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ABSTRACT: One-dimensional maps showing chaotic intermittency with discontinuous reinjection probability
density functions are studied. For these maps, the reinjection mechanism possesses two different processes.
The M function methodology is applied to analyze the complete reinjection mechanism and to determine the
discontinuous reinjection probability density function. In these maps, the function M(x) is continuous and
non-differentiable. Theoretical equations are found for the function M (x) and for the reinjection probability
density function. Finally, the theoretical results are compared with numerical data finding high accuracy.

RESUMEN: En este trabajo se estudian mapas unidimensionales que muestran intermitencia cadtica con
funciones de densidad de probabilidad de reinyeccion discontinuas.
reinyeccion posee dos procesos diferentes. Para analizar el mecanismo de reinyeccion completo y determinar
la funcién de densidad de probabilidad de reinyeccion discontinua, se aplica la metodologia de la funcion M.
Dicha funcién es continua y no derivable. Se encuentran ecuaciones tedricas para la funcion M (z) y para la
funcién de densidad de probabilidad de reinyeccion. Finalmente, los resultados tedricos se comparan con datos

Para estos mapas, el mecanismo de

numeéricos encontrandose una alta precision entre ambos.

1. Introduction

Non-linear behavior is a ubiquitous feature in natural
phenomena and human-made mechanisms. Several of
these non-linear behaviors are described by dynamical
systems displaying chaos. A route by which the
solutions of the non-linear dynamical systems can
evolve from regular to chaotic behavior is chaotic
intermittency [1]. The system solutions are composed
of laminar and chaotic phases. The laminar or regular
phases are pseudo-equilibrium or pseudo-periodic
solutions, while the bursts correspond to chaotic
evolution [1-3].

The phenomenon of chaotic intermittency has been
found in different fields of science as physics,
chemistry, medicine, engineering, and economics [4—
16]. Therefore, a better description and understanding
of the chaotic intermittency phenomenon would
contribute to several fields of knowledge.

Chaotic intermittency was classified into three types
named I, II, and III, following the loss of stability
for maps [17]. Type I intermittency happens if
there is a tangent bifurcation and an eigenvalue
leaves the wunit circle +1. Type 11
intermittency occurs by a Hopf bifurcation, and two
complex-conjugate eigenvalues move away from the
unit circle.  Finally, type III takes place during

across

a subcritical period-doubling bifurcation, and an
eigenvalue escapes the unit circle by -1 [1][3]. Posterior
research detected other intermittency types, such as X,
on-off, V, eyelet, and ring [18-27].

In one-dimensional maps, intermittency is produced
by a specific local map and a reinjection mechanism
[1][2]. The local map defines the type of intermittency,
and the reinjection process returns the trajectories to
the laminar zone. The reinjection probability density
function (RPD function) determines the trajectories’
probability of being reinjected in the laminar zone or
interval [1-3].

The correct description of the RPD function is essential
for understanding the intermittency phenomenon.
Several approaches were utilized to calculate the RPD
function, being the uniform reinjection (a constant
RPD) the most implemented [2][3][17][28]. Recently,
a more general methodology to evaluate the RPD
function has been introduced [1], which is called
the M function methodology.  This methodology
has accurately worked for types I, II, III, and V
intermittencies with and without noise [290-35].

This paper extends the M function methodology
to evaluate discontinnous RPD functions.
RPDs related to two o more overlapping
reinjection mechanisms [1][29][36]. The paper shows
that discontinuous RPD functions correspond to

These
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non-differentiable M () functions.

The paper is organized into five sections. The second
section briefly describes the M function methodology.
Section 3 extends the M function methodology to
evaluate discontinuous RPD functions.
numerical tests are presented.
there are the main conclusions.

In Section 4,

Finally, in Section 5

2. The M(z) function

The RPD function determines the statistical
distribution of trajectories leaving the chaotic
region and going back into the laminar region. The
RPD is the more significant function in describing
chaotic intermittency behavior. Once the RPD
function is known, the other statistical properties can
be determined [1][2].

To evaluate the RPD function, here also called ¢(x),

we introduce the following function (see equation (1))
J5 v o(y) dy

[1]:
TFow dy

M(x) = { 0

1 is the lower boundary of reinjection, and & < x <
xg + . Where xg is the vanished or unstable fixed
point and the laminar interval is L = [#,20 + ¢|. In
addition, ¢(x) is a C* function in L, where a C? is a ¢
times continuously differentiable function.

