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Abstract. Stephen Yablo [23,24] introduces a new informal paradox, constituted by an

infinite list of semi-formalized sentences. It has been shown that, formalized in a first-order

language, Yablo’s piece of reasoning is invalid, for it is impossible to derive falsum from

the sequence, due mainly to the Compactness Theorem. This result casts doubts on the

paradoxical character of the list of sentences. After identifying two usual senses in which

an expression or set of expressions is said to be paradoxical, since second-order languages

are not compact, I study the paradoxicality of Yablo’s list within these languages. While

non-paradoxical in the first sense, the second-order version of the list is a paradox in our

second sense. I conclude that this suffices for regarding Yablo’s original list as paradoxical

and his informal argument as valid.
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1. Introduction

Infinitary paradoxes arose in the last decades to challenge the idea, almost
undisputed until then, that the cause of antinomies lies on some sort of
circularity or self-reference (a limit case of circularity). The first and most
popular one was Yablo’s Paradox, introduced by Stephen Yablo [23,24]. All
these antinomies consist in an infinite list of expressions, each of which says
something only about other expressions below in the list, avoiding, prima
facie, any kind of circularity. Yablo’s Paradox is given by the following semi-
formalized sentences:

(Y0) For all k > 0, Yk is untrue.

(Y1) For all k > 1, Yk is untrue.

(Y2) For all k > 2, Yk is untrue.

. . .
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Informally, it is possible to establish the paradoxicality of the list by
getting a contradiction from it or showing that it is impossible to assign
truth-values to its sentences in a consistent way. Suppose for reductio that
some Yn is true. Since it says that the following are not, they are not. Thus,
Yn+1 is not true, and neither are all the sentences that stand below it in the
list. But this is precisely what Yn+1 states. Hence, Yn+1 must be true after
all, which is absurd because we have just said it was not. Thus, every Yn

in the sequence is false. In particular, all sentences below Y0 are false and,
therefore, Y0 is true after all. Contradiction.

Formally, quite the opposite, there have been many difficulties in deriving
falsum from Yablo’s list, casting doubts on its paradoxicality.1

What does it mean for an expression or class of expressions to be par-
adoxical? Usually we find two different answers to this question implicit
in the literature. The most popular is the idea that a set of expressions is
paradoxical only if it allows us to derive a contradiction from some intu-
itive and previously accepted principles.2 In formal languages, this means
that the theory entailing such principles is inconsistent, given the existence
of such set of expressions. Yablo’s piece of reasoning could be described as
an attempt to obtain a contradiction from some arithmetical and truth-
theoretical principles, assuming the existence of the sequence of sentences
he introduces.

Nonetheless, there is at least another traditional answer to our question.
A second sense in which we can say a class of expressions is paradoxical
is only if it is impossible to assign (classic) truth-values consistently to its
members, i.e., if the assumption that some of them are true makes them
false and vice versa, again taking into account some intuitive and previously
admitted principles.3 In formal languages, this implies that such principles

1The literature regarding Yablo’s Paradox deals with three main topics: the paradox-
ical character of the list, which specially concerns us, the circularity of the list, which is
the most popular issue but we will only devote a few lines to it, and whether the paradox
is liar-like or not. This matter will be avoided here. For information and a discussion over
this topic, see for instance Yablo [25] and James Hardy [12].

2Paul Benacerraf and Crispin Wright [3], Jeffrey Ketland [13,14], Graham Priest [18]
and Neil Tennant [22], for instance, embrace this notion of paradoxicality. Sometimes this
requirement is replaced with a weaker one: a (merely) false statement must be syntacti-
cally entailed. Curry’s Paradox proving the existence of Santa Claus is one clear example.
However, in most cases both requirements turn out to be equivalent: of course, the former
implies the later; and generally the derivation of a falsity contradicts some of the previously
accepted principles.

3For instance, Nuel Belnap and Anil Gupta [2], Roy T. Cook [5], Hartry Field [9],
Ketland [14] and Saul Kripke [15] use the term ‘paradoxical’ in this sense.
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are unsatisfiable, assuming the existence of such set of expressions. Yablo’s
original argument could also be described as an attempt to show the impos-
sibility of assigning consistent truth-values to sentences in the sequence.

For languages in which the Completeness Theorem holds, e.g. first-order
languages, these two senses are equivalent. However, this is not generally
the case, since many formal languages, such as higher-order ones, are not
complete. Throughout this paper we will favor the first sense of ‘paradox-
ical’ over the other one, though not discarding this last sense. Hence, two
questions are to be answered: Is Yablo’s list paradoxical in our first sense?
Is it in our second sense?

