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Abstract. In this work, we develop a game-theoretic framework in which pro and
con arguments are put forward. This framework intends to capture winning strate-
gies for different defense criteria. In turn, each possible extension semantics sat-
isfies a particular defense criterion. To ensure that only semantics satisfying given
criteria are obtained, protocols for playing have to be defined, being the ensuing
winning strategies full characterizations of the corresponding criteria. Admissibil-
ity and strong admissibility are two of those criteria proposed in the literature for
the evaluation of extension semantics; here, we also introduce two weaker criteria,
pairwise and weak cogency, for the evaluation of non-admissible semantics, and
we define specific game protocols capturing them.
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Introduction

Argumentation is a process in which arguments for and against some claim are put for-
ward by contending parties. While it might adopt different patterns, a very general char-
acterization of argumentation starts from a general set of arguments and a given “attack”
relation among them. In [8], Dung formalizes an argumentation framework as a tuple
AF = 〈A,�〉, which consists of a set of arguments A and the attack relation�⊆ A×A.
Given A, B ∈ A, A � B means that A attacks B. For simplicity, we will only consider
finite argumentation frameworks, i.e., frameworks based in a finite set A.2

The main problem for argumentation frameworks is the determination of which ar-
guments can be accepted in the framework. This notion refers to the possibility of shield-
ing arguments from attacks, and the ways in which this can be achieved lead to alterna-
tive notions of acceptance. The usual way is by defining an extension semantics S for
argumentation frameworks, yielding, for every argumentation framework AF , a family
ES(AF ) ⊆ 2A of “extensions”. It is said that an argument is credulously accepted in a
semantics S iff it belongs to some extension E ∈ ES(AF ), and it is said to be skeptically

accepted iff it belongs to every extension E ∈ ES(AF ).

1Corresponding Author: Departamento de Cs. e Ing. de la Computación, Universidad Nacional del Sur, 8000
Bahía Blanca; E-mail: grsimari@gmail.com.

2From now on ‘AF ’ will denote an arbitrary argumentation framework, unless the contrary is stated.



Argumentation semantics have been evaluated in different ways, usually via canoni-
cal examples but also through the confrontation with human behavior ([14]). On the other
hand, Baroni and Giacomin ([3]) have proposed several criteria or “principles” for the
evaluation of extension semantics. We are interested in this last approach, particularly in
the defense-related criteria concerning admissibility (a widely accepted criterion intro-
duced in Dung’s seminal work). These authors distinguish two versions of admissibility,
a weak one (every argument that belongs to an extension is defended by the extension)
and a strong one (every argument that belongs to an extension is defended by another
argument from the extension). But we are also concerned with weaker forms of defense;
admissibility is too skeptic towards arguments attacked by self-attacking arguments; fur-
thermore, it treats differently cycles of attack of even and odd length. Arguably CF 2 [2]
and stage [17] semantics are the best known amendments for those rather undesirable
features, but others were also proposed in [4] and [5]. In this paper we introduce, as gen-
eral criteria of defense, two versions of what we call “cogency": pairwise cogency and
weak cogency. These criteria, satisfied only by extensions that overcome the problems
introduced by cycles of attack, will be formally introduced in Section 1.

Acceptance can also be characterized via proof-procedures. The most common
among them are based on labelings [11,6] and dialogue games [1,7,9,10,12,15,16,18,19].
One of the goals of this paper is to provide a proof-theoretical counterpart to pairwise
and weak cogency in the form of dialogue games. The formal model will be defined in
Section 2, while in Section 3 specific protocols are defined, capturing in a sound and
complete way Baroni and Giacomin’s criteria as well as pairwise and weak cogency.

1. Defense criteria

In [3], Baroni and Giacomin have proposed several significant criteria to evaluate exten-
sion semantics. We will consider here those related to admissibility:

Definition 1. For any argumentation framework AF = 〈A,�〉 and S ⊆ A, let F (S) =
{A : ∀B(B � A ⇒ ∃C ∈ S C � B )} ([8]’s characteristic function). A subset T ⊆ A
is defensible iff T satisfies the following condition:

T ⊆ F (T ) (1)

A semantics S satisfies the admissibility criterion iff for any argumentation framework
AF and for every E ∈ ES(AF ), E is defensible.