The M(x) function has been extensively used
to determine the statistical properties in chaotic
intermittency (see [1][29-35] and references indicated
in these manuscripts).

if [ o(y)dy #0

otherwise

(1)

In several maps showing intermittency, the M(x)
function showed in equation (2) is a linear function
(1]

if =%
otherwise

m(x— )+

M(z) = { 0

where m € (0,1) is a free parameter. Note, the M(x)
function is defined in the laminar interval [z, zg + ¢].
Theorem. Let M () be a function defined by equation
(1) and ¢(x) is a C! function. If M(x) is the linear
function given by equation (2). Then, the reinjection
probability density function results in equation (3):

(2)

$(x) =b (x — &) 7 (3)

Proof. For fxx o(y)dy # 0 the equation (1) can be

written as expressed in equation (4),

M@ [(swdi= [vswd @

If we differentiate this equation twice with x, we get
the equation (5),

‘FM(J‘)f b(y) dy +2(

(M(x) — )

(,.:,)

1) 6+

do(x) -
dr =0 )

if we assume that M(x) is given by equation (2), we

obtain £M@) _ 0, and dM(I) = m, hence the equation

T
(5) results in equation (b)
d{z&” (r—x) (m—1)4+¢(x)2m—-1)=0 (6)

The RPD function (see equation (7)) is calculated by
integration of the last equation

Bla) = b (e — i) = ™)

where b is the integration constant.

Therefore, the RPD function can be written as
expressed in equation (8),
1—-2
o(x) =b(a) (x —&)* where a= T (8)
m—

b(e) is a normalization parameter selected to verify
J;, () dx =1, where L is the laminar interval.

To approximate numerically the M(xz) function, we
notice that it is an average over reinjection points in
the interval [#,x], then we can write the equation (9)
as follows

(9)

J
M(x)=M; = %Z Tk, Tj_1 < I =T

k=1

where the data set (N reinjection points) {x;}}L; has
been previously ordered, i.c., z; < x;41. Therefore, &
can be approximated by & ~ inf{z;}.

We highlight the M(z) function is a
mathematical tool to calculate # and o determining
the RPD function and other statistical properties in
chaotic intermittency. Several papers have verified
that M(x) is a linear function, and the RPD function is
given by equation (8) (see [1][29][31][32] and references
indicated in these manuscripts).

useful

3. Non-differentiable M () function

In this section, we analyze the reinjection mechanisms
that display non-differentiable functions M(x). These
cases happen when there are two o more reinjection
processes generating discontinuous RPD functions.
Accordingly, ¢(x) is not C as in the previous section.



Here we introduce a general methodology to describe
the M(x) function and to obtain the RPD function
when there are two different reinjection processes.

Let us consider a generic one-dimensional map ;11 =
F(x,), which has two reinjection processes, called here
a and b, respectively. Each reinjection process verifies a
linear M () function (see equation (2)). We call M, (x)
and Mp(x) these functions for each reinjection process,
and they verify the equation (10),

My(x) =ma(x — T4) + Tq
(10)
My(x) = mp(x — Tp) + @b

where #, and I}y are the lower boundary of reinjection
for the reinjection processes a and b respectively.
From equation (10) and using the theory described in
Section 2, we get two independent RPD functions as
expressed in equation (11),

Pa(x) = ba(ava) (x — Ta),

1—2m

— sy
Qg Ma—1

(1)
= T

qf)b{'.{.') = bb(ﬂb) {.L — :f:b)ﬂb.,

We analyze two general cases. The first one assumes
that the overlap of the reinjection processes occurs in
the lower part of the laminar interval. On the other
hand, the second case considers that the reinjection
processes superposition happens in the upper part of
the laminar interval.

3.1 Case 1. Reinjection overlapping in the
lower part of the laminar interval

First, we study the case with reinjection overlap or
superposition in the lower part of the laminar interval.
Then, the complete RPD function results in equation
(12),

Iy <o <

¢1(x) = ¢a(z) + Pp(x),
d2(x) = ¢u(x),

b(x) =

Tg < T <Ip+c
(12)

where x, is the non-differentiable point for the global

M (z) function.