2. Yablo’s Paradox in First-Order Languages

Sentences in Yablo’s original sequence refer to each other by means of the
position they have been assigned in it: a natural number. Most of the infor-
mal reasoning makes use of some properties of the ordering of the natural
numbers, as well as principles for truth. Since it is possible to express every
sentence of the list in a first-order language, first formalizations have been
developed in first-order arithmetical languages4 containing a monadic pred-
icate symbol T for truth.

2.1. Definitions and Notational Conventions

Let L be the language of first-order Peano Arithmetic with symbols for all
primitive recursive functions and relations. If we extend L with T , we obtain
the language LT .

Let N be L’s intended model, and let ω, the set of natural numbers, be
its domain.

Let PA be the usual axiomatization of first-order Peano Arithmetic for-
mulated within L, containing the Induction Schema and equations defining
primitive recursive functions and relations in a natural way.5 Let PAT be
the theory in LT that obtains by adding to PA all instances of the Induction
Schema generated by LT -formulae containing T .

If ϕ is a formula of an arithmetical language, �ϕ� is the numeral of the
Gödel number of ϕ. The substitution function, when applied to the Gödel

4By ‘arithmetical language’ I understand any first-order or second-order extension of
the language of first-order Peano Arithmetic that does not allow new terms.

5Functions and relations defined in a natural way allow us to prove basic syntactic facts
that otherwise would not be provable. For more precision, see Halbach [11, pp. 33–35].
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numbers x of a formula, t of a term, and v of a variable, gives the Gödel
number of the formula that results from replacing the free variable (whose
Gödel number is) v in the formula (whose Gödel number is) x by the term
(whose Gödel number is) t. This ternary function is primitive recursive.
Therefore, it will be represented in arithmetical theories,6 say, by x(t/v).7

The function that maps each number to its numeral is also primitive recur-
sive and will be represented within arithmetical systems by ẋ. Following
Feferman’s ‘dot’ notation, if ϕ is a formula with exactly one free variable v,
we write ∀xT�ϕ(ẋ)� as short for ∀xT�ϕ�(ẋ/v) to bind variables that occur
within closed terms (e.g. numerals of Gödel numbers of formulae). Thus, in
a standard interpretation of the non-logical vocabulary, ∀xT�ϕ(ẋ)� states
that every numerical instance of ϕ is true.

2.2. Formalizing Yablo’s Paradox

The usual way of doing so within arithmetical languages is to follow the
strategy used for the Arithmetic Liar and the Gödel sentence,8 that is, uti-
lizing biconditionals instead of identity statements to allow formulae to refer
to themselves or other formulae. A predicate Y (x) is needed, since bicondi-
tionals hold only between formulae, not terms such as codes of expressions.
Y (x) may be called ‘Yablo’s predicate’:

YA = {Y (n̄) ↔ ∀x(x > n̄ → ¬T�Y (ẋ)�) : n ∈ ω}9

For each n ∈ ω, Yablo’s original sentences Yn are formalized by Y (n̄), and
biconditionals in YA set their reference, for they establish an equivalence
between each of them and the claim that, for all m > n, Y (m̄) is untrue.

There are at least two alternative ways of guaranteeing the existence
of the list—i.e., of allowing biconditionals in YA to hold—in a first-order
arithmetical system, both due to Priest [19].

Priest’s first proposal is to formulate it in PAT by means of the Diago-
nalization Lemma. Since this system is a recursive extension of PA, we can

6By ‘arithmetical system’ or ‘arithmetical theory ’ I understand any first-order or sec-
ond-order recursive extension of PA.

7Notice that the predicates ‘x is a formula’, ‘x is a term’ and ‘x is a variable’ are prim-
itive recursive too. Also, we are assuming that, if necessary, bound variables in x will be
renamed in order to avoid unintended bindings.

8The Arithmetic Liar, λ, and the Gödel sentence, G, are given by ‘λ ↔ ¬T�λ�’ and
‘G ↔ ∀x¬Bew(�G�, x)’, respectively. As usual, in an arithmetical theory Bew(x, y) rep-
resents the relation ‘y is the Gödel number of a proof in the system of the formula whose
Gödel number is x’.

