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Abstract
This work considers the two-dimensional flow field of an incompressible viscous fluid in a
parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically
mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall
movement is produced as a consequence that one of the ends of the channel is pressurized, whereas
the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models
for several physiological systems in which fluid-structure interaction produces large deformation of
the wall. We report the experimental results of the observed self-sustained oscillations. These
oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is
accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite
narrow. We propose a simplified analytical model to explore the conditions under which this
motion is possible. The analytical approach considers asymptotic solutions of the Navier–Stokes
equation with a perturbation technique. The comparison between the experimental pressure
measured at the midlength of the channel and the analytical result issued with a model neglecting
viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be
explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that
is predicted by this simplified model.

1. Introduction

The cardiovascular or the respiratory system pro-
vides abundant examples in which the flow is driven
through a deformable channel or tube and where
the flow-structure interactions are of major biological
importance. In the problem of blood flow, a large
part of the attention of researchers has focused on the
induced streaming flow and the associated increase of
flow rate or changes in solute concentration distribu-
tion. Coronary flows [1], working muscles irrigation
[2], and oxygen supply to the heart [3] are some
paradigmatic examples of this application. This kind
of approach is found in the respiratory system of
some insects, such as ground beetle [4] and Lethocerus
uhleri [5], or in the myoelastic-aerodynamic mech-
anism responsible for voice production in songbirds
and mammals [6].

To analyze these complex phenomena in labora-
tory environments, many authors have considered the
Starling resistor. A large number of studies, either
experimental or numerical, have been reported [7].

Secomb [1] found that in axisymmetric wall
geometries like those of many physiological systems,
the flows follow the same lines as in two-dimensional
channel flow problems. Hence, studies with this last
geometry may provide useful insights into more com-
plex problems. To avoid the problem of flow-induced
wall deformation, systems may be further simplified.
This naturally leads to the study of flows in channels
with moving indentations or with oscillating rigid
parallel-sided walls.

The complexity of the modelling of the flow
inside these moving-wall channels is mainly due to
the moving boundaries of the domain and to the
forced wall motion induced by fluid dynamic forces.
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Furthermore, the occurrence of the flow detachment
from the wall ends may result in oscillatory flows
downstream of the moving wall that may interact with
the flow inside the channel. A large number of studies
with moving indentation have focused their attention
on the analysis of the downstream structures when
the wall motion is imposed. Stephanoff et al [8]
studied the fluid flow along a two-dimensional closed
channel with an asymmetric oscillating constriction.
They observed a train of waves, which appeared in the
core flow downstream of the oscillating constriction.
Flow along a 2D channel with a moving indentation
in one wall was experimentally studied by Pedley and
Stephanoff [9]. They considered a steady inflow, and
the indentation of the channel moved sinusoidally
with time. Downstream the constriction, they found
a vortex wave for both viscous and inviscid flow, but
there were significant differences between the two
cases. A much more complex pattern was obtained in
the viscous case, including ‘vortex doubling’ in which
a vortex that initially shows a high degree of longitu-
dinal symmetry becomes markedly asymmetric and
eventually splits into at least two separate co-rotating
vortices. Ralph and Pedley [10, 11] numerically stud-
ied fluid flow through a channel with a moving inden-
tation. Demirdžić and Perić [12] developed a finite
volume method for the prediction of fluid flow in
arbitrarily shaped domains with moving boundaries.
They have validated their method for the flow in a
channel with a moving indentation, which has been
studied experimentally by Pedley and Stephanoff [9].
Finally, a numerical model used to simulate the flow
in a tube with an indentation moving at a given
frequency was studied by Ben-Mansour et al [13].

