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Experimental diabetes in rodents rapidly affects the neurogenic niches of the adult brain. Moreover, behavioral disorders suggest
that a similar dysfunction of the neurogenic niches most likely affects diabetic and prediabetic patients. Here, we review our present
knowledge about adult neural stem cells, the methods used for their study in diabetic models, and the effects of experimental
diabetes. Variations in diet and even a short hyperglycemia profoundly change the structure and the proliferative dynamics of the
neurogenic niches. Moreover, alterations of diabetic neurogenic niches appear to be associated with diabetic cognitive disorders.
Available evidence supports the hypothesis that, in the adult, early changes of the neurogenic niches might enhance development
of the diabetic disease.

1. Old and New Neurogenic Niches
in the Adult Brain

Adult neurogenesis has been known since the 1960s [1].
Although the two main neurogenic niches, the dentate gyrus
(DG) of the hippocampus and the telencephalic subventric-
ular zone (SVZ), were described in those years, intensive
studies only began in the 1980s [2]. Research has been
mainly done in rodents [3], but there is good evidence of
neurogenesis throughout life in the human DG [4, 5] and
SVZ [6–10]. A recent review exhaustively describes the
properties of these niches in human beings [11].

1.1. Neurogenesis in the Dentate Gyrus. In all mammalian
species, the DG and the SVZ share a lineage including neural
stem cells (NSCs) (or primary stem cells), transit amplifying
cells (TACs) (or secondary stem cells), and newborn cells of
the three final phenotypes: neuronal, astroglial, and oligo-
dendroglial (Figure 1). By contrast, each niche shows a spe-
cific topographical arrangement and characteristic dynamics
for cell proliferation, differentiation, and migration. These
features are reflected in the different terminology used
for each niche. In the DG, NSCs are called type 1 cells
whereas TACs are included in type 2. Postmitotic immature
neurons are type 3 cells. Type 1 precursors express the glial

markers glial fibrillary acidic protein (GFAP) and brain lipid
binding protein (BLBP), together with Sox2 and Nestin
but do not display the calcium-binding protein S-100β.
The latter is expressed by postmitotic astrocytes [12, 13].
Type 1 cells are self-renewing and multipotent cells, but
they seldom divide [14]. Type 2 cells are morphologically
different from type 1 cells, since they have short horizontally
oriented processes. The presence of GFAP in type 2 cells
has been denied by early studies [12, 15], but supported by
more sensitive tests [16]. Type 2 cells also express Sox2
and Nestin, and display the polysialylated form of neural
cell adhesion molecules (PSA-NCAM) [10, 17–19]. Some
authors distinguish two developmental stages, types 2a and
2b, depending on the appearance of the cytoskeletal protein
doublecortin (DCX), an immature neuronal marker [12].
Type 3 cells are described as postmitotic immature neurons
that express markers of the neuronal lineage (PSA-NCAM,
DCX, NeuroD, Prox1) and lack glial markers [12]. Type 3
cells might undergo proliferation, as in the case of seizures
[20]. About half of the generated cells survive and integrate
into existing neuronal circuits [21]. Dietary modulation
and physical exercise may regulate cell proliferation in the
hippocampus [22]. Although many questions remain, it is
generally accepted that hippocampal newborn neurons are
involved in the establishment of spatiotemporal relationships
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Figure 1: The dynamics of proliferation and differentiation in the
adult neurogenic niches. Neural stem cells (NSCs) divide, both
symmetrically and asymmetrically for self-renewal and production
of transit amplifying cells (TACs). The term neuroprogenitors
encompasses TACs and true NSCs. TACs rapidly divide symmet-
rically to amplify the availability of neural and glial precursors and
finally differentiate into one of the three neural lineages: neuronal
(N), astroglial (A), or oligodendroglial (O).

among multiple environmental cues and would be required
for allocentric (not egocentric) space representation, long-
term memory retention, and flexible inferential memory
expression [23]. Moreover, new DG neurons seem to be nec-
essary for flexibility in some specific parameters of learning
[24].