Since by (evg) and by(cv) are real numbers, we can write

ba(cvg) = b, and by(ap) = kb. Where k is a real number,

and b is evaluated from the normalization condition,

which is (see [1, 2])

Trop+e
f olr)de =1

b

(13)

If we introduce equations (11) and (12) in equation
(13), we get equation (14)

Tro+e Ty
kb/ (:J;—;E:b)“"d-_{:—i—b/ (£—iq)%dz =1 (14)
Iy g

where g + ¢ is the upper limit of the laminar interval,
L = [&p,x0 + ¢|, and we have assumed &y = I,
(see equation (12)). We emphasize, without loss of
generality, that &, could coincide with xy — ¢. Note
that & and b, are always real numbers because (see
equation (14))

(z—ap)*™ =0 if p<zr<zo+ec
(15)

(£ —Tg)% =20 if z,<x <z,

In equation (12), we have considered that ¢;(z) is
determined by two reinjection mechanisms represented
by ¢a(x) and ¢p(x), while ¢a(x) is caleulated by only
one reinjection mechanism given by ¢(z).

Note ¢p(xr) is defined in the complete laminar interval
L. However, ¢,(x) acts only in the sub-interval [#, x].
To calculate the global M (z) function, we implement
the M function methodology introduced in the
previous section.

Therefore, the complete M (z) function is given by
equations (16) and (17).

We notice the complete M(z) function has a
non-differentiable point at x = x,. Also, note the
M (x) function does not depend on the normalization
factor b. However, it depends on k. The parameter
k is calculated from equation (17), and it is given
by equation (18). In this equation, M(z) and = are
considered for all reinjected points verifying = > .,
and k is calculated as the average of them.

3.2 Case 2. Reinjection overlapping in the
upper part of the laminar interval

Now, we study the second case, where the reinjection

processes overlapping happens in the upper part of the

laminar interval. Therefore, the RPD function can be

written as expressed in equation (19):

o1(x) = ¢a(x),
$a(1) = ¢o(x) + dp(x),

Tg— << Ig

H) =

T <r <mxgtc
(19)

where ¢,(r) and ¢u(x) are obtained as shown in

equation (20):

da(x) =b (x — '.E:a)oru =b(r—xzo+ c)a“
(20)
op(x) =bk (x —3p)" = bk (x —x,)™

where 1 is the fixed point of the map, and the laminar
interval is L = [xg— ¢, g +¢]. Note that &, = z9—cis
the lower limit of the laminar interval, L, and & = .
Then, the M functions are obtained in equation (21)
as follows

My(x) =mg(r —x0+¢)+ 30—

(21)
My(x) = mp(x — ) + x4



For = < x,, the function M (x) is

M (x)

_ fEvda(Wdy+ (3 ydn(y)dy [T yb(y—=Fa)" dy+[7 ybk (y—25)"0 dy

Iz #a(w) dy-‘,—f;b ob(y) dy

Je, bly—2a)e dy+[5 bk (y—a5)"b dy

(16)

(—data)' T (Gata(l+an)) (I+op)(2+ap)+k(z—d@p) ' b (Ep+x(1+os)) (140 ) (24aa)

(24+0aa)(24ap) ((—Fa+x) e (1+ap)+k(z—Ep) T2 (1+0q))

And, for x > =,

_ Jiivdaay+)i ven(w)dy  JZT yb(y—2a)" dy+ 3 ybk (y—2)"t dy

M(xr) == ba(y) dy+]7, Su(y) dy

Jig b(y—%a)a dy+[;, bk (y—3s)b dy

(17)

_ (@a—&a)'T%% (@atws (14aa)) (I4ap)(24ap)+h(@z—is) T b (Ep+a(1+as)) (14+aa)(24a)

(24+a)(24+ap) ((To—Ta ) H e (14ap)+h(z—E,) ' T (14aq))

M(z) (2+0aa)(2+ap) (Ta—2a) T (tap)— (2o —5a)' % (Ea+2. (140a)) (1+0s) (2403)

k:

(2—23) %6 (Zp+a(1+ap)) (1) (2+aa)— M(@) (2+0a) (2+as) (1+aq) (T—85) 755

Mg (x) is defined inside the complete laminar interval
L = [xg—e, xg+c]. However, My(x) is given in [z, o+
cl.
We calculate the parameters m, and m;, for each
reinjection process individually. We apply the M
function methodology previously explained. Then, a,
and ay are obtained in equation (22) as follows

_ 2mg—1

Qg = —,
1—my

2mp — 1
abzi

(22)

1—my

The factor b verifies the equation (23) as follows

To+c Tn+e
/ b(x—x —|—c)“°d;z:+[ bk(zx—x.)*dr =1
T ’ (23)

Therefore, the global M function is given by equations
(24) and (25).

