube.

5 Conclusions
A completed indirect velocity boundary inte-

gral equation of Fredholm type and second kind
has been employed for steady exterior Stokes flow
around three–dimensional rigid bodies. It has been
numerically solved using collocation and Galerkin
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Fig. 14. Deliberately intricate 3D geometries using wrapped tubes [42]: pentagon knots (left), circle knots (middle) and triangle knots (right).

Collocation (top) and GBEM (bottom)

procedures. The boundary integral equation has
been formulated as a combination of double- and
single- layer potentials with densities defined over
the closed surface. The formulation is an exten-
sion of the “completed double-layer boundary in-
tegral equation method”. In the present strategy,
a surface single-layer density has been used, with-
out introducing a surface density of rotlets. Rigid
body motions have been filtered assuming that the
single-layer density has a linear dependence on the
double-layer density, through the free positive pa-
rameter of Hebeker χH . Numerical experiments
showed that the unit value criterion (χH = 1) was
appropriate to obtain good results. In the Galerkin
weighting procedure, the surface integrals that ex-
press the pairwise interaction among all elements,
have been approximated using an extended Taylor
integration scheme, with a full numerical quadra-
ture on the four coordinates in order to handle
the weak singularity of the kernels with a general
framework. The numerical examples consisted of
the steady creeping flow around closed bodies, in-
cluding bodies with edges and corners, and some
deliberately intricate geometries. Issues on the
convergence under mesh refinement and numeri-
cal stability under small mesh perturbations were
analyzed and compared for different formulations.

Different numbers of Gauss–Legendre quadra-
ture points along each direction have been used in
the tests. It was noted that with Galerkin BEM, a
monotone convergence behavior was attained for

all integration rules and incoming flow types. On
the other hand, collocation BEM exhibited non–
monotone convergence in some cases. A quadra-
ture rule with two Gauss-Legendre points for both
the self-integral and first layer of neighboring ele-
ments, and one point for the remaining layers has
been found to give a reasonable compromise for
computation in highly refined meshes, with econ-
omy of calculation. The system matrix obtained
with a Galerkin technique is fully populated, as in
most standard BEM schemes; however, it is sym-
metric and positive definite which enables a better
coupling of BEM and FEM matrices. The trac-
tion field was computed using a weakly singular
surface integral related to the single-layer surface
density. The singular behavior of the surface trac-
tion on edges and corners in the unit cube test
for some steady creeping flows has been close to
the singularity exponents obtained with a semi-
analytical computation of Mustakis and Kim. The
parallel flow case in the unit cube, concave cube,
hollow cube and sculpted sphere has been also val-
idated with a finite element analysis that solve the
Navier-Stokes equations. The colormaps of the
surface traction and the friction line pattern of the
velocity field near edges and corners did not show
numerical instabilities nor severe precision loss.
Nevertheless, the traction field has been somehow
smeared.
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Appendix A: The Power-Miranda formulation
Power and Miranda [24] identified the supplemen-
tary flow V with the one produced by a point force
and a rotlet, setting [33]

vi(xxx) = wDL
i (xxx;ψψψ)+qik(xxx)αk + rik(xxx)βk (17)

for all xxx ∈Ωe, where wDL
i (xxx;ψψψ) is the perturbation

velocity due to the potential produced by the DL
density ψψψ, whereas

qik(xxx) =− 1
8πµ

[
δik

R
+

xixk

R3

]
(18)

is the Stokeslet [33], and

rik(xxx) =− 1
8πµ

εipqδpkxq

R3 (19)

is the rotlet [33]. In the expressions above δik is
the Kronecker delta and εi jk is the Levi-Civita (or

third-order permutation) symbol. Thus, this for-
mulation adds to the DL potential, a Stokeslet of
strength αk and a rotlet of strength βk, both lo-
cated at the origin. The Stokeslet exerts a total
force equal to its strength and a zero total torque
on any closed surface enclosing it, whereas the rot-
let exerts a total torque equal to its strength and
zero total force on any closed surface enclosing it.
Meanwhile, the potential with a well-defined DL
surface density ψψψ yields zero total force and torque
on the closed surface A. Therefore, the total force
and torque resulting from the flow field defined by
Eq. (17) are equal to the strengths ααα and βββ, respec-
tively ( [14] (Sec. 6.2, p. 196)). If the DL density
ψψψ is sufficiently smooth, it is known that the re-
lated velocity wDL

