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This study was designed to analyze the effect of hippocampal neurogenesis on the spatial maps of granule
cells. Accordingly, we developed and improved an artificial neural network that was originally proposed by
Aimone. Many biological processes were included in this revised model to improve the biological relevance
of the results. We proposed a novel learning-testing protocol to analyze the activation of encoding place cells
across contexts and over time in the dentate gyrus. We observed that, regardless of the presence of
neurogenesis, the quantity and morphology of the place fields were represented in the same manner by
granule cells. Additionally, we observed that neurogenesis was an effective mechanism for reducing the
degree of rate remapping that occurred in the place fields of the granule cells.

T
he function of neurogenesis has been widely examined. However, despite the existence of many theoretical
and practical studies, none have provided a clear explanation regarding the purpose of neurogenesis1. Here,
we used a modified version of the computational model that was proposed by Aimone et al. in 20092. Using

this modified model and analyzing the manner in which the representation of new environments changes over
time, we designed a novel model of learning in which the capacity of the dentate gyrus to learn and to retain new
information (represented by spatial environments with olfactory stimuli) is evaluated. This new approach, in
which both the place maps and neurogenesis are examined, connects two aspects of hippocampal function that
have not previously been examined together. With respect to this study, two concepts that are related to the spatial
activities of the hippocampus and may be influenced by neurogenesis.

The first concept is that of place fields, which are associated with the neurocomputation of spatial information
in the hippocampus3–6. Place fields (PFs) have been experimentally supported and are specific locations in which
place cells fire when a rat moves through a particular location in space. Granule cells (GCs) of the dentate gyrus
(DG) typically exhibit multiple PFs, whereas CA3 cells have only a single PF5. It has been hypothesized that PF
emergence begins with entorhinal grid cell neuronal activity8–10.

When activity of the DG and the PF were correlated in a model of the CA3 region, the CA3 processes that
produced a single PF did not require direct cortical inputs to CA3 but depended critically on the competitive
network processes that were implemented in the DG11. Therefore, a two-step mechanism that involves inputs to
the DG from the entorhinal cortex (EC) and competitive processing in the DG can explain how grid cell inputs to
the hippocampus produce cells that ultimately exhibit spatial selectivity.

The second concept is that of remapping. Remapping refers to the formation of distinct representations in
populations of place cells following minor alterations in the inputs to the hippocampus12. Remapping displays two
different modes: global remapping and rate remapping6. Global remapping consists of a complete reorganization
of the ‘‘place code’’ as expressed through independent rate and place distributions in different test environments13.
Rate remapping refers to a selective alteration in firing rate distributions but does not include an altered ‘‘place
code’’5,7,13,14. A mechanism that can be used for DG rate remapping was recently proposed. Through computa-
tional methods, it was inferred that the convergence of information from the lateral EC (lEC) and the medial EC
(mEC), in conjunction with a feedback inhibition-mediated competitive network process, can quantitatively
account for rate remapping10.

The objective of the present study was to determine whether the spatial maps of the hippocampus are con-
tinuously expressed in the same manner in the presence or absence of neurogenesis and the method by which
neurogenesis influences rate remapping using a plausible model of hippocampal neurogenesis.
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Results
Dentate gyrus without neurogenesis. To determine the influence of
neurogenesis on spatial information and the mechanisms by which
new memories affect the representation of the oldest memories, we
simulated two artificial neural networks. These networks were de-
signed to compare the activity of a DG in which neurogenesis was
inhibited and a DG in which neurogenesis was occurring.

A full analysis of the network lacking neurogenesis was performed
following the training phase. First, the neurons that encoded the
environment were identified by calculating the firing rate of each

neuron in the layer. The neurons that exhibited a firing rate that
surpassed a threshold of 1 Hz were considered to be the encoding
neurons (see Supplementary Fig. S10).

Among a total of 800 mature GCs, only 7.26% 6 4.82 (mean 6

s.d., N57) encoded the environment. The mean firing rate of the
environment-encoding cells was 1.98 Hz 6 0.84 (mean 6 s.d.,
N57), and the mean firing rate of the cells that did not encode an
environment was 0.24 Hz 6 0.25 (mean 6 s.d., N57).

Based on the list of neurons that encoded each environment, the
spatial representation of each cell over time was plotted to perform
quantitative and qualitative analyses. The first qualitative result was
obtained when we analyzed the PFs of the environment-encoding
neurons; we observed that these PFs were approximately constant
throughout the new learned environments (see Fig. 1).

After identifying the cells that encoded the environment, we quan-
tified the number of detected PFs. We observed that each encoding
cell encoded 2.13 place fields 6 0.89 (mean 6 s.d., N57).