9For each n ∈ ω, n̄ is the numeral of n.
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apply a standard generalization of the Diagonalization Lemma for formulae
with exactly two free variables10 to ∀x(x > z → ¬Ty(ẋ/z)) and get:

PAT � ∀z(Y (z) ↔ ∀x(x > z → ¬T�Y (ẋ)�))

This theorem of PAT is what Ketland [13] calls the ‘Uniform Fixed-
Point Yablo Principle’ (UFPYP, from now on), and it states that Yablo’s
predicate is a weak fixed point of ∀x(x > z → ¬Ty(ẋ/z)).11 Yablo’s list
is derivable from the UFPYP just by instancing the universal quantifier
with each numeral of the language. However, this is not a good path, if we
believe that Yablo’s Paradox is not circular in its original presentation.12

For, although it gives us a formal paradox, this paradox turns out to be
circular. In the next few lines I will argue in favor of this idea.

Historically, paradoxes have been called intuitively ‘circular’ when consti-
tuted by expressions that, directly or indirectly, refer to themselves in some
way or other. The sentence

(L) L is untrue.

—core of what has been called the ‘Liar Paradox ’—directly states something
about itself. Therefore, we can conclude that the paradox constituted by it
is circular, at least in an intuitive sense. Semantic antinomies of this sort
can usually be expressed within arithmetical theories containing a truth
predicate; circular expressions involved in them are traditionally formalized
by means of what I will call ‘diagonal sentences’, i.e., expressions that just
state, explicitly, that a formula is a weak fixed point of some predicate:
• If α is a sentence and ψ(v) is a formula with exactly one free (individual)

variable v,

α ↔ ψ(�α�)

is a diagonal sentence. The core of the formalized Liar Paradox in PAT

is given by the diagonal sentence

λ ↔ ¬T (�λ�)

10According to this generalization of the lemma, if ψ is an LT -formula with exactly
two free variables x and y, there is another LT -formula ϕ with exactly one free variable y
such that

PAT � ∀y(ϕ(y) ↔ ψ(�ϕ(y)�, y)).
11For a thorough discussion on fixed points, see Cook [6].
12Besides Yablo, Tennant [22] and Roy Sorensen [21] argue in favor of this idea.
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which is a theorem of PAT . It shows that λ is a weak fixed point of
¬T (x).

• If ϕ(v1, . . ., vn) is a formula with exactly n free (individual) variables
v1, . . ., vn and ψ(v, v1, . . ., vn) another formula with exactly n + 1 free
(individual) variables v, v1, . . ., vn,

∀v1. . .∀vn(ϕ(v1, . . ., vn) ↔ ψ(�ϕ(v1, . . ., vn)�, v1, . . ., vn))

is a diagonal sentence. According to this definition,

∀z(Y (z) ↔ ∀x(x > z → ¬T�Y (z)�(ẋ/z)))

is a diagonal sentence of PAT , for it is a theorem of this arithmetical
system. It explicitly states that Y is a weak fixed point of ∀x(x > z →
¬Ty(ẋ/z)).

• Nothing else is a diagonal sentence.

Diagonal sentences provide us means for expressing circular statements
within arithmetical languages. Any time the core of a paradox formalized
in such a language contains a diagonal sentence it seems correct to say that
the formal paradox is circular.13

Priest [19] has argued in favor of the circularity of the paradox obtained
through the Diagonalization Lemma, but for the wrong reasons. He claims
that:

[. . . ] the paradox concerns a predicate, ṡ [Y ],14 of the form k >
x,¬S(k, ṡ) [∀x(x > z → ¬T�Y (z)�(ẋ/z))]; and the fact that ṡ =
‘k > x,¬S(k, ṡ)’ [Y (z) ↔ ∀x(x > z → ¬T�Y (z)�(ẋ/z))] shows that
we have a fixed point, ṡ [Y ], here, of exactly the same self-referential
kind as in the Liar Paradox. In a nutshell, ṡ [Y ] is the predicate ‘no
number greater than x satisfies this predicate. The circularity is now
manifest.’ [19, p. 238]

13Note that this condition, if adequate, is only a sufficient but not a necessary one.
As Hannes Leitgeb [17] has shown by reflecting on the debate on Yablo’s Paradox and its
alleged (non-)circularity, giving an adequate notion of circularity for first-order languages
is a difficult task and any non-sophisticated explanation of the term is expected to fail.
For these reasons, I will not go any deeper into this matter here.

14Priest utilizes a slightly different notation that makes no difference regarding results.
Formulae between brackets are the translation of his notation to ours and, of course, do
not appear in the original.
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Thus, according to Priest, the paradox is circular for the reason that Y is
a weak fixed point of some predicate. But, as Cook [6] notices, every formula
of an arithmetical language is a weak fixed point of some predicate within
an arithmetical theory. It seems reasonable to think that not every such
formula is circular. However, if we adopt Priest’s criterion, i.e., if we agree
that an expression is circular any time it contains predicates that are fixed
points of some other predicates, we commit ourselves with the circularity of
every expression. Hence, including a predicate that is a fixed point of some
other should not be enough for circularity—as Cook and Priest claim. What
clearly is, as already stated, is being a diagonal sentence; Yablo’s Paradox
formalized via the Diagonalization Lemma is circular because its formulation
involves the UFPYP.