Another important criterion considered in [3] demands that all the extensions sanc-
tioned by a semantics must be conflict-free. Although not strictly related with defense,
all the extension semantics in the literature satisfy this principle:

Definition 2. A set of arguments T is conflict-free iff ∀A, B ∈ T (A 6� B). A semantics
S satisfies the conflict-free criterion iff for any argumentation framework AF = 〈A,�〉
and for every E ∈ ES(AF ), E is conflict-free.

Dung ([8]) uses the term ‘admissible’ to call sets of arguments which are both de-
fensible and conflict-free. Hence notice that any semantics which extensions are all ad-



missible sets (in Dung’s sense) satisfies the admissibility criterion, but the converse is
not necessarily true.

A strong criterion of defense is obtained also in terms of classes of arguments:

Definition 3. Given a class of arguments S ⊆ A, the set of arguments strongly defended

by S is the set sd(S) ⊆ A such that A ∈ sd(S) iff for all B ∈ A, if B � A then there
exists some C ∈ S − {A} such that C � B and C ∈ sd(S − {A}).

Definition 4. For any argumentation framework AF = 〈A,�〉, a subset T ⊆ A is
strongly admissible iff T satisfies the following condition:

A ∈ T ⇒ A ∈ sd(T ) (2)

A semantics S satisfies the strong admissibility criterion iff for any argumentation frame-
work AF and for every E ∈ ES(AF ), E is strongly admissible.

Among Dung’s semantics, all of them satisfy the admissibility criterion while only
grounded semantics satisfies the strong admissibility criterion.

On the other hand, there also exist extension semantics that do not satisfy admissi-
bility. Examples are stage [17], CF 2 [2], sustainable, tolerant [5], and lax [4] semantics.
We propose here two criteria to evaluate them, pairwise cogency and weak cogency. In-
formally, we call “cogent" an argument that is accepted unless some of its attackers have
a better defense than itself. For example, an argument supported by a well established
scientific theory, e.g., the argument from special relativity theory that no particle can ex-
ceed the speed of light is not defeated by an argument drawn from experiments showing
an “anomaly”, say neutrinos traveling faster than light, unless it is supported by a rival,
stronger scientific theory. Cogency is then a notion in which admissibility exerts only a
relative, contextual, authority:

Definition 5. Given an argumentation framework AF = 〈A,�〉, and two subsets S, S′

∈ 2A, we say that S is at least as cogent as S′, in symbols, S ≥cog S′ , iff S is admissible
in the restricted argumentation framework 〈A,�|

S∪S′
〉. We say that S is strictly more

cogent than S′, in symbols, S >cog S′, iff S ≥cog S′ and not S′ ≥cog S.

We obtain a new criterion of defense, weaker than admissibility:

Definition 6. For any argumentation framework AF = 〈A,�〉, a subset T ⊆ A is
pairwise cogent iff T is maximal w.r.t. ≥cog , i.e.:

∀S ⊆ A S 6>cog T (3)

A semantics S satisfies the pairwise cogency criterion iff for any argumentation frame-
work AF and for every E ∈ ES(AF ), E is pairwise cogent.

Let Cog(AF ) = {E ⊆ A : E is pairwise cogent}. It is easy to see that if E is
admissible then E ∈ Cog(AF ) (moreover, E ≥cog S for every S ⊆ A). Sustainable se-
mantics, in particular, takes as extensions all the maximal (w.r.t. ⊆) subsets of Cog(AF ).

The salient behavior of sustainable semantics is the avoidance of undesired in-
terferences of self-attacking arguments. For example, the argumentation framework



Figure 1.

AF = 〈{A, B}, {(A, A), (A, B)}〉 (Figure 1(a)) has only one sustainable extension,
{B}. Note that the only subsets satisfying (3) are ∅ and {B}, but the latter is the
only maximal one. On the other hand, note that we have both {B} 6>cog {A} and
{A} 6>cog {B}. This explains why {B} ∈ Cog(AF ), even if it is not admissible.