1.2. Neurogenesis in the Subventricular Zone. In the SVZ,
NSCs also form a special subpopulation of GFAP-expressing
cells (B1 cells) that originates TACs and proliferating neu-
roblasts (C cells) [25–29]. Most B1 cells contact the ventricle
through small, specialized apical processes that contain a
single primary cilium [30, 31]. The identity of true NSCs
in the SVZ is still controversial [32, 33], since activated
CD133+ ependymal cells might also serve as adult NSCs
[34, 35]. NSCs can be identified in vitro by their capacity to
form free-floating aggregates (neurospheres) and the clonal
differentiation of the three lineages [36]. In vivo, they can
be distinguished from TACs by their slow cell cycle [25,
37, 38]. TACs are also described as intermediate progenitor
cells [28]. Together with differentiating cells they migrate
through the rostral migratory stream (RMS) to the olfactory
bulb, where they generate at least seven types of inhibitory
interneurons. Most NSCs descendants follow the neuronal
lineage [39], probably because bone morphogenetic protein
(BMP) signaling within the neurogenic niches determines
a neurogenic fate [40]. Proliferating cells can be labeled by
the minichromosome maintenance protein 2 (mcm2) [37],
which accumulates during the G1 phase of cycling cells,
and the antigen Ki-67, a nuclear protein present in every
cell except those in the resting phase [17]. Nestin is an
intermediate filament expressed by neurogenic precursors

at different stages of differentiation [39]. Niche cells also
express endothelins, particularly after brain injury [35, 41].

In the adult, myelinating oligodendrocytes are continu-
ously produced from local oligodendrocyte precursor cells
(OPCs) residing in the brain parenchyma [42]. Nevertheless,
subventricular type B cells can generate a small number of
OPCs and mature oligodendrocytes that migrate laterally
and dorsally into the corpus callosum, the fornix, and the
fiber tracks of the striatum. Subventricular oligodendroge-
nesis increases after demyelination of the corpus callosum
[43–45]. The perinatal SVZ is a secondary source of brain
astroglia [46], but only a small proportion of adult-born
cells differentiate into mature astrocytes (GFAP/S100β) [47].
Astroglial cells follow a particular migration pathway in the
coronal plane, migrating out of the SVZ into the dorsal white
matter and cortex, the striatum, and, through the lateral
migratory stream (LMS), into the lateral white matter and
cortex [46]. Migrating astrocytes give rise to a reservoir of
cortical multipotent cells [48]. In addition, mature astrocytes
proliferate locally generating large numbers of postnatal
astrocytes [49].

Proliferation in the SVZ can be regulated by ablation of
the olfactory epithelium or exposure to an enriched olfactory
environment [27]. Dietary restriction, of great benefit in
diabetic patients [50, 51], increases resistance of the SVZ and
the DG to excitotoxic injury [52]. Endocannabinoids would
be involved in these dietary effects [53]. Large modifications
of the SVZ occur after brain injury, when cells derived from
this niche migrate to the striatum or the telencephalic cortex.
There, they mainly form cells expressing oligo- and astroglial
markers [35, 41, 54–56].

1.3. Neurogenesis in the Hypothalamus. Cell proliferation
and neuron differentiation in the hypothalamus have been
reported in rodents and other mammals [57–59]. Neural
stem cells have been identified in the wall of the third
ventricle [59], the median eminence [60], and the arcuate
nucleus [61].

The rat hypothalamus shows low levels of proliferation,
but administration of IGF-1 significantly increases the num-
ber of proliferating cells [59]. Hypothalamic neurogenesis
can also be modulated by external temperature [58]. In
the murine arcuate nucleus, neurons involved in energy-
balance regulation exhibit substantial turnover, with more
than half of them being replaced between 4 and 12 weeks of
age [62]. Genetically obese mice with leptin deficiency (ob/ob
mice) lack hypothalamic NSCs [63]. Moreover, proliferation
is suppressed in high-fat-diet-induced obesity, in part due to
increased apoptosis of newly divided cells [63]. In the median
eminence, tanycytes fulfill the role of NSCs. Tanycytes are
hypothalamic radial glia-like ependymal cells that generate
newborn neurons associated with weight and metabolic
regulation. After feeding rats with a high-fat diet, neuro-
genesis in the median eminence quadruples that of control
animals [60]. Available evidence suggests that hypothalamic
neurogenesis contributes to the control of energy balance in
response to environmental changes [61]. Nutritional status
might control energy balance circuits by selective generation
of specific neuronal subtypes that promote or inhibit feeding,
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combined with the elimination of neurons with opposing
functions by selective apoptosis [60].