Flow-induced oscillations of a parallel-sided
channel have been largely discussed, particularly in
the context of voice production [14–18]. In these
systems, the human vocal folds act as a self-oscillating
valve that induces pressure waves upstream and
downstream from the glottis in a water-hammer
mechanism [19–22]. Mathematical modeling of
the flow-induced vocal-fold motion with low-order
models usually relies on strong approximations. The
geometry of the folds is customarily simplified and
the glottal flow is assumed in most cases to be one or
quasi-one-dimensional (in space) and quasi-steady
(in time) [23]. Idealized vocal-fold models normally
consider a symmetric motion of both (left and right)
folds, except when trying to model vocal fold
unilateral paralysis, in which only one of both folds
moves [24].

This kind of problem is not restricted to the
physiological domain and can also be encountered in
numerous and diverse problems such as lubrication
[25–27], peristaltic pumps [28–30], valves [31–34],
pulsating diaphragms [35] or in aerodynamic particle
focusing devices [36].

When the wall channels are rigid and large
enough, the flow can be elegantly described in terms

of an exact self-similar solution of the Navier–Stokes
equation. This derivation involves an assumption
concerning a form of the flow field that enables
reducing the equations of motion to an ordinary
differential equation for the similarity function [37].
In the present case, the assumption can be posed in
terms of the independence of the velocity component
(v) in the direction normal to the wall (y) with
the longitudinal coordinate (x). Considering incom-
pressibility, the longitudinal velocity (u) has a linear
dependence with x. When the boundary conditions
at both channel ends are constant and exactly the
same, no external pressure gradient is imposed, and
the flow exhibits a stagnation point in the symmetry
plane at the mid-length of the channel (x = 0). This
kind of problem belongs to a more general class, that
gathers flows in which stagnation points approach
oscillatory walls or vice-versa. One of the pioneering
works addressing this issue can be found in Rott [38].
Therein, a self-similar solution is found when a plate
is set to perform periodic oscillations in the presence
of a steady orthogonal flow towards the wall. A large
number of similar case studies followed this work, as
reviewed in Blyth and Hall [39].

In the particular case of channel flows with
oscillating walls, one of the prominent studies was
reported in Secomb [1]. This work analyzed both
walls moving periodically and symmetrically along
the normal direction. The author found asymptotic
solutions for u1: the part of the longitudinal velocity
that presents a dependence with x. It depends in
fact on the values of two parameters, namely, non-
dimensional oscillation amplitude Δ and the Wom-
ersley number α = a0

√
ω
ν

, with a0 the half-width of
the channel, ω a characteristic frequency, and ν the
kinematic viscosity. An interesting aspect of this study
was that the author showed that the solution found
for u1 was valid even when an external gradient of
pressure was imposed on the channel.

The perturbation technique used in Secomb [1]
was also considered by other researchers, who ana-
lyzed flows with non-periodic squeeze rates. Some of
these studies [40, 41] were performed in terms of the
perturbation theory considering the small Reynolds
number range. However, several authors highlighted
that, even though an initial transient may exist in
which such solutions fail, the regular perturbation
solution provided accurate results in a larger Reynolds
number range, which extended up to Re ≈ 10 [42].

Other related problems in which one of the walls
remains fixed while the other wall moves vertically
were also analyzed by different researchers. These
works studied the induced flows for periodic laws of
wall motion [43] or transient movement that reduced
[27, 44, 45] or increased [46] the clearance between
plates.

We found in the vast previous studies involving
flows in channels with straight parallel walls and
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Figure 1. Experimental setup. Pu and Pd are the upstream and downstream pressures, and L is the mass length. The lower mass is
maintained fixed while the upper is elastically mounted.

oscillating gap heights, that authors have conven-
tionally considered approaches that do not involve
the fluid-structure interaction. This article focuses on
the induced motion produced by air flowing inside
a channel with rigid parallel walls, one elastically
mounted and the other fixed. The purpose of the
article is to analyze the dynamics of this system by
combining an experimental study and an analytical
approach that considers asymptotic solutions of the
Navier–Stokes equation with a perturbation tech-
nique. An analysis of the channel oscillations is done,
considering the frequency spectrum. Our results show
that oscillations of the channel wall occur at fre-
quencies close to the natural frequency of the system.
Experimentally, a rotating trend of the moving wall
is observed, and an explanation of this phenomenon
is given. Finally, a comparison between the experi-
mental and analytical pressure at the midlength of the
channel is done.