Even weaker (but sensible) defense criteria can be conceived:

Definition 7. For any argumentation framework AF = 〈A,�〉, a subset T ⊆ A is
weakly cogent iff T satisfies the following condition:

∀S ⊆ A (S >cog T ⇒ S 6∈ Cog(AF )) (4)

A semantics S satisfies the weak cogency criterion iff for any argumentation framework
AF and for every E ∈ ES(AF ), E is weakly cogent.

The intuition behind weak cogency is that a set of arguments is acceptable unless it can
be defeated by a pairwise cogent one. Notice that every weakly cogent set T is such that
it is either pairwise cogent or for every S >cog T there exists T ′ such that T ′ >cog S.

Every semantics that satisfies pairwise cogency also satisfies weak cogency. Lax

semantics is characterized as the class of maximal (w.r.t. ⊆) subsets of arguments satis-
fying (4). It determines the acceptance of a set of arguments if every other set which is
strictly more cogent is not pairwise cogent. For example, the argumentation framework
〈{A, B, C}, {(A, B), (B, C), (C, A)}〉 (Figure 1(b)) has three lax extensions, {A}, {B}
and {C}. Note that {A} >cog {B} >cog {C} >cog {A} and no other subset of A is
strictly more cogent than each extension. Moreover, none of them is pairwise cogent,
hence all of them are weakly cogent. The criterion makes sense especially in situations
of practical decisions:

Example 1. Assume you have to choose a school for your children and your candidates
are s1, s2 and s3 . You evaluate them according to three criteria: nearness, tuition fee
and social environment. A candidate is preferred to another if it is better with respect
to most of the criteria. Assume now that after a one-to-one comparison you build these
three arguments:
A: “s2 is better than s1 with respect to nearness, but s1 is better than s2 with respect to
tuition fee and environment; then choose s1”;
B: “s3 is better than s2 with respect to environment, but s2 is better than s3 with respect
to nearness and tuition fee; then choose s2”;
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C: “s1 is better than s3 with respect to tuition fee, but s3 is better than s1 with respect to
environment and nearness; then choose s3”.
The situation can be modeled through the argumentation framework depicted in (Figure
1(b)).

CF 2 semantics also obtains the extensions {A}, {B} and {C}. Nevertheless,
it fails to satisfy both pairwise and weak cogency. The argumentation framework
〈{A, B, C}, {(A, B), (B, A), (B, C), (C, A)}〉 (Figure 2(a)) offers a counterexample:
CF 2 semantics sanctions the three extensions {A}, {B} and {C} again, while {C} is
not weakly cogent (note that {B} >cog {C} and {B} ∈ Cog(AF )).

2. Argumentation games on argumentation frameworks

The abstract character of argumentation frameworks calls for highly general notions of
acceptance. Here we enumerate the most common features of dialogical models of proof
procedures:

– Two party: one is the “proponent” (P), who defends an argument, and the the other the
“opponent” (O), who aims to defeat it.

– Zero-sum game: only one of the players wins.

– Finiteness: the number of arguments put forward by both P and O is finite.

These features seem to provide a very basic underlying framework for any dialogue
game ([12], etc.). Other, more comprehensive notions of acceptance can be defined on
the basis of this model by adding further protocol rules, without changing or removing
any rule of the original game. Next we redefine argumentation games in precise game-
theoretical terms as two party zero-sum games [13], following in general the formalism
in [16]. In subsequent sections we will deal with our main goal, which is to find specific
protocol rules making argumentation games finite and to show their relationships with
the defense criteria mentioned in Section 1.



Definition 8. An argumentation game on an argumentation framework AF = 〈A,�〉
is a zero-sum extensive game in which:

1. There are two players, i and −i, who play the roles of P and O, respectively. The
following rules state the legal moves of the players according to the role they
assume in the game (for the sake of simplicity, we will call them ‘player’ P and
‘player’ O, regardless which player, i or −i, assumes each role).3

2. A history in the game is any sequence A0, A1,A2, . . . , A2k,A2k+1, . . . of choices
of arguments in ∈ A made by the players in the game. A2k corresponds to P and
A2k+1 to O, for k = 0, 1, . . ..