i (xxx;ψψψ) satisfies the jump prop-
erty across a closed surface A (e.g. see [16], Sec.
3.2, Eq. 22, p. 57)),

wwwDL(xxx;ψψψ)(i)−wwwDL(xxx;ψψψ)(e) = ψψψ(xxx) (20)

where xxx ∈ A, while subscripts (i) and (e) denote
the limit values of wwwDL(xxx;ψψψ) from inside or out-
side of the surface A, respectively. They are given
by

wDL
i (xxx;ψψψ)(i) = +

1
2

ψi(xxx)+wDL
i (xxx;ψψψ)

wDL
i (xxx;ψψψ)(e) =−1

2
ψi(xxx)+wDL

i (xxx;ψψψ)
(21)

whereas wDL
i (xxx;ψψψ) denotes the direct value of

wDL
i (xxx;ψψψ) on the surface A, and it is given by Eq.

(4). It is known that on smooth surfaces [25],

Z
A

K̃i j(xxx,yyy) dAyyy =
1
2

δi j (22)

where K̃i j is given by Eq. (4). On the other hand,
if the SL density φφφ is smooth enough, bounded and
integrable, then the related velocity wwwSL(xxx;φφφ) is
continuous in the whole space R3, i.e.

wwwSL(xxx;φφφ)(i) = wwwSL(xxx;φφφ)(e) = wwwSL(xxx;φφφ) (23)
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Appendix B: The Hebeker formulation
In the Hebeker formulation, the perturbed velocity
vi(xxx) is thought of as the sum of the DL and SL
velocities, i.e.

vi(xxx) = wDL
i (xxx;ψψψ)+wSL

i (xxx;φφφ) for all xxx ∈Ωe

(24)
Since the SL density φφφ is equivalent to a continu-
ous distribution of point forces on the surface A,
this potential is able to exert a net torque on the
body and, then, it is not necessary to introduce any
rotlet. Next, replacing Eq. (8) into Eq. (5) results

wSL
i (xxx;ψψψ) = χH

Z
A

Ŝi j(xxx,yyy)ψ j(yyy) dAyyy (25)

with Ŝi j given by Eq. (5). Then, Eq. (24) is rewrit-
ten as

vi(xxx) = wDL
i (xxx;ψψψ)+wSL

i (xxx;ψψψ) for all xxx ∈Ωe.
(26)

Replacing Eq. (26) into the no-slip boundary con-
dition on the body surface A, given by Eq. (2)

wDL
i (xxx;ψψψ)(e) +wSL

i (xxx;ψψψ)(e) +ui(xxx) = 0 (27)

for all xxx ∈ A. Replacing wDL
i (xxx;ψψψ)(e) and

wSL
i (xxx;ψψψ)(e) by the exterior limit case of Eqs. (21)

and (23), respectively,

−1
2

ψi(xxx)+wDL
i (xxx;ψψψ)+wSL

i (xxx;ψψψ) =−ui(xxx)
(28)

for all xxx ∈ A. By using the identity ψi(xxx) =
δi jψ j(xxx), and replacing wDL

i (xxx;ψψψ) and wSL
i (xxx;ψψψ)

by Eqs. (4) and (25), respectively, and dropping
the arguments in the kernels K̃i j(xxx,yyy) and S̃i j(xxx,yyy)
for simplicity in the notation, results

−1
2

δi jψ j(xxx)+
Z

A
K̃i jψ j(yyy) dAyyy

+χH

Z
A

S̃i jψ j(yyy) dAyyy =−ui(xxx)
(29)

for all xxx∈ A. Using Eq. (22) in the first term on the
left hand side of Eq. (29), introducing ψ j(xxx) into
the integral sign, and rearranging, Eqs. (9-10) are
obtained.