The article is organized as follows: section 2
describes the experimental setup. Section 3 details
the model we put forward, considering asymptotic
solutions for different cases. In section 4, we discuss
the flow-induced vibration of the wall in the context
of the analytical models, and section 5 enumerates the
most salient aspects of our study.

2. Experimental study

2.1. Setup

The experimental setup shown in figure 1 was chosen

to analyze the flow-induced oscillations of a channel.

The setup was inspired by a previous one used by

Šidlof et al [47] to study vocal fold motion.

Inside a rectangular duct of 4 cm × 10 cm, two

parallel masses were laid out to throttle the flow in

a narrow parallel channel. The leading edges of these

masses were rounded to produce a smooth constric-

tion of the flow. A fan produced the airflow along

the duct and channel. Labels Pu and Pd denote the

upstream and downstream pressure. Typical values of

the pressure difference Pu − Pd were close to 150 Pa.

Mass dimensions were such that the channel length

L along the stream-wise direction x was 3.9 cm and

the width in the spanwise direction was 9.9 cm. The

gap height a(t) was variable with time and typically

followed an approximate sinus law.

The lower mass was fixed while the upper one was

linked to two identical cantilever beams on both sides.

This support enabled the mass to oscillate vertically

as a consequence of the flow. Typical values of the

amplitude of oscillations Δ were about 5 mm.
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Figure 2. (Left) Pressure evolution in time at the mid-length of the lower mass (top). Gap height against time (below). (Right)
Trajectory of the mark point #1 of the upper mass located at 4 mm from the leading edge and from the channel wall.

To minimize the lateral movement produced by
the drag exerted on the mass by the flow, two ver-
tical thin plates facing both sides were added to the
setup, at the front and the rear part of the oscillating
mass. A small airflow settled through the narrow
gap between the mass and the plates, producing a
lubrification effect that helped compensate for the
horizontal movement of the mass. This arrangement
also allowed for keeping the upstream pressure at a
relatively constant value, when the gap height was
largely reduced.

2.2. Mean flow velocity
To characterize the airflow through the channel, its
mean velocity was measured at the exit of the duct
using a hot wire anemometer (testo 405i Smart).
When the masses were oscillating, measurements per-
formed at a frequency of 0.5 Hz showed that far
downstream of the channel there was little variation
of the flowrate at this frequency, whereas its mean
value was ≈6 l/s. In this case, the mean velocity in the
channel can be estimated to be circa 1.5 m s−1.

2.3. Pressure difference
The pressure differences at different positions were
measured using a variable reluctance low differ-
ential pressure manometer (Validyne DP103). The
manometer measured the pressure differences using
plastic tubes (9 mm diameter and 40 cm length)
placed carefully at the positions of interest. The evo-
lution of the upstream pressure 25 cm upstream of
the constriction was recorded. The pressure difference
was found to remain almost constant in time (around
126 Pa), with fluctuations of the order of 1 Pa. The
time dependence of the pressure at the mid-length
of the lower mass is shown in figure 2 (left). A
cyclic behavior was observed, in which the pressure
approximately followed a sinusoidal law. The differ-
ence between maximum and minimum pressures was
about 35 Pa. Notice that the vertical movement of the
mass was synchronized with the pressure signal.

2.4. Upper mass trajectory
The time variation of the channel height was
measured using an inductive sensor (Truck type
NI8-M18-LIU). This sensor was set to measure the
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Figure 3. (Left) Vertical movement of mark point #1 and mark point #2, located respectively at 4 mm from the leading and
trailing edge in the x-direction, and 4 mm from the channel wall in the y-direction. (Right) A typical Fast Fourier transform
(FFT) of the upper mass movement in the y-axis (in blue) and the x-axis (in red).

vertical movement of the upper mass. To check that
the motion was mainly vertical, mass motion was
visualized with image post-processing. The record
presented 600 frames per second obtained with a
fast camera (512 × 512 pixels SpeedCam MiniVis e2
camera Weinberger) equipped with a 60 mm f/2.8D
lens (Micro-Nikkor), located 1 m away from the
device. Image resolution was ±70 μm.