In fact, as Priest [19] and Ketland [14] show, adding to PAT principles
governing the truth predicate that are strong enough to prove what Ketland
calls the ‘Uniform Yablo Disquotation Principle’ (UYDP, from now on):

∀x(T�Y (ẋ)� ↔ Y (x))

allows us to derive falsum, but only making use of the UFPYP, a diagonal
sentence. This principle is not merely arithmetical, merely truth-theoretical,
or merely arithmetical and truth-theoretical. It is a sentence that states
something about the behavior of Yablo’s predicate, something that the
biconditionals in YA by themselves do not entail (as we will see imme-
diately) and, therefore, belongs to the core of the formal paradox. Since it
is a diagonal sentence, we must regard the paradox as circular.

Actually, the UFPYP entails all Yablo biconditionals but this does not
hold the other way around. There is an alternative way to obtain the list,
also suggested by Priest [19] and developed by Ketland [13], that blocks the
UFPYP. Let LTY be the language that results from adding to LT a new
monadic predicate symbol Y ; and let PATY be the theory formulated in
this language that obtains by incorporating to PAT all members of YA and
all instances of the Induction Schema generated by LTY -formulae contain-
ing Y . The UFPYP is no longer a theorem of PAT , neither of PATY .15

Of course, Y will be a fixed point of some binary predicate, but this predi-
cate will not be ∀x(x > z → ¬Ty(ẋ/z)); and the diagonal sentence stating
that will no longer be among Yablo’s biconditionals. Since none of these
are diagonal sentences themselves, there is no reason to think that Yablo’s
list is circular. Thus, adding to PAT the set of Yablo’s biconditionals by

15For Y is no longer the predicate we get by applying the Diagonalization Lemma to
∀x(x > z → ¬Ty(ẋ/z)).
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means of a new monadic predicate Y is a better way of guaranteeing the
existence of the list, for two reasons. In the first place, it does not allow
principles governing Y other that biconditionals in YA, just like Yablo’s
[24] original presentation does not allow anything to constitute the paradox
but sentences in the list. Our purpose is to analyze the possibility of getting
a contradiction from reasonable arithmetical and truth-theoretical princi-
ples16 (or prove them unsatisfiable) along with the list, not along with the
UFPYP or any other axioms governing Y . Secondly, it gives us no motive to
regard the formalized list as circular, just like in the semi-formalized case.
Our special interest in Yablo’s Paradox lies, as stated at the beginning, on
its (intuitive) non-circularity. A circular formalization of the non-circular
original version is worthless, and does not deserve to be regarded as a real
formalized version of Yablo’s Paradox. Thus, I will leave it behind.

Nonetheless, this is not a promising path either. For as Ketland [13]
notices, no matter which truth-theoretical principles we add to PATY , the
resulting theory will be consistent, as long as they are reasonable and not
inconsistent on their own with PATY , without members of YA. As already
said, it is only possible to get a contradiction from the list along with
the UFPYP; but Yablo’s biconditionals by themselves do not entail this
principle.

This alternative way of getting Yablo’s list of sentences within an arith-
metical language leading to a consistent theory is a consequence of the
Compactness Theorem, as Thomas Forster [10] first notices. Let YT 17 be the
theory that obtains by adding to PATY the UYDP. Without members of YA
the theory has a standard model; and also together with any finite subset of
this set. Hence, by Compactness, the whole YT is satisfiable. The intuitive
argument for a contradiction from the semi-formalized sentences relies on
the infiniteness of the list and, since first-order languages are compact, it
cannot be mirrored by them. This result pushes us, not to the circular for-
malization, which is not a legitimate one, but to considering different—more
powerful—logical systems, where the Compactness Theorems fails. This is
the subject of Section 3.

The list of Yablo’s sentences in a first-order language is not paradoxical
in our first sense of the term: it does not allow us to derive falsum. Neither is
the list paradoxical in the second sense mentioned above. For, by Compact-
ness, as already seen, there must be a model for YT . The existence of this

16By ‘reasonable arithmetical principles’ and ‘reasonable truth-theoretical principles’ I
understand intuitively sound ones.