Appendix C: Numerical formulations
Collocation using constant elements
Assuming that the DL density layer ψψψ on the sur-
face of each element is constant, it can be extracted
out of the surface integrals in Eq. (9) and using
a standard collocation technique, it results in the
system of equations

E

∑
q=1

[Z
A(q)

K̃KK(p,q) dAyyyψψψ
(p)

−
Z

A(q)
H̃HH(p,q) dAyyyψψψ

(q) ] = uuu(p)

(30)

where the elemental matrices H̃HH(p,q) =
H̃HH(xxx(p),xxx(q)) and K̃KK(p,q) = K̃KK(xxx(p),xxx(q)), as
well as the vectors ψψψ(p) = ψψψ(xxx(p)), ψψψ(q) = ψψψ(xxx(q))
and uuu(p) = uuu(xxx(p)) are evaluated at the ele-
ment centroids xxx(p) and xxx(q), respectively, for
p,q = 1,2, ...,E. By reordering

(WWW −χHSSS)ψψψ = uuu (31)

where

ψψψ =
[
ψψψ(1) ψψψ(2) ... ψψψ(E)

]T ∈ R3E×1

uuu =
[
uuu(1) uuu(2) ... uuu(E)

]T ∈ R3E×1
(32)

are global vectors. The global matrices WWW and SSS
are given by the sums

WWW =
E

∑
q=1

WWW (p,q)

SSS =
E

∑
q=1

SSS(p,q)

(33)

respectively, with p = 1,2, ...,E, where

WWW (p,q) =


E

∑
q=1,q6=p

KKK(p,q) when q = p

−KKK(p,q) otherwise
(34)
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and the elemental matrices are defined as

KKK(p,q) =
Z

A(q)
K̃KK(p,q) dAyyy

SSS(p,q) =
Z

A(q)
S̃SS(p,q) dAyyy

(35)

It is known that the system of equations (31) is reg-
ular and well conditioned [2, 14].

Galerkin weighting using linear elements
Linear approximations ψ̂ψψ

(p,q) and ûuu(q) for the
densities ψψψ(p,q)(xxx) ∈ R3×1 and velocity uuu(q)(xxx) ∈
R3×1 fields are assumed, respectively, on the sur-
face of the p and q simplex triangles, that is,

ψψψ
(p)(xxx)≈ ψ̂ψψ

(p) = NNN(p)(xxx)ψψψ(p)

ψψψ
(q)(xxx)≈ ψ̂ψψ

(q) = NNN(q)(xxx)ψψψ(q)

uuu(q)(xxx)≈ ûuu(q) = NNN(q)(xxx)uuu(q)

(36)

where the element shape functions NNN(p,q)(xxx) ∈
R3×9 are given by

NNN(p)(xxx) =
[
NNN(p)

i (xxx) NNN(p)
j (xxx) NNN(p)

k (xxx)
]

NNN(q)(xxx) =
[
NNN(q)

r (xxx) NNN(q)
s (xxx) NNN(q)

t (xxx)
] (37)

respectively, which are the restrictions of the nodal
shape functions NNNi(xxx), NNN j(xxx) and NNNk(xxx) on the p
element, and NNNr(xxx), NNNs(xxx) and NNNt(xxx) on the q ele-
ment, respectively, while the global node numbers
of the triangles p and q are the counterclockwise
sequences (i, j,k) and (r,s, t), respectively, see Fig.
15. The vectors ψψψ(p) and ψψψ(q) are given by

ψψψ
(p) =

ψψψi
ψψψ j
ψψψk

∈R9×1 and ψψψ
(q) =

ψψψr
ψψψs
ψψψt

∈R9×1

(38)
with

ψψψh =

ψ3h−2
ψ3h−1
ψ3h

 ∈ R3×1 (39)

for nodes 1 ≤ h ≤ N, where N is the number of
nodes on the boundary mesh, while the element
source vector is

uuu(p) =

uuui
uuu j
uuuk

∈R9×1 with uuuh =

U3h−2
U3h−1
U3h

∈R3×1

(40)
The standard Galerkin weighting technique

employs the shape functions NNNh(xxx) to enforce Eq.
(11) through the orthogonality conditions

Z
A

NNNT
h (xxx)ĝgg(xxx) dAxxx =

Z
A

NNNT
h (xxx)ûuu(xxx) dAxxx (41)

for nodes h = 1,2, ...,N, where N is the number of
nodes on the boundary mesh, and the supra-index
T denotes transposition. The nodal shape func-
tions on Eq. (41) are arranged as

NNNT (xxx) =


NNNT

1 (xxx)
...