2. Diabetes and the Brain:
The Problem and the Models

2.1. The Problem. Diabetes mellitus refers to a group of
chronic metabolic conditions associated with abnormally
high levels of blood glucose. The disease follows two main
courses: type 1 (T1DM), characterized by loss of insulin
producing cells, and type 2 (T2DM), reflecting peripheral
resistance to insulin, sometimes with reduced insulin secre-
tion. The latter is the most frequent clinical presentation
and afflicts about 24 million people in the United States and
about 285 million people worldwide [64]. It is estimated that
13% of the adult US population suffers from this condition,
whereas another 30% has prediabetes (defined as impaired
glucose tolerance, impaired fasting glucose, or both) [65].
The increased frequency of diabetes is correlated with a
parallel increase in obesity [66].

From a clinical perspective, diabetes appears as a car-
diovascular disease [67]. Typical end-organ disease affects
kidneys, eyes, and the peripheral nervous system. T2DM is
associated with a 1.5–2.5-fold increased risk of dementia
including Alzheimer’s disease [68, 69]. Diabetic patients
also show a characteristic cognitive dysfunction that can be
explained by the combination of vascular lesions with neu-
roinflammatory brain disease [70]. However, recent evidence
shows that neuronal dysfunction appears in the retina before
major vascular alterations [71].

Both diabetic cognitive impairment and Alzheimer’s
disease are correlated with alterations of the hippocampus
[72, 73], one of the two neurogenic niches of the adult brain.
Altered hippocampal neurogenesis is also present in mood
disorders [72], which are frequently found in diabetic and
prediabetic patients [74]. There is no direct evidence of the
role of human neurogenic niches in the diabetic cognitive
deficit. However, the effects of cognitive stimulation, medi-
tation, exercise, and antidepressant treatment in prevention
of the hippocampal atrophy associated with age and diabetes
have been associated to activation of neurogenesis [75].

2.2. Neurogenesis in Diabetic Rodents. Damage to the insulin-
producing cells of the pancreas using streptozotocin (STZ)
[76] remains one of the most used models for induction of
diabetes. A high-fat diet is another frequently used approach
to induce obesity and insulin resistance in C57Bl6 mice [77].
In addition, diabetes appears in a chronic fashion in several
murine and rat strains [78]. Some of these models show the
biochemical blood profile and pathogenesis of T2DM [79,
80]. The Animal Models Section of the NIDDK-sponsored
Diabetic Complications Consortium currently displays an
update of frequently used rodent models [81].

Most experimental studies of the diabetic neurogenic
niches attempt to identify changes in the proliferation,
differentiation, and survival of neuroprogenitors. The stan-
dard procedure is labeling of DNA-synthesizing cells with
the thymidine analog 5-bromodeoxyuridine (5-BrdU) [82].
Immediate detection of labeled cells provides an estimation

of proliferation rate, whereas label retention after one week
or more reflects differentiation and survival. Ki-67 is also a
widely used marker for proliferating cells [17]. Differentia-
tion can be evaluated by the appearance of the neuroblast
markers DCX and PSA-NCAM or neuronal markers such
as β-III-tubulin and Neu-N [82]. Double labeling is useful
to measure the amount of 5-BrdU-incorporating cells that
survive to differentiate into neurons or glia [17].

Early studies done in the rat DG, 2 days after STZ,
revealed a fourfold decrease in the number of proliferating
(5-BrdU-labeled) cells [83]. Neurogenesis impairment in the
STZ-diabetic mice can be reverted by oestradiol [82] or the
antidepressant fluoxetine [84], both in the hippocampus and
the SVZ. Oestradiol and fluoxetine were given 10 days after
diabetes induction and had no effect on blood glucose levels,
showing that progenitors are still present and can proliferate
even in the presence of significant hyperglycemia [82, 84].
Experimental diabetes also reduces the number of surviving
neurons. It has been estimated that neuronal production at
7 weeks after diabetes induction is less than 20% of control
levels [17]. In the non-obese diabetic (NOD) mice, a model
for T1DM, glial activation appears in the hippocampus
during the prediabetic stage [85], together with a decrease
in the survival of 5-BrdU-labeled nuclei [86].