The upper mass trajectory was tracked by marking
points on it (named 1: left and bottom, and 2: right
and bottom of the mass). The vertical motion of
the mass was accompanied by a slight rotation that
produced a horizontal displacement, as also observed
in a similar setup by [47]. A typical trajectory of a
mark point is shown in figure 2 (right): the mass
moved less than 0.5 mm across the x-axis and about
6 mm on the y-axis of the mark. In figure 3 (left),
points laying off a 1 : 1 slope indicated a slight rota-
tion of the mass (ordinate of point 1 vs ordinate of
point 2).

Figure 3 (right) presents the fast Fourier trans-
form (FFT) of the upper mass movement, showing
that the frequency of the flow-induced oscillations
was close to 15 Hz; harmonics can be observed mainly
at 30 Hz.

To estimate the natural frequency (fn), and the
elastic (k) and damping (γ) constants of the system,
an impulse test was performed without airflow. The
upper mass was released from the highest point. The
gap in the rest state was ≈3.9 mm. The upper mass
and the cantilever beams (m) were weighed and the
value obtained was 124 g.

The damped oscillatory movement of the mass
(yM) was assumed to be described with the following
equation [48]:

ÿM + 2γẏM − ω2
0yM = −g (1)

whose solution is:

yM = A exp(−γt) sin(ωt + ϕ) + y0 (2)
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Figure 4. Geometry scheme used for the analytical
approach. The length L is much larger than the gap between
masses.

where ω2
0 = k/m = 2πfn, ω2 = ω2

0 − γ2, g is the
gravity acceleration, A is the initial amplitude,ϕ is the
initial phase, and y0 is the gap in the rest state.

A least-square estimation of the parameters of the
damped oscillatory equation was performed, yield-
ing:

• fn = 14.9 Hz;

• k = 1082 N m−1 and

• γ = 19.5 s−1

3. Problem modelling

Let us now consider a laminar two-dimensional flow
of an incompressible fluid in a channel whose half-
length (b = L/2) is much larger than its mean width
(ao). We assume that the channel ends are connected
to large fluid reservoirs, both at constant but different
pressure. We can classify this problem as a plane Pois-
seuille flow with time-varying gap height. A scheme
of the geometry is shown in figure 4.

Our interest is laid in those regions where the
flow is fully developed and is not affected by the
exit/entrance conditions of the fluid. Let us focus on
the case in which one of the rigid walls experiences a
periodic motion along the normal direction (y-axis)
expressed as:

yw = a(t)

The equations of motion of this flow are:

ut + uux + vuy = −φx + ν(uxx + uyy) (3)

vt + uvx + vvy = −φy + ν(vxx + vyy) (4)

ux + vy = 0 (5)

with (u, v) denoting the velocity components and the
ratio between pressure and density φ = p

ρ .
Boundary conditions at y = yw and y = 0 are

such that: u = 0 and v = ȧ and v = 0 at the moving
and fixed wall respectively. The dot indicates time
derivation.