NNNT
h (xxx)
...

NNNT
N(xxx)

 ∈ R3N×3 (42)

with

NNNT
h (xxx) =

Nh(xxx) 0 0
0 Nh(xxx) 0
0 0 Nh(xxx)

 (43)

and

Nh(xxx) = ∑
e∈patch(h)

N(e)
h (xxx) (44)

where patch(h) is the patch of adjacent elements
around the h node. In what follows, the orderR

dz
R

dy
R

dx f (x,y,z) is used, where the in-
tegrations are performed from right to left, in-
stead of

R R R
f (x,y,z) dx dy dz. The functions

ĝgg(xxx), ûuu(xxx) ∈ R3×1 in Eq. (41) are given by

ggg(xxx)≈ ĝgg(xxx) =
E

∑
p=1

ĝgg(p)(xxx) (45)
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and

uuu(xxx)≈ ûuu(xxx) =
E

∑
p=1

ûuu(p)(xxx) =
E

∑
p=1

NNN(p)(xxx)uuu(p)

(46)
respectively, where

ĝgg(p)(xxx) =
E

∑
q=1

ĝgg(p,q)(xxx) with

ĝgg(p,q)(xxx) =
Z

A(q)
dAyyy

×
[
KKK(xxx,yyy)ψ̂ψψ(p)(xxx)−HHH(xxx,yyy)ψ̂ψψ(q)(yyy)

] (47)

and uuu(p) is given by

uuu(p) =

uuui
uuu j
uuuk

∈R9×1 with uuui =

U3i−2
U3i−1
U3i

∈R3×1

(48)
Taking into account the compact support of the
nodal shape functions NNNh(xxx), replacing Eqs. (45-
47) into Eq. (41) results

E

∑
p=1

ĝgg(p) =
E

∑
p=1

b̂bb
(p)

(49)

The left hand side of Eq. (49) leads to the system
matrix of the Galerkin approximation, i.e.

ĝgg(p) =
Z

A(p)
dAxxx

{
NNN(p)T (xxx)

E

∑
q=1

ĝgg(p,q)(xxx)

}

=
Z

A(p)
dAxxx

{
NNN(p)T (xxx)

E

∑
q=1

Z
A(q)

dAyyy

×
[
KKK(xxx,yyy)ψ̂ψψ(p)(xxx)−HHH(xxx,yyy)ψ̂ψψ(q)(yyy)

]}
= ĝgg(p)

1 + ĝgg(p)
2

(50)
where

ĝgg(p)
1 =

E

∑
q=1

Z
A(p)

dAxxx

Z
A(q)

dAyyy

×
[
NNN(p)T (xxx) KKK(xxx,yyy) NNN(p)(xxx)

]
ψψψ

(p)

=
E

∑
q=1

III(p,q)
ψψψ

(p)

(51)

and

ĝgg(p)
2 =

E

∑
q=1

Z
A(p)

dAxxx

Z
A(q)

dAyyy

×
[
NNN(p)T (xxx) HHH(xxx,yyy) NNN(q)(yyy)

]
ψψψ

(q)

=
E

∑
q=1

JJJ(p,q)
ψψψ

(q)

(52)

while the III(p,q) and JJJ(p,q) matrices are given by

III(p,q) =
Z

A(p)
dAxxx

Z
A(q)

dAyyy

×
[
NNN(p)T (xxx) KKK(xxx,yyy) NNN(p)(xxx)

] (53)

and

JJJ(p,q) =
Z

A(p)
dAxxx

Z
A(q)

dAyyy

×
[
NNN(p)T (xxx) HHH(xxx,yyy) NNN(q)(yyy)