Because the objective of the present study was to analyze the effect
of neurogenesis on the spatial representation of GCs, we analyzed
rate remapping in the encoding cells PFs. First, to compare the
results, we simulated a network in which neurogenesis was elimi-
nated, and we sought to determine the rate remapping coefficients
for all of the PFs over all of the retrievals as explained in the Methods
section. Because the coefficients of rate remapping followed a normal
distribution, a one-way ANOVA test was performed for the retrieval
comparisons that were obtained using equation (1.1); no significant
differences were detected in this analysis (F5,34851.76, P . 0.05).
These results indicate that the change in the PFs with every new
learned environment exhibited a similar mean rate remapping coef-
ficient. Based on equation (1.2), the mean rate remapping coefficient
of each retrieval comparison was calculated to quantify the change in
the PF in a network lacking neurogenesis (see equation (1.3)). We
next plotted the mean rate remapping coefficients of the retrieval
comparisons (see Fig. 2). A mean rate remapping coefficient of
27.23% 6 20.12 (mean 6 s.d. pool, N56) was determined for the
PFs in the network lacking neurogenesis.

Dentate gyrus with neurogenesis. The encoding cells were then iden-
tified in a neural network in which neurogenesis was incorporated (see

Figure 1 | Representation of the detection and the analysis of place fields.
The peak of the PF was designated as the coefficient d. The suffix i
represents the environment being studied, the suffix n represents the

retrieval of the environment, and the suffix j represents the number of

detected PFs. In these examples, i was held constant, meaning that only one

environment was being studied; n51 indicates the first test of the first

environment, and the suffix n represents the retrieval number of this

environment after learning a novel environment.

Figure 2 | Mean rate remapping coefficient in a network without neurogenesis. The mean rate remapping coefficient of the retrieval comparisons (mean

6 s.e.m.). The mean rate remapping of the columns was 27.23% 6 20.12 (mean 6 s.d. pool, N56). In a network in which neurogenesis was suppressed, the

magnitude of the change in the PFs of each cell showed no statistically significant difference.
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Supplementary Fig. S11). We observed that 8.33% 6 4.57 (mean 6
s.d., N57) of the GC layer encoded the environment. The envir-
onment-encoding cells exhibited a firing rate of 2.43 Hz 6 1.28
(mean 6 s.d., N57), whereas the cells that did not encode the envir-
onment exhibited a firing rate of 0.14 Hz 6 0.22 (mean 6 s.d., N57).

Using the new list of encoding neurons, we applied the PF detec-
tion algorithm to the place maps of these cells. We observed a mean
of 2.37 place fields 6 1.07 (mean 6 s.d., N57) per encoding cell.
Supplementary Fig. S12 reveals that the PFs of an adult neurogenic
neuron remain constant, indicating that new neurons behave simi-
larly to older neurons.

Similar to the simulation without neurogenesis, we analyzed the
PFs of the encoding cells to identify the rate remapping coefficients in
the neurogenesis model. A one-way ANOVA test was performed
between the retrieval comparisons. This analysis indicated the pres-
ence of no significant differences between them (F2,9350.71, P .
0.05). The mean rate remapping coefficients of the retrieval compar-
isons were calculated, as shown in Fig. 3. The mean rate remapping of
the network with neurogenesis was 14.25% 6 10.58 (mean 6 s.d. pool,
N56). Considering that the mean coefficient of rate remapping of a
network without neurogenesis was 27.23% 6 20.12 (mean 6 s.d. pool,
N56), it could be concluded that neurogenesis decreases the inter-
ference of new environments with the previously encoded environ-
ments (see Fig. 2). Furthermore, as previously mentioned, new
environments were preferentially encoded by new adult neurons.

Analysis of areas. The areas of the PFs of the GCs were measured to
fully examine the effect of neurogenesis on spatial encoding in the
DG. The area of each PF was obtained via the segmentation of the
PFs; this step was followed by binarization. Histograms of the areas of
the PFs of a DG with neurogenesis and of a DG lacking neurogenesis
are shown in Fig. 4. None of the modeled DGs exhibited normally
distributed PF areas; therefore, we performed a Mann–Whitney U
Test, which revealed no differences between the medians of the PF
areas of the different models (Z5 20.58, P . 0.05).

Discussion
Several simulations using neural networks have been previously
developed to explain the computational implication of neurogenesis

in memory-related processes (reviewed in Aimone et al. 201115).
However, we believe that the importance of neurogenesis in spatial
information coding was not fully considered in these models.
Therefore, we performed a biologically plausible simulation to com-
pare a network with a static architecture (without neurogenesis) and
a dynamic network in which additive neurogenesis was simulated.