3. At any history, A0 is the argument that player P intends to defend.
4. In a history the choices by a player i at a level k > 0 are Ci(k) = {A ∈ A :

∃B ∈ C−i(k − 1), A � B}.
5. A history of finite length K, A0, . . . , AK , is terminal if AK corresponds to player

−i and Ci(K + 1) = ∅.
6. Payoffs are determined at terminal histories: at A0, . . . , AK, P’s payoff is 1 if K

is even (i.e., O can not reply the last P’s argument), and −1 otherwise. In turn,
O’s payoff at A0, . . . , AK is 1 if K is odd and −1 otherwise.

A game in which P intends to defend an argument A can be seen as a rooted tree, in
which A is the root. Each non-terminal node at level l consists of a history A0, . . . , Al

and its children are all the histories A0, . . . , Al, Al+1. The terminal nodes are, of course,
the terminal histories.4

Definition 9. A strategy for a player i is a function that assigns an element Al+1 ∈ Ci(l)
at each non-terminal history A0, . . . , Al where Al corresponds to player −i. A strategy
W of the player i in game in which P intends to defend argument A will be denoted by
‘W (A)i’.

Note that any pair of strategies, one for each player, say Wi(A) and W−i determine
a unique terminal history.

Definition 10. A strategy W (A)i of player i in a game in which P defends A is said
a winning strategy if for every strategy chosen by −i, W (A)−i, the ensuing terminal
history yields a payoff 1 for player i.

If P has a winning strategy, it means that her initial argument can be defended against
any possible attack. On the contrary, if O has a winning strategy, it means that P fails at
defending her initial argument.

Notice that winning strategies for either P or O cannot be ensured to exist if the
game tree is infinite. Even being finite, an argumentation framework which is not free of
cycles in the attack relation can yield an infinite tree.

Let W (A)P the set of arguments played by P in a winning strategy at a game in
which she defends argument A. It is easy to see that P has a winning strategy for every
argument belonging to W (A)P:

3We follow here the usual convention of calling a generic player i and the other −i.
4The usual custom is to identify each node with the last argument in the corresponding history. So for

instance the node for A0, . . . , Al is denoted just Al.



Lemma 1 Let A be an argument that P can defend with a winning strategy. Then P has

a winning strategy for every argument B ∈ W (A)P.

Proof. Trivial. Suppose that P does not have a winning strategy for B ∈ W (A) P. It
means that once P plays B, she can no longer force the game towards a terminal history
in which she gets 1. But then, when the game for argument A leads P to utter B, the
game can follow a history in which P does not win, contradicting the assumption that
W (A) P is a winning strategy. 2

Lemma 2 The set W (A)P of all the arguments played by P in her winning strategy

W (A) constitutes an admissible and strongly admissible set of arguments.

Proof. First we prove that W (A)P satisfies condition (1) (the conflict-free condition is
implicit). Assume P has a winning strategy W (A) to defend A and assume by contradic-
tion that W (A)P is not admissible. This implies two alternative cases: a) W (A)P is not
conflict-free; b) there exists some argument B ∈ W (A)P which is not acceptable w.r.t.
W (A)P. But then:
a) The hypothesis that B, C ∈ WP are such that B � C leads to a contradiction, since it
implies that if P plays C then O can win the game by playing B and following the same
sequence of moves that P would play in W (A) if she were to defend B.
b) It follows that there exists some C ∈ A such that C � B and for every D ∈ W (A)P
it is not the case that D � C . Then O can win the game by playing C when P plays B.
This, in turn, implies that B does not belong to a winning strategy of P, contradicting the
hypothesis.
To prove that W (A)P satisfies condition (2) just note that no history built on this strategy
can have cycles, otherwise it would be infinite and the strategy would not be winning. 2

Proposition 1 Let S ⊆ A be the set of all the arguments that can be defended by P with

a winning strategy. The set
⋃

A∈S W (A)P is an admissible and strongly admissible set

of arguments.