17For ‘Yablo’s Theory’, naturally.
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model entails the possibility of assigning truth-values in a consistent way
to every sentence of the form Y (n̄) with n ∈ ω without making any bicon-
ditional in YA untrue, i.e., without denying the existence of the list. We
must conclude, thus, that Yablo’s list is not paradoxical when formulated in
first-order languages.

2.3. Circularity or Consistency and ω-Inconsistency

So far, we have two alternative formalizations of Yablo’s sequence. The first
one, though inconsistent, seems to be clearly circular and should be dis-
carded. The second one, non-circular as far as we know, turns out to be
consistent and satisfiable. Neither way gives us a non-circular antinomy.
But there is more to be said about the second formalization of the list. As
Hardy [12] notices and Ketland [14] proves, YT is an ω-inconsistent theory.
For we can prove in that system every numerical instance of ¬Y (x) and also
∃xY (x). Hence, since the UYDP seems to be a reasonable principle for han-
dling the truth predicate applied to Yablo’s sentences—Hardy and Ketland
conclude—Yablo’s list is not a paradox but an ω-paradox.18

The Compactness Theorem entails the consistency of the list even along
with reasonable arithmetical and truth-theoretical principles. The consis-
tency but ω-inconsistency of the list is guaranteed by the existence of non-
intended models of YT , that allow every numerical instance of ¬Y (x) to be
true and, yet, its universal closure to be false. Second-order languages with
full semantics are not compact and do not allow such non-intended models.
Thus, the possibility of getting a paradox within a second-order language is
still open.

3. Ω-Inconsistent Second-Order Theories

Before examining a second-order version of Yablo’s Paradox, since its first-
order version turned out to be consistent though ω-inconsistent, it will be
useful to consider a larger phenomenon: consistency and satisfiability of sec-
ond-order versions of first-order consistent but ω-inconsistent theories.

18Reasonable as the UYDP may seem, Leitgeb [16, p. 71] argues that an ω-inconsis-
tent theory of truth ‘[. . . ] may no longer be interpreted as speaking (only) about natural
numbers and thus about the codes of sentences, but rather about nonstandard numbers,
and codes of nonstandard sentences’, since it has no ω-model; and Eduardo Barrio [1]
concludes that T cannot be a truth predicate for the language after all. This oddity is
precisely what it means to be an ω-paradox. Though Yablo’s first-order version does not
entail inconsistency, it causes what Leitgeb [16, p. 71] calls ‘[. . . ] a drastic deviation from
the intended ontology of the theory.’
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3.1. Definitions and Notational Conventions

Let L2 be a second-order language containing the same non-logical vocab-
ulary as L. Let N

2 be the L2’s intended model. Again, ω is the range of
first-order quantifiers in N

2. Also, let PA2 be the second-order theory that
results from replacing all instances of the Induction Schema of PA by the
second-order Induction Axiom.19

Let L1 be any first-order arithmetical language and L2 be the second-
order language with the same non-logical vocabulary as L1. If A1 is a first-
order arithmetical system formulated in L1, I will call ‘A1’s second-order
rewriting ’ the second-order theory A2 that results from homogeneously
replacing the schematic n-ary letters in A1’s axiom schemata with n-ary
set variables and then binding them universally from outside. Every other
axiom of A1 remains intact. Manifestly, PA2 is PA’s second-order rewriting.

3.2. Looking for a General Result

It is not clear whether second-order rewritings of first-order consistent but
ω-inconsistent theories are consistent. Certainly, they lack of models as a
result of Categoricity.20 Let A2 be an extension of PA2 formulated in L2.

Theorem 3.1. If there is a model M such that M � A2 and for some L2-
formula ϕ(x) M � ϕ(n̄) for each n ∈ ω, then M � ∀xϕ(x).

Proof. Since A2 contains as theorems every axiom of PA2, if M � A2 then
M � PA2 and, by Categoricity, M is isomorphic to N

2. Thus, if for some
L2-formula ϕ(x) M � ϕ(n̄) for each n ∈ ω, then N

2 � ϕ(n̄) for each n ∈ ω
too. As N

2’s first-order domain is ω, N
2 � ∀xϕ(x) and, by isomorphism,

M � ∀xϕ(x).

Theorem 3.1 entails the soundness of the ω-rule21 within PA2 and any
extension of it. This, in turn, implies the next result, with A2 as before:

Corollary 3.2. If A2 is an ω-inconsistent theory, it is unsatisfiable.