Spatial information in the hippocampus is represented by PFs;
thus, for each GC, each PF in each environment was analyzed. Our
results demonstrated that the number of PFs in the place maps of the
encoding cells was slightly higher than the number of PFs in the
network without neurogenesis; these values are similar to those that
have been obtained in previous experiments in rats7,9,16. Another
interesting issue to be analyzed is the area of the PFs. In this case,
both of the networks exhibited the same statistical distribution of PF
areas, and neither set of PFs exhibited a normal area distribution.
Therefore, calculating the mean and the standard deviation would
not be representative of their characteristics. Other authors have
performed this type of relative area analysis and have obtained sim-
ilar values7,9. All of these results suggest that architectural changes in
the neural network do not alter how the place maps are generated in
the GCs of the DG.

As described in the Introduction, rate remapping is a process
through which spatial representation, as defined by PFs, changes
firing frequencies if the sensory stimuli are slightly altered10.
Because PFs can grow or decrease in size in a given place map7,10,13,
we considered the absolute value of these changes to be the primary
factor to be quantified; we referred to this quantity as the coefficient
of rate remapping. When PFs are modified by a novel environment
via the modification of synaptic weights, the original place maps will
last for only a short time in the memory and will therefore be for-
gotten13,14. We observed that in a neurogenic DG, the encoding cells
exhibited a lower mean rate remapping coefficient than that exhib-
ited by the encoding cells of a non-neurogenic DG. To confirm the
existence of differences between these two DG types, we evaluated
the effect size by calculating Hedge’s g (unbiased); this standard
measure of effect size revealed a value of 0.754, which indicates a
moderate-to-strong difference. These results confirm the hypothesis
that neurogenesis is an effective mechanism that prevents the modi-
fication of place maps.

Figure 3 | Mean rate remapping coefficient in a network with neurogenesis. The mean rate remapping coefficient of the retrieval comparisons (mean 6

s.e.m.). The mean rate remapping of the columns was 14.25% 6 10.58 (mean 6 s.d. pool, N56). Thus, in a network where neurogenesis occurs, the

magnitude of change in the PFs of each cell showed no statistically significant difference.
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Aimone demonstrated that familiar environments attain dimen-
sional independence; this hypothesis was similar to the hypotheses
that was proposed by previous authors17,18. These authors proposed
that neurogenesis could prevent the collapse of previously encoded
memories. Alternatively, Aimone noted that the cessation of neuro-
genesis results in a subtler deficit; novel environments would con-
tinue to be encoded using a combination of previous environments.
Our results indicate that the cessation of neurogenesis modifies the
representation of the spatial information that is encoded in the GC
due to a higher degree of rate remapping on the PF of the encoding
cells, which thus could produces interference between memories.
These results create a theoretical framework for future animal
research into the effects of neurogenesis on place maps. These studies
will attempt to validate the hypothesis that is presented here. In the
future, it will be necessary to record the spatial map that is repre-
sented with and without neurogenesis on the encoding cells using
experiments in which the animal experiences different envir-
onmental types (such as open fields). This experiment will require
a full or partial recording of the activity of the entire GC population
of the DG. This recording will be achieved by introducing additional
electrodes into the hippocampus.

The objective this study was to examine the effects of neurogenesis
on the DG. We demonstrated that although architectural alterations
occur in the network due to neurogenesis, the manner in which the
place maps are generated does not change. However, we observed
that neurogenesis diminishes the remapping that is observed in the
PFs of the encoding GC and, in this manner, diminishes the inter-
ference that is produced by novel environments.

Methods
Neural network architecture. The model consisted of six layers of different cell types.
The layers consisted of the medial entorhinal cortex cells (mECs), the lateral
entorhinal cortex cells (lECs), the granule cells layer (GCs), the basket cells layer
(BCs), the mossy cells layer (MCs) and the hilar cells layer (HIs). The GC layer was the
only layer to which new cells could be added over time through neurogenesis. Eight
hundred adult GCs were initially created to produce a fully connected DG that could
interact with the model’s inputs (see Fig. 5). This is an abbreviated description of the
computational methods that were used in the present study. For a more complete
description of the model, please see the supplementary description of the model.

Experimental procedure. As a base model, we utilized the model that was proposed
by Aimone et al. 20092. This base model was adapted for our study and included a new

type of learning-testing protocol to examine the effect of neurogenesis on the spatial
encoding of DG GCs. The experiment was divided into two phases as follows:

. The training phase consisted of eight different environments that the model was
required to learn. Each environment was characterized by a particular configura-
tion for each mEC cell and different sensory inputs that were represented by the
activity of the lEC.