Proof. Given lemma 2 we need only prove that
⋃

A∈S W (A)P is conflict-free. Let
A, B ∈ S, and suppose by contradiction that A′ ∈ W (A)P and B′ ∈ W (B)P are such
that A′ � B′. By lemma 1 we have that P has a winning strategy W (A′) for A′. But then
W (A′) is also a winning strategy for O in the game against B′ . Hence, W (B) is not a
winning strategy for P. Contradiction. 2

On the other hand, an argument that belongs to a defensible and strongly defensible
but not conflict-free set is not ensured to be defended by P with a winning strategy. To
see this, consider the argumentation framework 〈{A, B, C}, {(A, B), (B, C), (C, A)}〉
in which some (strange) semantics could sanction the only extension {A, B, C}, satis-
fying both admissibility and strong admissibility; nevertheless, neither argument in that
extension can be defended by P (the cycle of attacks that includes them makes the game
infinite). Of course, this semantics does not satisfy the conflict-free criterion, unlike all
the known semantics in the literature.



3. Defining different protocols for finite argumentation games

Argumentation games, as defined in definition 2, are not necessarily finite. Given the
rules of the game, it is clear that the source of non-finiteness is the possible existence
of cycles in the attack relation. So there are basically two ways to avoid infiniteness:
a) restricting argumentation games to argumentation frameworks in which the attack
relation is acyclic; b) adding rules forbidding either one or both of the players to repeat
arguments in some specific way. As the first alternative seems too drastic, we (as usual
in the literature) will follow the latter one.

3.1. Protocols capturing admissibility related criteria

Dung’s grounded semantics is the best known strongly admissible semantics. It sanctions
only one extension, the least fixed point of the characteristic function F (S) (def. 1). No
protocol needs to be added to the rules 1-6 to capture grounded semantics. This is shown,
mutatis mutandis, in [12] and [16]. It is also known that every semantics satisfying strong
admissibility is “covered” by grounded semantics (cf. [3])). So, the game protocol needs
only be extended to ensure the finiteness of the game.

PROTOCOL 1 Rules 1-6 plus

7. P is not allowed to play an argument that was previously played by either player.

The following two results are immediate considering what we said above about
grounded semantics (proofs omitted):

Proposition 2 Let A ∈ E for any extension E ∈ ES(AF ) of a semantics S satisfying

the conflict-free, admissibility and strong admissibility criteria. Then P has a winning

strategy for A under protocol 1.

Proposition 3 If P has a winning strategy for A under protocol 1 then A ∈ E for some

set E ⊆ A satisfying strong admissibility (i.e. condition (2)).

The next protocol captures admissibility and its ensuing properties were, in essence,
derived by Vreeswijk and Prakken [19].

PROTOCOL 2 Rules 1-6 plus

7. Neither player is allowed to advance an argument that was previously played by

O (if P repeats O then she is introducing a conflict within her own strategy; if O

repeats O then she is repeating an unsuccessful counter-argument).

8. Neither player is allowed to move if the last argument in the sequence was pre-

viously played by P (i.e., if the next move corresponds to O and P has repeated

herself then O looses –her strategy failed; if the next move corresponds to P and

O has repeated an argument that was previously played by P then P looses –O

has made an eo ipso move).

The corresponding results arise from what is known about games for preferred se-
mantics ([19]) (proofs omitted):



Proposition 4 Let A ∈ E for any extension E ∈ ES(AF ) of a semantics S satisfying

the admissibility criterion. Then P has a winning strategy for A under protocol 2.

Proposition 5 If P has a winning strategy for A according to protocol 2 then A ∈ E for

some set E ⊆ A satisfying admissibility (i.e. condition (1)).