Cell proliferation in the DG is also decreased in the
Zucker diabetic fatty rat. In this T2DM model, the DG
contains a smaller number of newly differentiated neurons,
with shorter dendrites, than controls [87]. Neurogenesis is
always higher in nondiabetic rats, even after blood glucose
levels have been normalized by exercise [18, 87]. In another
T2DM model, the Goto-Kakizaki rat, the DG niche shows an
increase of proliferation together with a decrease in survival
of newly born neurons [88, 89].

Information about hypothalamic neurogenesis in dia-
betic animals is not available. However, it has been reported
that astrocytes in the hypothalamus and other brain and
spinal regions of diabetic rodents are reduced in number,
both due to increased apoptosis and reduced proliferation
[90–93].

2.3. Physiopathology in the Diabetic Neurogenic Niche. The
precise mechanisms that mediate dysfunction of the neuro-
genic niches are presently unknown. In addition, diabetic
consequences on neurogenesis possibly change according
to the magnitude of the metabolic derangement. Thus,
decrease of neurogenesis correlates with the increase in blood
glucose levels (Bachor, unpublished). In addition, diabetes
courses with chronic inflammation and oxidative stress that
may independently promote neuronal death and inhibit
neurogenesis [94, 95]. Hyperglycemia could be a direct
causal factor, since alterations of neurogenesis are detected
just 2 days after streptozotocin injection [83]. Moreover,
neurogenesis deficits occur not only after insulin depletion
but also after increased insulin resistance, as in the db/db
mice [96] and the Goto-Kakizaki rats [89].

After they become hyperglycemic, Goto-Kakizaki rats
show a higher progenitor proliferation rate than age-
matched WKY rats. By contrast, the number of neural
progenitors surviving for 3 weeks is significantly lower in
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the diabetic than in the control rats [89]. Neurosphere
cultures obtained from Goto-Kakizaki SVZ stop growing
much earlier than those from control SVZ. Those derived
from the diabetic DG survive as many passages as those
from control DG. However, they do not respond to FGF2-
and IGF1, two neurotrophic factors that stimulate growth of
control neurospheres [89].

Diabetic lipotoxicity is another factor potentially asso-
ciated to neurogenesis impairment. Culture of SVZ-derived
NSCs in the presence of 0.2–0.3 mM palmitate, which
mimics the hyperlipidemic milieu, triggers proapoptotic
mechanisms. Under these conditions, activation of the
pituitary adenylate cyclase-activating polypeptide (PACAP)
receptors promotes survival of NSCs. These receptors are
expressed in the adult SVZ, and their levels are higher in
ob/ob mice than in control mice [97].

3. Diabetes and the Hypothalamic-
Pituitary-Adrenal Axis (HPA)

The HPA axis is activated in people with type 2 diabetes,
and increased cortisol concentrations have been linked
with cognitive impairment [98]. Increased corticosterone
is also found in insulin-deficient STZ rats and insulin-
resistant db/db mice, two models that also show impairment
of hippocampus-dependent memory and neurogenesis. In
these mice, adrenalectomy plus low corticosterone replace-
ment reverses the changes of hippocampal function and cell
proliferation [96].

In addition, corticosterone-dependent inhibition of neu-
rogenesis appears in several stress models [99]. Stress
generally decreases cell proliferation, an effect that can be
reproduced by glucocorticoid administration [100]. Para-
doxically, physical exercise and housing in an enriched-
environment stimulate neurogenesis and neuron survival
both in control and in diabetic rats [87, 101]. However,
both experimental paradigms also activate the HPA axis
and increase circulating glucocorticoid levels. It has been
suggested that these contradictory effects might be explained
by the rewarding nature of exercise and the enriched
environment. Rewarding social experiences release factors
such as endogenous opioids, oxytocin, dopamine, brain-
derived neurotrophic factor (BDNF), and insulin-like growth
factor, which would protect against elevated glucocorticoids
[99].

On the other hand, the hypothalamus is one of the
primary brain sites that senses information on the body’s
nutritional status and responds with suitable behavioral and
metabolic responses that maintain energy homeostasis [102].
Rats and mice consuming a high-fat diet have elevated cor-
ticosterone levels and impaired hippocampal neurogenesis
[103]. After seven weeks of high fat diet, mouse hippocampi
show a decrease of 5-BrdU-labeled cells, without changes
in GFAP o DCX labeling, and reduced BDNF levels [104].
By contrast, dietary restriction in rats and mice promotes
neurogenesis by inducing the survival and differentiation of
newly generated neurons together with an increase of BDNF
[105].