3.1. Self-similar solutions
Let us consider the following transformation of the
y-coordinate as η = y

a(t) , and suppose that the com-
ponent of the velocity normal to the wall does not
depend on the longitudinal coordinate:

v(η, t) = ȧf(η). (6)

The incompressible condition then leads to:

u = U − ȧ

a(t)
xfη(η) (7)

where the subindex indicates derivation with respect
to the indicated variable. U does not depend on
the x or η coordinate and is associated with the
inlet/outlet condition of the channel. Substitution
into the Navier–Stokes equation of these expressions
and derivation to eliminate pressure gives:

fηηηη =
aȧ

ν
( fηηη f − fη fηη − ηfηηη − 2fηη)

+
a2ä

νȧ
fηη

(8)

Self-similarity requires satisfying one of these
conditions:

Condition 1:
aȧ

ν
= C1

a2ä

νȧ
= C2

(9)

Condition 2:

fηηηη = 0 (10)

aä

ȧ2
= C0 (11)

Condition 3:
fηη = 0 (12)

where C0, C1, and C2 are constants. The first condition
is satisfied when a(t) scales as t

1
2 . Condition 2 is

satisfied if a(t) is sinusoidal. Condition 3 does not
impose any restriction on a(t).

3.2. Asymptotic solutions
The set of equations (3)–(5) can be solved numer-
ically with the strategies detailed in [49–51]. These
studies are however somewhat arduous as there are
transients before the solution is reached, and require
special care to attain suitable numerical accuracy. To
avoid these difficulties, one possibility is to consider
asymptotic solutions. The price to pay is that the
solutions may be restricted to a limited range of non-
dimensional control parameters.

3.2.1. The non-dimensional equations
Let us now propose the following scaling:

ζ = x

b
; t∗ = t × ω; u∗ =

u

U0
; υ∗ =

v

a0Δω
; φ∗ =

φ

U2
0

6
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where φ = p
ρ and δ = a0

b � 1. Depending on the
case under study, the value of U0 can be associated
with a mean flow velocity produced as a consequence
of the gradient of pressure imposed on the channel

(i.e.: U0 ≈
√

pu−pd
ρ

), or to the longitudinal velocity

associated with the squeeze flow produced by the wall
movement (i.e.: U0 ≈ bωΔ).

For the sake of simplicity, the same notation is kept
for the non-dimensional variables as for those previ-
ously used, adding an asterisk to indicate that they are
in dimensionless form. The height of the channel can
be expressed in terms of a general function H and a0

as:
a(t) = a0H(Δ,ω, t)

and the time derivative of the gap height as:

ȧ = a0ωḢΔ

Here, ω is the frequency and Δ < 1 determines
the amplitude of the oscillation. We only consider
cases in which a > 0.

This scaling allows rewriting the Navier–Stokes
equations in terms of the non-dimensional variables:

(
bω

U0

)
u∗

t∗ + u∗u∗
ζ +

(
bωΔ

U0

)
(υ∗ − Ḣη)

u∗
η

H

= −φ∗
ζ +

(
νb

U0a2
0

)(
u∗
ζζδ

2 +
u∗
ηη

H2

)
(13)

(
bω

U0

)
υ∗

t∗ + u∗v∗ζ +

(
bωΔ

U0

)
(υ∗ − Ḣη)

v∗η
H

= −
(

U0

a0ωΔ

)
φ∗
η

H
+

(
νb

U0a2
0

)(
υ∗
ζζδ

2 +
υ∗
ηη

H2

)
(14)(

U0

bωΔ

)
u∗
ζ +

υ∗
η

H
= 0 (15)

at η = 1 and η = 0 u∗ = 0,

at η = 1 υ∗ = Ḣ,

at η = 0 υ∗ = 0.

(16)

The non-dimensional number νb
U0a2

0
appearing in

the last terms of the right-hand-side can be rewritten
as 1

Re δ with Re = U0a0
ν

.
Let us now consider the possibility of finding a

self-similar solution to this problem as expressed by
equation (6). In that case, we have:

u∗(ζ, η, t∗) = u∗
0(η, t∗) + u∗

1(η, t∗)ζ (17)

Considering the condition established by equation
(10) and boundary conditions, it is found that:

φ∗(ζ, η, t∗) = φ∗
0(η, t∗) + φ∗

1(t∗)ζ + φ∗
2(t∗)ζ2 (18)