19For a precise definition of ‘second-order language’, ‘second-order theory ’, second-
order semantics and second-order arithmetic, see Stewart Shapiro [20]. I will only consider
second-order theories without the Axiom of Choice, since there are many concerns around
its logical status and it will not play a significant role here.

20Of course, considering standard semantics. The first categoricity result is due to
Richard Dedekind [7].

21The ω-rule allows us to infer ∀xϕ(x) from the set {ϕ(n̄) : n ∈ ω} for any formula ϕ
of the language.
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Proof. If A2 is ω-inconsistent, there is an L2-formula ϕ(x) such that A2 �
¬ϕ(n̄) for each n ∈ ω and, also, A2 � ∃xϕ(x). Suppose for reductio that
there is a model M such that M � A2. Thus, M � ∃xϕ(x) and, simulta-
neously, M � ¬ϕ(n̄) for each n ∈ ω. By Theorem 3.1, M � ∀x¬ϕ(x), which
is impossible.

Corollary 3.2 entails the unsatisfiability of every second-order rewriting
of a consistent but ω-inconsistent first-order arithmetical theory. However,
this is not enough for inconsistency, since second-order logic is incomplete.
It may perfectly happen, at least prima facie, that a second-order theory
semantically implies falsum but, because of the failure of Completeness,
falsum is not one of its theorems. Nonetheless, this is not the general case.

Theorem 3.3. Some second-order rewritings of first-order consistent but
ω-inconsistent theories are inconsistent.

Proof. Let G be PA’s Gödel sentence. As is well known, PA proves
¬Bew(�G�, n̄) for each n ∈ ω, but does not prove G.22 Consider then the
first-order system PA ∪ {¬G}. This theory is consistent but ω-inconsistent.
Its second-order rewriting, PA2 ∪ {¬G}, proves G as a theorem, since PA2

does, and is, therefore, inconsistent simpliciter.

If the result that Theorem 3.3 provides us could be generalized to every
first-order consistent but ω-inconsistent system, Yablo’s list would consti-
tute a paradox in our first and privileged sense of the term. Could this be
our general result? Unfortunately, no, as the following theorem shows. Let
A1 be any first-order arithmetical system formulated in L1 and let ϕ(x)
be a formula of this language. Also, let A2 be A1’s second-order rewriting,
formulated in L2, and let E = {ϕ(n̄) : n ∈ ω}.

Theorem 3.4. If for any finite set F ⊆ E there is an expansion NF of N

such that NF � A1 ∪ F , then A2 ∪ E � ⊥.

Proof. I will show that for every finite F ⊆ E A2 ∪F has a corresponding
model N

2
F . Given any such F , we expand N

2 to a model N
2
F of L2 in the

following way:23

• if c is an individual constant of L2, cN
2
F = cNF ;

22Naturally, PA � G as long as it is a consistent theory. As usual, I will be working
under this assumption through the whole paper. Moreover, I will assume that both PA
and PA2 are arithmetically sound, i.e., that N � PA and N

2 � PA2.
23This detailed expansion is entirely possible, because NF has ω as its domain, since it

is an expansion of N by hypothesis.



L. M. Picollo

• if f is an n-ary function symbol of L2, fN
2
F = fNF ;

• if P is an n-ary predicate symbol of L2, PN
2
F = PNF ;

Now I will show that N
2
F � A2 ∪F . Firstly, since N

2
F ’s first-order domain

is ω and it provides the exact same interpretation of L1’s non-logical vocab-
ulary as NF , for every L1-formula α such that NF � α, N

2
F � α. Thus,

N
2
F � A1 ∪ F . Secondly, both the Induction Axiom and the Comprehension

Schema are true in N
2
F . This is trivial, since they were true in N

2. The only
thing that has changed by expanding this model to N

2
F regarding those axi-

oms is that the later model may interpret some new n-ary predicate symbols
by assigning them sets of n-tuples of members of ω that were already part
of the range of the set variables. It does not matter if they used to have no
name. Consequently, N

2
F � A2 ∪ F .

Now assume for reductio that A2 ∪E � ⊥. By the Finiteness Theorem we
know that only a finite number of members of E can be utilized in the proof.
Let F be the set of such members. Hence, A2 ∪ F � ⊥, which is absurd, for
we have shown that every A2 ∪ F has a model.

Theorem 3.4 implies that, if infinitely many formulae are necessary for
ω-inconsistency in a first-order theory, its second-order rewriting is a con-
sistent system. Since as we will see in the next section such theories exist,
we must conclude that not every ω-inconsistent first-order system has an
inconsistent second-order rewriting. Hence, the search for a general result
is hopeless. While some second-order rewritings of ω-inconsistent first-order
theories turn out to be inconsistent, others do not. However, Theorem 3.4
gives us a general rule, for it shows that any time the ω-inconsistency of
a first-order theory is a product of adding (no less than) infinitely many
sentences its second-order rewriting is thus consistent.