Of note, other mechanisms are probably involved. Thus,
ingestion of sucrose and fructose solutions reduces neu-
rogenesis through a corticosterone-independent pathway,
possibly related to apoptosis mediated by elevated TNF-α
levels in the circulation [106].

4. Antidiabetic Drugs Enhance Neurogenesis

The incretins Glucagon Peptide-1 (GLP-1) and Gastric
Inhibitory Polypeptide (GIP) are gut-derived hormones
released in response to an ingested meal. Incretins regu-
late postprandial phenomena: they enhance insulin release
from pancreatic beta cells, inhibit postprandial glucagon
secretion, and block gastric emptying, thus reducing blood
glucose. Released GLP-1 is short-lived, since it is rapidly
hydrolyzed by the enzyme dipeptidyl-peptidase-IV. Exendin-
4 (exenatide) and liraglutide are GLP-1 ligands used in the
treatment of T2DM. The GLP-1 receptor is expressed in
the SVZ of adult rodents, and its activation by exendin-4
stimulates cell proliferation and differentiation in vivo and in
vitro [107]. In nondiabetic mice, exendin-4 administration
during 21 days increases the number of Ki67-, DCX-, and 5-
BrdU+DCX-immunoreactive cells in the DG, compared to
the control group [108]. Exendin-4 also enhances progenitor
cell division in different diabetic mouse models, whereas a
GLP-1 receptor antagonist reduces progenitor cell prolifera-
tion [109]. Similarly, liraglutide increases expression of the
proneural gene Mash1 in ob/ob mice. Mice deficient in the
GIP receptor have a lower amount of neuroprogenitor cells
[110], whereas a GIP receptor agonist increases neuropro-
genitor proliferation [111].

Metformin, a widely used antidiabetic drug, promotes
neurogenesis and enhances spatial memory formation
through the activation of a signaling pathway essential for
neurogenesis [112]. Interestingly, metformin affects some
metabolic pathways also affected by dietary restriction, such
as AMP-activated protein kinase (AMPK). This kinase is a
metformin main target that regulates glucose homeostasis,
lipid metabolism, and gluconeogenesis [113]. Metformin
also activates the atypical protein kinase C (aPKC), which is
downstream of AMPK. This enzyme is required to bypass the
block imposed by insulin resistance through phosphoryla-
tion of the transcriptional coactivator CREB-binding protein
(CBP) [114]. The aPKC/CPB pathway is not only crucial
to reduce the expression of gluconeogenic enzymes, but is
also essential to generate neurons from neuron precursors.
Metformin can activate the neurogenic pathway in the adult
mouse in vivo, enhancing spatial memory formation [112].

5. Neurogenesis, Blood Vessels, and Stroke

Adult NSCs have a close relationship with the vascular system
[115]. In the adult SVZ, stem cells make direct contact with
the endothelium at sites lacking astrocyte end-feet [29].
Thus, NSCs would be directly exposed to blood-borne mol-
ecules, including glucose or lipids. Endothelial cells recruit
activated NSCs and TACs by chemotaxis, which is regulated
by stromal-derived factor 1 (SDF1) and CXC chemokine
receptor 4 (CXCR4) [116]. Endothelial cells also produce
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betacellulin (BTC), an EGF-like growth factor. The latter,
however, acts mainly on TACs, whereas BTC receptors are
present on neuroblasts and progenitor cells [117]. Thus,
diabetic disturbance of endothelia [118] could have a direct
effect on adult NSCs.

Experimental stroke is accompanied by increased activity
of neurogenic niches [35, 55, 56, 119]. A similar activity has
been detected in poststroke human cortex [120], and it has
been postulated that SVZ neuroprogenitors have a role in
brain repair during disease [11]. Therefore, in a diabetic
patient, the increased risk for premature and severe stroke
[121] would be aggravated by dysfunction of adult neuro-
genic niches, predicting weakened repair mechanisms.