From equation (25), we obtain k which is given by
equation (26).

In equation (26), M(x) and = are considered for all
reinjected points verifying x, < = < xg —e. We
calculate k as an average of equation (26) evaluated
for all these values.

4. Applications. Numerical results

In this section, we present two numerical examples of
the theoretical cases described in the previous section.
To verify the generality of the methodology, the first
one uses type V intermittency, and the second analyzes
type I intermittency.

To accomplish the numerical tests, we make an
iterative process using the corresponding map. Later,
we divide the laminar interval L into N, sub-intervals,
and finally, we estimate the reinjection’s histogram and

the numerical RPD function. To do it, we utilize N
reinjected points inside the laminar interval. Typically,
millions of iterations are required. This procedure has
been applied previously [1, 29, 31, 33, 37].

4.1Case 1. Type V intermittency with
overlapping in the lower part of the
laminar interval

Let us introduce the following map [38] in equation
(27) (see below), where F(xy,) = ym = 1, 7 is the lower
boundary of reinjection, and ¢ is the control parameter.
This map has a fixed point + = 0 for e = 0. If 0 <
€ & 1, type V intermittency occurs. Figure 1 shows
the map for a; = 0.9, as = 2, £ = 0.001, and & = —0.2.
To evaluate the equations described in Section 3, we
analyze the following test: a; = 0.9, ay = 2, and
e = 0.001, &# = —0.2, ¢ = 0.114, and N = 100000,
where N is the number of reinjected points. We obtain
k = 0.1868, b = 7.25689, m, = 0.4077 (o, = —0.3117),
mp = 0.4518 (ap, = —0.1757). Figures 2 and 3 show
the complete M(x) function and the RPD function,
respectively. The M () function is given by equations
(16)-(17), and the RPD function is determined by
Equation (12).
the theory here described works accurately regarding
the numerical results. Note that the M function is
non-differentiable at x, = —0.1016, and the RPD
function is discontinued at that point.

From the figures, we observe that

4.2Case 2. Type | intermittency with
overlapping in the upper part of the
laminar interval

In a recent paper, the reinjection mechanism for
type I intermittency in the logistic map was studied



For x < x, .
fo_cyﬁf’a(y) dy _z(l+aq) +xo—c

M(z) = =& = (24)
[ ¢aly) dy 2+ aq
For = = x,
N ey b dy+ 7, v e (y) dy
M(z) =S @i ® mw
(25)
— (a—zote)'Ta (@ —eta(ltaa)) (1tay)(24ap)+k (x—za) b (x4 @(14ap)) (1+0a)(2+a)
B (24ap)(2+0aa) ((z—zo+e) T2 (1+ap)+k (x—z.) T (1+aqa))
po  (@mmore)t"e @y —cta(ltag)) (I+ap) (2+ap)—M(z) (2+ap) (2+ay) @—zo+c) 2 (1+ap) (26)
M(x) (2+Qb) (240aq) (1+ag) (x—xs ) Hoa _(I_xs)l-hzb (ratx(l4+as)) (1"1"1&) (24+aaq)
Fl(I):a1:£+E, r<xz<0
F(z) = Fyr)=ayzx+e, 0<z< :L'm’r (27)
F5(x) =%+ (ym — ) (ﬁ) JIm =T Y

-0.06

-0.07 1

-0.08 1

M (z)

-0.09 r 1

-0.1 -0.05 0 0.05 0.1
xT

Figure 2 The complete M function given by equations
(16)-(17) for a1 = 0.9, az = 2, £ = 0.001, and & = —0.2.
Blue line: numerical M (z) function. Black line:
theoretical M(z) function.

Figure 1 Map given by equation (27) for a; = 0.9, as = 2,
e = 0.001, and z = —0.2. Black line: map. Blue dashed
line: bisector.



[36]. Here, we use the results of this paper to
verify the theory developed in the previous section.
Because the logistic map displays type I intermittency
close a period-3 window, the third iterate of this map
is studied in equation (28),

Tpi1 = Iﬁ(-_{:n) (28)
where the equation (29)
I(z)=pz(l—x) (29)

is the logistic map.