Now, the non-dimensional equations for the self-
similar solutions for δ � 1 can be written as:(

bω

U0

)
u∗

0t∗ + u∗
0u∗

1 +

(
bω

U0

)
Δ(υ∗ − Ḣη)

u0
∗
η

H

= −φ∗
1 +

(
1

Re δ

)
u0

∗
ηη

H2
(19)

(
bω

U0

)
u∗

1t∗ + u∗2
1 +

(
bω

U0

)
Δ(υ∗ − Ḣη)

u1
∗
η

H

= −2φ∗
2 +

(
1

Re δ

)
u1

∗
ηη

H2
(20)

(
bω

U0

)
υ∗

t∗ +

(
bω

U0

)
Δ(υ∗ − Ḣη)

v∗η
H

= −
(

U0

a0ωΔ

)
φ0

∗
η

H
+

(
1

Re δ

)
υ∗
ηη

H2
(21)(

U0

bωΔ

)
u∗

1 +
υ∗
η

H
= 0 (22)

with boundary conditions:

at η = ±1 u∗
0 = u∗

1 = 0,

at η = 1 υ∗ = Ḣ,

at η = 0 υ∗ = 0

(23)

The value of u∗
0 is associated with a flow that depends

on the imposed external gradient pressure φ∗
1. An

interesting aspect of this set of equations is that the
solution for u∗

2, φ∗
2 and υ are independent of u∗

0, as the
solutions of equations (20)–(22) are decoupled from
(19).

3.2.2. The inviscid solution
The inviscid flow assumption is obtained when
assuming 1

Re δ ≈ 0 and relaxing the first condition of
equation (23). The solution of the problem is assumed
to be self-similar and to satisfy condition 3. In our
case, this determines that:

v(η,t) = ȧη (24)

u(x,t) = U(t) −
ȧ

a
x (25)

Φ(x,η,t) = Φ0(η,t) +Φ1(t)x +Φ2(t)x
2 (26)

where:

Φ0(η,t) = φc(t) −
äa

2
η2 (27)

Φ1(t) = U(t)
ȧ

a
− ˙U(t) (28)

Φ2(t) =
1

2

[
ä

a
− 2

(
ȧ

a

)2
]

(29)

Notice that the pressure adopts a quadratic depen-
dence on the x-coordinate and that the pressure
changes with the transverse coordinate for a fixed
value of x. U(t) represents the value of the velocity
at the middle length of the channel and φc(t) is the

7



Bioinspir. Biomim. 17 (2022) 065005 D Alviso et al

Figure 5. Pressure at the midlength on surface of the lower mass. Experiments vs fitted inviscid model. Parameters in
equation (31): m = 0.124 kg; k = 1082 N m−1; γM = 0.1317 Ns m−1; y0 = 0.0039m.

pressure at this same streamwise coordinate at the
lower mass surface. Functions U(t) and φc(t) are
related functions that depend on conditions at the
channel ends, but not on x.

Considering the equation of kinetic power con-
servation in its integral form one can easily deduce:

Φc(t) =
3

4
U(t)

2 +
7

48
L2

(
ȧ

a

)2

+
1

12
ȧ2 − L2

24

ä

a
+

1

2
aä

(30)
Hence, this expression links the functions U(t)

and φc(t) in the assumption of inviscid flow.

4. Discussion

This section proposes the analysis of experimental
data based on results issued from the inviscid solu-
tion, since the value of Re δ ∼ 102. The objective is
to bring some light on the role played by the non-
steady terms appearing in conservation equations in
the dynamics. However, this approach has important
limitations.

Different studies with a fully developed fow (Espı̀n
and Papageorgiou [51], Hall and Papageorgiou [50])
showed that the pressure-driven flow U0 is symmetric
around η = 0, as well as periodic with the same period
as a(t) for small values of Re. As Re increases the
amplitude of the oscillations is also found to increase.
This behavior remains unaltered until a critical value
ReS is reached, above which the solution is no longer
symmetric. Espin and Papageorgiou [51] quantified
the location of the change of stability of horizontal
velocity through a symmetry-breaking bifurcation
index I(Re,Δ). They showed that at ReS ≈ 20 there
is a pitchfork bifurcation to a solution with I(0.2 <
Δ < 0.4) �= 0. At the same time, when these instabil-
ities start to prevail, the flow is no longer 2D.