] (54)

respectively. Finally, the second term of Eq. (49)
gives the right hand side of the Galerkin system
and it is given by

b̂bb
(p)

=
Z

A(p)
dAxxx NNN(p)T (xxx)ûuu(p)(xxx)

=
Z

A(p)
dAxxx

[
NNN(p)T (xxx) NNN(p)(xxx)

]
uuu(p)

= MMM(p) uuu(p)

(55)
where the MMM(p) matrix is given by

MMM(p) =
Z

A(p)
dAxxx

[
NNN(p)T (xxx)NNN(p)(xxx)

]
(56)

Then, Eq. (41) results in the system of equations

E

∑
p=1

E

∑
q=1

[
III(p,q)

ψψψ
(p)− JJJ(p,q)

ψψψ
(q)
]

=
E

∑
p=1

MMM(p)uuu(p)

(57)
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Fig. 15. Master triangles p and q for the simplex coordinates

Double-surface integrals over flat triangles with
a weak singularity
The interaction integrals III(p,q) and JJJ(p,q) given by
Eqs. (53) and (54), respectively, involve double-
surface integrals of the form

ZZZ =
Z

A(p)

Z
A(q)

LLL(xxx,yyy) dAyyy dAxxx (58)

performed over elements p and q. This is a quadru-
ple integral, whose integrand can be written as a
multiplicative kernel LLL = RRRGGG, where RRR = RRR(xxx,yyy) is
a regular function and GGG = GGG(r) is the Green func-
tion of the problem, with r = ‖xxx− yyy‖2, containing
a weak singularity O(1/r). Then, Eq. (58) can be
transformed by using two simplex coordinate sets,
i.e. (ξ1,ξ2) over the element p and (η1,η2) over
the element q (Fig. 15):

(ξ1,ξ2) : 0≤ ξ1 ≤ 1 ; 0≤ ξ2 ≤ ξ1

(η1,η2) : 0≤ η1 ≤ 1 ; 0≤ η2 ≤ η1
(59)

The generic points on each of these triangles are
transformed to elements p and q using

xxx(ξ1,ξ2) = NNN(p)(ξ1,ξ2)xxx(p)

yyy(η1,η2) = NNN(q)(η1,η2)xxx(q)
(60)

with the element shape functions

NNN(p)(ξ1,ξ2) =
[
(1−ξ1) (ξ1−ξ2) ξ2

]
NNN(q)(η1,η2) =

[
(1−η1) (η1−η2) η2

] (61)

and the element nodal coordinates at the triangle
vertices

xxx(p) =

xxxi
xxx j
xxxk

 ; xxx(q) =

xxxr
xxxs
xxxt

 (62)

Then, Eq. (58) is written as

ZZZ =
Z

A(p)

Z
A(q)

LLL(xxx,yyy) dAyyy dAxxx = J(p)J(q) L̃LL (63)

where J(p),(q) = 2A(p),(q) are the Jacobians of each
element, and A(p),(q) are their areas, respectively,
whereas L̃LL is written in simplex coordinates as

L̃LL =
Z 1

0

Z
ξ1

0

Z 1

0

Z
η1

0
LLL(ξξξ,ηηη) dη2 dη1 dξ2 dξ1

(64)
If the pairs of elements p and q are not contigu-
ous nor coincidents, the kernel of Eq. (64) is reg-
ular and a Gauss–Legendre quadrature can be em-
ployed. When the pairs have a common edge or
a common vertex, then edge or vertex weak sin-
gularities appear. If the pairs have both facets co-
incident, the whole integration domain is weakly
singular. A systematic way to calculate the dou-
ble surface integrals with flat triangular elements
was given in [31], and extended in [43], based on
a convenient reordering of the four iterate integra-
tions that moves the weak singularity to the origin
by using the Duffy transformations [31], i.e. the
procedure regularizes the integrand by using polar
coordinates. Then, a Gauss–Legendre numerical
quadrature is used on the four coordinates. Further
details can be found in [31, 35, 43, 44].
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