We consider the fixed point xp = 0.5143552770619905.
We shift the third iteration of the logistic
map, [ ﬁ(;{:)? so that the fixed point g
matches the origin of the system.
Then, the map results in (30),

coordinate
equation

Fla) = =0+ i* (1= (& + 20)) (& +20) (14 o (=1 + ( + 20)) (z + 0))

(30)

X(14+ 42 (<1 + (2 +20)) (& +0) (14 1 (=1 + (i + 20)) (& + 0))

80 T T T T T

60 1

0.05 0.1

-0.05 0
L

-0.1

Figure 3 RPD function given by map given by equation
(12) for a; = 0.9, ay = 2, £ = 0.001, and & = —0.2. Black
points: theoretical RPD function. Blue points: numerical

RPD function.

For p1. = 1 + /8, a period-3 cycle is a solution of the
logistic map. However, for p < p,. but near it, there is
a tangent bifurcation, and type I intermittency occurs.
Figure 4 shows the map given by equation (30) for
1= 3.8278 < pu,.

For the map given by equation (30), the reinjection
process around the fixed point depends on the relation
between ¢, ¢; and the laminar interval semi-amplitude,
¢ (L = [—c¢,c]). The parameter ¢; verifies F(—¢;) = ¢,
and it is the laminar interval limit where there are
pre-reinjection points close to —e.
is reinjection from neighboring points to points to

—c. The parameter ¢y, satisfies di‘gf) = 0 and
T=cq

F(eq) € L.

For the sub-interval |c¢y| < ¢ < ¢ the map shows
two reinjection mechanisms, then the RPD function
possesses two components. The first one is produced by
pre-reinjection points away from the laminar interval,
and the trajectories going by for these pre-reinjection
points are reinjected in the complete laminar interval,

For ¢ < ¢ there

F(x)

&T

Figure 4 Map given by equation (30) for p = 3.8278.
Black points: map. Blue dashed line: bisector.

25

-0.02 0 0.02

£

0.04

Figure 5 RPD functions for p = 3.8278 and ¢ = 0.04.
Black line: the RPD obtained using the theoretical
development of the previous section. Blue points: the
numerical RPD function. o, = —0.0168018,

ay, = —0.0981602.



0.01

F(-c)

—-0.01 |

= -0.02

-0.03 ¢

-0.04
-0.04

o —_— — —

-0.02 0 02 0.04

Figure 6 M (x) function for g = 3.8278 and ¢ = 0.04. The
green line corresponds to x5 = F(—c) = 0.0167937.

L = [—¢¢. The second component is given
by pre-reinjection points neighboring to the laminar
interval lower limit, and they satisty F(z,_;) €
(F(—e¢),c], where ;1 are the pre-reinjection points
[36].

To study the reinjection processes, we consider
the following test: p = 3.8278 and |e4| =
0.014355277062 < ¢ = 0.04 < ¢; = 0.058036869.

The RPD function, ¢(x), is calculated by adding two
reinjection mechanisms described by ¢, () and ¢p(x).
To get the slopes m, and my, we study each reinjection
mechanism individually. We order the numerical data
and apply the M function methodology described in
Section 2.

The RPD function is shown in Figure 5. The blue
points are the numerical data, and the black line is the
theoretical RPD. The RPD function shows two distinct
behaviors, one for # < 1., and another for = > ..
Where z, = F(—c).

For the same test, the M(x) function is displayed
in Figure 6. We notice the M(x) function has a
non-differentiable point at x, = F'(—¢), where the RPD
function is discontinuous.

5. Conclusions

In this paper, we presented a systematic methodology
to obtain the reinjection probability density function in
chaotic intermittency when there are two overlapping
reinjection processes. We extended the M function
methodology developed and verified in previous studies
[1][290-32][34].

Two different cases were studied and described. The
first one considers that the overlapping occurs in
the lower part of the laminar interval. The second
case assumes an overlapping in the upper part of
the laminar interval. For both cases, we developed

theoretical equations for M (x) and RPD functions.
To satisfy the normalization condition, we introduced
a new real parameter called here k. This parameter
takes into account the different number of reinjected
points in both sub-intervals that make up the complete
laminar interval.

We have verified the accurate behavior of the
theoretical background here introduced by comparison
with numerical data. We carried out two numerical
tests. The first one studied the overlapping close to
the lower part of the laminar interval, and the second
test analyzed the reinjection mechanism when there is
overlapping in the upper part of the laminar interval.
One test considered type V intermittency, and another
one used type | intermittency. In both tests, the
theoretical results are very accurate regarding the
numerical data.
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