3.2. Protocols capturing cogency-related criteria

The only case in which a pairwise cogent set S of arguments is not admissible is when
S is attacked by some self-attacking argument: Assume S is pairwise cogent but not
admissible. Then there exist A ∈ S and B ∈ A such that B � A and S 6� B. But if {B}
is conflict-free then {B} >cog S. Nevertheless, S is pairwise cogent hence {B} 6>cog S.
Therefore, {B} is not conflict-free, implying that B is self-attacking. This leads us to the
following protocol:

PROTOCOL 3 Protocol 2 plus

9. Neither player is allowed to play a self-attacking argument.

Proposition 6 Let A ∈ E for any extension E ∈ ES(AF ) of a semantics S satisfying

the pairwise cogent criterion. Then P has a winning strategy for A under protocol 3.

Proof. Assume that P has no winning strategy for A. Then, there exists some history
leading O to win, which means that in this history either a) O played an eo ipso, or b) all
the arguments that attack the last move of O were already deployed by O, or c) all the
arguments that attack the last move of O are self-attacking. Cases a) and b) imply that
there exists an odd-length cycle of attacks involving an argument played by P. Hence,
for every set S that P tries to build to defend A, there exists some set S′ such that
S′ >cog S. Hence A cannot belong to a pairwise cogent set. For case c), assume B is the
last argument played by O and for every argument C , if C � B then C � C . Then {B}
is pairwise cogent and for every set S that P tries to build for A, {B} � S. 2

Proposition 7 If P has a winning strategy for A according to protocol 3, then A ∈ E

for some set E ⊆ A satisfying pairwise cogency (i.e. condition (3)).

Proof. Assume P has a winning strategy W (A)P for A following protocol 3 and consider
any history H of W in which O plays optimally. Let HP be the set of arguments used
by P in H and assume by contradiction that HP 6∈ Cog(AF ). That implies that there
exists some set S >cog HP. But since O has not played an eo ipso move in H , HP is
conflict-free, hence there exist some arguments B ∈ S and C ∈ HP such that B � C

and HP 6� B. Then O could win the game by playing B against C . Contradiction. 2

To show that an argument A belongs to some weakly cogent extension, in a first
stage a player i (playing the role of P) must defend A by constructing a pairwise cogent
set. But if she fails, a second stage begins in which i will try to shift the burden of
proof forcing −i to sustain her opposition on a better “theory”, that is, showing that her
attacking arguments come from a pairwise cogent set. Then i will assume now the role
of O). Finally, the game is won by the player who succeeds at this stage. The protocol is
presented in algorithmic form for the sake of clarity of exposition.



PROTOCOL 4 The game follows this algorithm:

begin % The game starts distributing the roles of proponent and

% opponent to the players

P := i

O := −i

Play Protocol 3 % Stage 1: i must defend A

if P succeeds at defending A then
Payoff(P) := 1
Payoff(O) := −1

else % i shifts the burden of proof on −i

P chooses an argument B among those non eo ipso moves played

by O at Stage 1.

P := −i

O := i

Play Protocol 3 % Stage 2: −i must defend B

if P succeeds at defending B then
Payoff(P) := 1
Payoff(O) := −1
else

Payoff(P) := −1
Payoff(O) := 1

end.

For example, let us suppose that player i (P) is aimed to defend A in the argumenta-
tion framework depicted in Figure 2(a). Figure 2(b) shows the game tree following Pro-
tocol 4. At stage 1, the right branch of the tree is obtained up from the only strategy for
O that can win the stage game. At stage 2, i shifts the burden of proof challenging −i to
defend her argument C (the only non eo ipso move of −i). Then −i assumes the role of P

but fails to defend C . Therefore, i wins the overall game. The reason why −i should not
defend her eo ipso move at stage 2 is that it does not make sense to oblige an opponent to
defend the same arguments defended by the proponent. Moreover, note that the choice by
i among the arguments played by −i at stage 1 is not necessarily deterministic: any legal
choice would yield the same result. Nevertheless, that indeterminacy can be avoided for
computational purposes by forcing the choice of, for instance, the first argument played
by −i.