Theorem 3.3’s result, on the contrary, cannot be generalized: it is not the
case that any time we get ω-inconsistency by adding only a finite number
of formulae to a first-order arithmetical system, the second-order rewriting
of the resulting theory in inconsistent. If it were, PA2 would prove every
arithmetically true Π0

1-statement, which it does not.

4. Yablo’s Paradox in Second-Order Languages

As in the first-order case, there are two ways of guaranteeing the existence
of the list: one via the Diagonalization Lemma, which gives us a circular
paradox and is, therefore, useless; and another one that introduces Y to the
language as a new primitive. I will stick to this second path. Our concern
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here is firstly with YT ’s second-order rewriting. As this system is consistent
but ω-inconsistent, some results of the previous section will become handy.

4.1. Definitions and Notational Conventions

Let YT 2 be YT ’s second-order rewriting and let L2
TY be the language in

which YT 2 is formulated.
Regarding axioms, YT 2 differs from YT just in the induction case. The

former replaces every instance of YT ’s Induction Schema with a single
statement, the Induction Axiom. This arithmetical principle, along with the
Comprehension Schema, allows us to derive all first-order instances of the
Induction Schema. Thus, every YT axiom is a theorem of YT 2 and, con-
sequently, as YT is ω-inconsistent, YT 2 is so too. Since the Compactness
Theorem does not hold for YT 2 and, by the Categoricity result, there are
no non-intended models to guarantee its consistency, we may feel inclined
to believe that this system is inconsistent simpliciter, like PA ∪ {¬G}’s
second-order rewriting.

4.2. Bad News and Good News

Unfortunately, just like the first-order calculus, the second-order calculus is
not powerful enough to mirror the original informal reasoning and give us a
contradiction from YT 2. YT 2’s case is not analogous to PA2 ∪ {¬G}’s. On
the contrary, it fits Theorem 3.4’s hypothesis, as the next corollary estab-
lishes.

Corollary 4.1. YT 2 is a consistent system.

Proof. Let PA ∪ {UYDP} (with all instances of the Induction Schema
generated by LTY -formulae) take the place of A1 in Theorem 3.4 and let
YA take the place of E. Given any finite F ⊆ YA we expand N to NF in
the following way:

• If F = ∅, let Y NF = TNF = ∅.

• If F �= ∅, since it is finite, there is an m ∈ ω such that

Y (m̄) ↔ ∀x(x > m̄ → ¬T�Y (ẋ)�) ∈ F

and, for all n ∈ ω such that n > m

Y (n̄) ↔ ∀x(x > n̄ → ¬T�Y (ẋ)�) /∈ F

Thus, let Y NF = {m} and TNF = {the Gödel number of Y (m̄)}.
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Next I will prove that NF � PA ∪ {UYDP} ∪ F for any finite F ⊆ YA.
First, every PA axiom that does not contain T or Y is true in NF , for it is
in N. Secondly,

• If F = ∅, NF � ∀x(Y (x) ↔ x �= x)∧∀x(T (x) ↔ x �= x), as Y NF = TNF =
∅. Thus, all instances of the Induction Schema containing T or Y are
true, since the ones containing x �= x instead of Y (x) or T (x) are true.
Also, the UYDP comes out true in NF , just like ∀x(T�Y (ẋ)� ↔ x �= x),
because NF � ∀x¬T (x).

• If F �= ∅, NF � ∀x(Y (x) ↔ x = m̄) ∧ ∀x(T (x) ↔ x = �Y (m̄)�),
since Y NF = {m} and TNF = {the Gödel number of Y (m̄)}. Again, all
instances of the Induction Schema containing T or Y are true, for the
ones containing x = m̄ and x = �Y (ẋ)� instead, respectively, are so.24

NF � UYDP, as NF � T�Y (m̄)� ∧ Y (m̄) and NF � ¬T�Y (n̄)� ∧ ¬Y (n̄)
for all n ∈ ω such that n �= m. Finally, NF � F . Let Y (n̄) ↔ ∀x(x >
n̄ → ¬T�Y (ẋ)�) ∈ F . If n = m, both NF � Y (n̄) and NF � ∀x(x > n̄ →
¬T�Y (ẋ)�), since the only member of Y NF is m. If, instead, n �= m, then
both NF � ¬Y (n̄) and NF � ¬∀x(x > n̄ → ¬T�Y (ẋ)�), for the same
reasons as before.