Interestingly, in middle-aged diabetic Goto-Kakizaki
rats, exendin-4 treatment during 4 weeks before and 2 weeks
after experimental stroke significantly increases neuron sur-
vival, as shown by the count of Neu-N-positive cells [122].
In addition, exendin-4-treated animals show a 2-fold greater
number of proliferating cells plus a 1.5-fold increase of
neuroblasts in the SVZ as compared with the PBS group
[122]. These effects were observed with low exendin-4 doses
that did not reduce glycemia.

6. Diabetes and Neurodegenerative Diseases

Adult neurogenesis is deteriorated in Alzheimer’s disease
(AD) models and precedes neuronal loss. Moreover, mole-
cules involved in AD pathogenesis, such as presenilins and
amyloid precursor protein, also play important roles in
neurogenesis [123]. Epidemiological studies link T2DM to
(AD) and vascular dementia [68, 124], suggesting a common
pathogenic factor. Neurogenesis could be involved, since
T2DM and these neurological diseases share a relationship
with insulin receptor and GLP-1 neuroprotective effects
[125]. Study of autopsy material has shown that increasing
AD severity associates with progressively reduced levels of
mRNAs for insulin, IGF-I, and IGF-II polypeptides and their
receptors [126]. Available evidence supports the notion that
brain glucose uptake and utilization are impaired in AD
[127]. Failing insulin/IGF1 signaling contributes, through
diverse mechanisms, to neurodegeneration [128]. Regions
most affected by AD (hippocampus, temporal lobe, and
diencephalon) seem to be those with the largest expression
of insulin and IGF receptors [127]. Findings about the
effects of metformin on adult neurogenesis suggest that a
similar therapeutic approach could be beneficial both for
diabetes and Alzheimer’s disease [112]. However, a recent
epidemiological study did not provide evidence to link long-
term metformin treatment with a reduction in AD risk.
Rather, it suggested a greater risk [129].

Diabetes may also be considered a risk factor for future
Parkinson’s disease (PD) [130]. The risk elevation seems
largely limited to individuals who had had diabetes for more
than 10 years at the time of the survey [131], indicating that
vascular disease and hypoglycemia events may contribute to
this association. Damage to neurogenic niches might occur
at early stage, previous to the appearance of typical motor
symptoms [72]. Such damage could perhaps be associated
with diabetes or insulin resistance.

7. Conclusions

The hypothesis that impaired neurogenesis is one of the
main factors involved in the diabetic cognitive deficit is
strongly supported by experimental evidence obtained in
rodent models, together with strong anatomopathological
and epidemiological findings in human beings. Both T1DM
and T2DM impair cell proliferation and neuron differenti-
ation in the main neurogenic niches of the adult brain, the
DG, and the SVZ. This association is explained by abun-
dant physiopathologic evidence. However, the proportion
of cognitive deficit and dementia that can be ascribed to
neurogenesis impairment has still to be determined. Human
diabetic cognitive deficit is not yet an early, diagnosis and by
the time it is usually recognized that brains have most likely
accumulated a large load of oxidative and vascular damage.

On the other hand, impairment of adult neurogenic
niches might explain the progressive course of T2DM
[132]. Early alteration of neurogenic niches might mislead
brain sensing of their nutritional status and facilitate the
appearance of metabolic changes. Most likely, people that
will later show T2DM have suffered previous changes of
their neurogenic niches. Techniques are becoming available
for the study of human neurogenic niches [133], allowing
noninvasive testing [134] of this hypothesis.
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investigation of the subventricular zone in mild cognitive
impairment and Alzheimer’s disease patients,” Neuroscience
Letters, vol. 469, no. 2, pp. 214–218, 2010.

[134] S. Gluth, J. Rieskamp, and C. Buchel, “Deciding when to
decide: time-variant sequential sampling models explain the
emergence of value-based decisions in the human brain,” The
Journal of Neuroscience, vol. 32, no. 31, pp. 10686–10698,
2012.



Submit your manuscripts at
http://www.hindawi.com

Enzyme Research

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in

Virolog y

ISRN 
Biotechnology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Bioinformatics
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com

Genomics
International Journal of

Volume 2013

ISRN 
Microbiology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Peptides
International Journal of

ISRN 
Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Stem Cells
International

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

ISRN 
Cell Biology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

BioMed Research 
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Biochemistry 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of

Marine Biology

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal

ISRN 
Molecular Biology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

International Journal of

Evolutionary Biology

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013