Proposition 8 Let A ∈ E for any extension E ∈ ES(AF ) of a semantics S satisfying

the weakly cogent criterion. Then P has a winning strategy for A under protocol 4.

Proof. By way of contradiction, assume that P has no winning strategy for A. If A is self-
attacking then is clearly excluded from any weakly cogent set. Otherwise there exists
some history in which O wins the second stage game. This means that P failed to build
a pairwise cogent set for A at the first stage game, which implies that for any set S

such that A ∈ S, O can play an argument B such that for some set S′, B ∈ S′ and
S′ >cog S. At stage 2, let B be the argument that O defends. Since P had no winning
strategy, no matter which set of arguments T is used by P in her strategy in the second
stage game, O can play a strategy with arguments belonging to some set of arguments
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T ′ such that B ∈ T ′ and T ′ ≥cog T . Therefore, A cannot belong to any weakly cogent
set of arguments. Contradiction. 2

Proposition 9 If P has a winning strategy for A following protocol 4 then A ∈ E for

some set E ⊆ A satisfying weak cogency (i.e. condition (4)).

Proof. Assume P has a winning strategy for A in a game played according to protocol 4.
Let us analyze two cases: a) P wins at stage 1; b) P wins only at stage 2.
a) In this case, the winning strategy W (A)P is a pairwise cogent set and, hence, a weakly
cogent set too.
b) Assume i = P has no winning strategy for A at stage 1 but has one at stage 2. First
note that if P cannot win the game at stage 1 she will be unable to build a set for A in
Cog(AF ), that is, for every set S such that A ∈ S there has to exist some set S′ such
that S′ >cog S. Now let B be an optimal choice of P among the non eo ipso arguments
played by O at stage 1. This choice forces −i to defend B at stage 2. Since at the second
stage game i = O wins the game, it must be that −i = P will not be able to build a set
in Cog(AF ) for B. Hence, for any set S′ such that B ∈ S′ and S′ >cog S for any set S

such that A ∈ S, there exists some subset S′′ (containing some of the arguments played
by P at stage 2) such that S′′ >cog S′ . This implies that S satisfies (4). 2

4. Conclusion

Dialogue games are frequently studied as proof-theoretical counterparts of extension se-
mantics. Our work goes a step further, relating dialogue games and general criteria of
argument defense. We have redefined argumentation games in precise game-theoretical
terms, particularly in the already commonly assumed framework: two-party, zero-sum
games. We have shown that particular protocols of play can be defined in such way that
the arguments in the ensuing winning strategies constitute the extensions that satisfy gen-
eral criteria of defense. Moreover, all the protocols presented here ensure the finiteness
of the games.

In particular, we have shown this characterization for two defense criteria weaker
than admissibility: pairwise and weak cogency. These criteria exploit the intuition that
acceptability depends on how two opposing argument strategies are able to shield their
arguments. Unlike admissibility, which requires to defend an argument against any at-
tack, cogency requires to defend an argument only against coordinated attacks. This
yields an immediate dialectical interpretation: the opponent is urged to build an argument
strategy at least as convincing as the proponent’s one. Pairwise cogency offers a ratio-
nal criterion for solving undesired interferences of self-attacking arguments. Weak co-
gency also enables rationalizable choices, in the game-theoretical meaning of the term,
of arguments involved in odd-length cycles of attack. Among non admissible extension
semantics, sustainable semantics [5] satisfies pairwise cogency while lax semantics [4]
satisfies weak cogency. CF 2 [2] and stage [17] semantics, on the other hand, do not
satisfy weak cogency, though their behavior is often similar to that of lax semantics with
respect to self-attacking arguments and odd-length cycles of attack. With respect to CF 2
semantics we already mentioned the counterexample offered by Figure 2 (a). For stage
semantics, check the argumentation framework 〈{a, b, c}, {(a, a), (a, b), (b, c), (c, a)}〉
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where the stage extension {c} is not weakly cogent because {b} >cog {c} and {b} is
pairwise cogent.

Among future research lines we stress the development of detailed algorithms for
computing the arguments that can be defended by the proponent’s winning strategies
under each protocol.
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