. The testing phase was performed following the learning of a novel environment.
At this stage, all of the learned environments were tested using a more thorough
analysis to detect changes in the coding cells for each environment (see Fig. 6).

Each time the model was submitted to an environment was referred to as an event.
Each event consisted of a 60-s interval that was divided into 25-ms steps, during
which a virtual rat could explore the environment. In the training phase, the rat spent
40 days in each environment, during which time the model was exposed to the
environment 10 times a day for a total of 400 events per environment. In the testing
phase, for each learned environment, the model was exposed to a total of 200 events.
During this phase, the activity of the cells was registered for later analysis. A flowchart
of the experiment is illustrated in Supplementary Fig. S1.

Each event involved a new path for the rat in each environment, ensuring that the
entire environment was explored.

Encoding cell detection. To identify the cells that encode each environment, the
firing rate of each cell in the layer was calculated to distinguish between the cells with
low firing rates and those with high firing rates. To filter out cells that are uninvolved
in a given environment, a threshold of 1 Hz was used (see Supplementary Fig. 10 and
Supplementary Fig. 11).

Acquisition of the firing rate maps. To examine the spatial coding, a 1 m2 open field,
which was considered to be an environment, was partitioned into squares of 1 cm2, in
which cellular activity was analyzed.

After the spikes were spatially distributed, a map of the firing rate was generated
based on how many times the rat was situated at each position, representing the firing
rate of each position in the environment. The firing rate maps were subjected to a
Gaussian filter to soften the frequency map, and the maps were reassembled into
longer registers, producing firing rate maps as shown in Supplementary Fig. S7.

Detection of the place fields. As the first step in the analysis of the PFs of the
encoding cells, we detected the PFs using our proposed algorithm. In this model, the
firing rate maps were subjected to several analytical steps to detect the regions of
interest of the firing rate maps. Theoretically, the 3-D shape that best approximates
the shape of a PF is a 3-D Gaussian bell. If a horizontal section of a Gaussian bell is
taken at its base, an ellipse in the 2-D plane will be obtained. This method was used to
obtain a 2-D representation of the place maps. The regions that fell within the
approximate circumference of this ellipse were considered to be regions of interest.
These regions were filtered by their shape and size to obtain a final sample of PFs (see
Supplementary Fig. S8). For a more complete description of the algorithm, please see
the supplementary information.

Figure 4 | Histogram of the areas of the place fields of the encoding neurons. The light-gray bars represent the areas of the place fields of a DG without

neurogenesis, and the gray bars represent the areas of the place fields of a DG with neurogenesis. None of these distributions were normally distributed.
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Place field analysis. As explained in the description of the experimental procedures,
all of the previous environments were tested in each novel learned environment, such
that we ultimately obtained a series of registers for each of the environments (see
Fig. 6). For each retrieval, the PFs were re-determined and labeled with the coefficient
d, representing the maximum firing rate of the PF. Fig. 1 depicts how the PF was
labeled with the coefficient d with each new memory for an environment.

The coefficient r is the coefficient of the rate remapping, and it is a percentage
measure of the degree to which the coefficient d was modified with the new memory. r
was calculated using equation (1.1).

rn,j,i~
dn,j,i{dn{1,j,i
� �

dn{1,j,i
|100 ð1:1Þ

rn,j,i : the coefficient of rate remapping of the place field j on retrieval n of environment
i.
dn,j,i: the maximum firing rate of the place field j on retrieval n of environment i.

The coefficient d of each of the PFs was determined for each new retrieval of an
environment. A new coefficient r could therefore be calculated. This method pro-
duces a coefficient matrix in which the columns represent the retrieval comparison n
of the environment, the rows represent the different PFs m of the encoding cells and
the sub-index i represents the environment under analysis. This matrix is indicated in
equation (1.2).

r1,1,i � � � r1,n,i

..

.
P

..

.

rm,1,i � � � rm,n,i

2
664

3
775 ð1:2Þ

To examine the changes that occurred following the formation of new memories, we
propose to use the mean of the absolute values of the columns of equation (1.2), which
represent the average change for all of the coding cells. This mean is described in
equation (1.3).

mean abs r1:m,1,i

� �� �
� � � mean abs r1:m,n:,i

� �� �� �
ð1:3Þ

m: is the total number of PFs that form matrix (1.2) (number of rows).
n: is the column of matrix (1.2) that represents the retrieval comparison.
i : is the environment analyzed.
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