Hence, by Theorem 3.4, YT 2
� ⊥.

The strong metatheorem we used to prove Theorem 3.4 and, thus, Cor-
ollary 4.1, is the Finiteness result for the second-order calculus. According
to it, if we cannot derive a contradiction from any finite subset of an infinite
set, we are not deriving it from the whole set either. This is Yablo’s Paradox’
case: any finite subset of Yablo’s biconditionals has a model and, thus, is
not inconsistent. Hence, neither is the entire list.

The Finiteness Theorem allows us to extend what we established in Cor-
ollary 4.1 for YT 2 to any other theory that considers different (but reason-
able) truth-theoretical principles for handling Yablo’s biconditionals, even
strictly second-order ones. Let A2 be any arithmetical second-order system
formulated in L2

TY , and let T T be any set of reasonable principles governing
the truth predicate25 formulated in the same language.

Corollary 4.2. If, for every finite F ⊆ YA, A2 ∪ T T ∪ F � ⊥, then
A2 ∪ T T ∪ YA � ⊥ either.

24Although Y is not a predicate of L, �Y (t)�, where t is any term of L, is a term of L,
since it is just a numeral.

25 T T stands for ‘Theory of Truth’.
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Proof. Straightforward, by the Finiteness Theorem.

Therefore, if we manage to get falsum from Yablo’s list within a sec-
ond-order language, two things may happen. Either our arithmetical and
truth-theoretical principles are inconsistent by themselves—in which case
we cannot know for sure if the list is to blame for the inconsistency, i.e., if it
is paradoxical or not in our first sense of the term—or only a finite number
of Yablo’s biconditionals is necessary for deriving a contradiction from the
list, in which case we are diverting from Yablo’s original semi-formalized
piece of reasoning in a significant and undesirable way. No matter which
truth-theoretical principles we embrace, as long as they are reasonable, the
resulting theory will be consistent.

Nonetheless, YT 2 is paradoxical in our second sense of the term, since it
semantically entails a contradiction, as the following result shows.

Corollary 4.3. YT 2 is unsatisfiable.

Proof. Straightforward, by Corollary 3.2.

The fact that YT 2 lacks models implies that, assuming PA2 and the
UYDP, there is no way of assigning truth-values consistently to Yablo’s
sentences —expressions of the form Y (n̄), which state that ∀x(x > n̄ →
¬T�Y (ẋ)�). For, since PA2 ∪ {UYDP} has a model, as proved in Corol-
lary 4.1, YT 2’s unsatisfiability shows that it is not possible to regard as
true every biconditional in the list and, hence, at least one of them must
be false. Thus, for some such biconditional, say Y (m̄) ↔ ∀x(x > m̄ →
¬T�Y (ẋ)�), either Y (m̄) receives the truth-value truth and what it says,
∀x(x > m̄ → ¬T�Y (ẋ)�), false; or, conversely, Y (m̄) gets the truth-value
false but ∀x(x > m̄ → ¬T�Y (ẋ)�) is assigned true.

5. Conclusions

Formulated in a first-order language, Yablo’s sequence is not paradoxical
in either of the two senses of the term mentioned in the Introduction. Nei-
ther is it possible to derive a contradiction from reasonable arithmetical and
truth-theoretical principles along with the list in the first-order calculus, nor
is the formalized version of Yablo’s original piece of reasoning valid in it.

The second-order calculus does not allow us to get a contradiction from
reasonable arithmetical and truth-theoretical principles along with the list
either. Thus, Yablo’s sequence is not paradoxical in our first sense within
second-order logic. We may then feel tempted to regard Yablo’s original
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argument as logically incorrect, as invalid simpliciter ; and Yablo’s list of
sentences as non-paradoxical. However, as Corollary 4.3 shows, this path
is forbidden, since the argument is second-order semantically valid.26 If we
embrace the second-order notion of logical consequence we must subscribe
to the idea that the second-order calculus is not powerful enough for repre-
senting Yablo’s argument, and neither is the first-order calculus.

Second-order logic has an advantage over first-order logic. By regarding
the intuitive reasoning as semantically valid, first, it proves YT 2’s unsatisfi-
ability and, thus, the impossibility of assigning truth-values consistently to
Yablo’s sentences. Consequently, second-order logic regards Yablo’s sequence
as paradoxical in our second sense of the term. And, secondly, it is expres-
sive enough to mirror Yablo’s original argument. In contrast, first-order logic
cannot do any of that.
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