Instability analysis for cases when boundary layers
remain very thin compared to the gap height along
the cycle has not yet been reported. Thus, it is not
immediate to conclude that similar instabilities as
those mentioned above could then develop.

For this reason, and instead of proposing a model
providing a full description of the physics involved, we
focus our discussion on whether the inviscid solution
leaves a significant footprint on the dynamics of the
fluid-structure interaction in the experiments.

In our experiments, the movement of the mass
was accompanied by a slight rotation in the xy plane.
The linear term with Φ1(t) contributes to explain-
ing this effect. Also, note that the quadratic term
Φ2(t) prevails when a(t) attains a minimum value,
indicating that the forcing and rotating trend of the
mass diminishes as the gap narrows. This is what we
observe in figure 3.

We focus on the movement in the vertical direc-
tion, and propose that the dynamics of the mass be
governed by a law of the type:

mÿM + 2γMẏM − k(yM − y0) = −mg + Faer(t)
(31)

with:

Faer(t) = −ρD

∫ L/2

−L/2
φ(t,η=1)dx (32)

with D the size of the mass in the z-direction. Note
that we disregard here the effect of the lateral walls of
the channel.

Considering the equations of the inviscid case, the
value of this force equals

Faer(t) = ρLD

[
3

4
U(t)

2 +
L2

16

(
ȧ

a

)2

+
ȧ2

12

]
(33)

8
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Figure 6. Pressure at the midlength on the surface of the lower mass. Contribution of the different terms Φci
of the equation

inviscid model in Pa. The subindex i indicates the position of the term in the left-hand side of the equation (30). Parameters in
equation (31): m = 0.124 kg; k = 1082 N m−1; γM = 0.1317 Ns m−1; y0 = 0.0039m.

Figure 7. Results of the inviscid model for the flow velocity at the exit (x = b) and at the midlength (x = 0). Parameters in
equation (31): m = 0.124 kg; k = 1082 N m−1; γM = 0.1317 Ns m−1; y0 = 0.0039m.

Let us now simplify the experimental law of
motion of the masses with an expression of the type:

a(t) = a0(1 +Δ sin(ωt)). (34)

This law agrees quite well with the recorded
mass motion of our experiments when a0 = 0.003m,
Δ = 0.85, and ω = 93.9 s−1.

Substituting this expression in equations (30)–
(32) and with the data of elastic constant, mass, and
damping coefficient of our system we can find the
values of Φc(t) and of the flow rate at the exit of
the channel. For the pressure, figure 5 compares the
recorded experimental values of Φc and the one using
the inviscid approach.

These curves are obtained with the following
parameters in equation (31): m = 0.124 kg; k =

1082 N m−1; γM = 0.1317 Ns m−1; y0 = 0.0039m.
The agreement of model and experimental results

observed in figure 5 is surprisingly good. The satis-
factory agreement is partly due to a damping coef-
ficient that is only ∼10% of the recorded value.
This is not anomalous, since viscous effects are being
neglected. An increase in the aerodynamic forcing
should increase the viscous effects, leading to larger
values of this coefficient.

Figure 6 shows the contributions of each term in
equation (30). The first and second terms are domi-

nant. To better understand these two terms, figure 7
represents the velocity at the midlength (x = 0)
and the velocity at the exit of the channel (x = b).
The difference between both functions indicates the
influence of the squeeze flow produced by the moving

9
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plates and the relative weight of this flow compared to
the flow produced by the externally imposed pressure
gradient. The second term explains the origin of the
wiggle observed on the pressure signal in figure 5. In
the slight phase delay of the wiggle, different factors
can come into play, e.g. the incidence of the boundary
layer when the channel height becomes quite narrow.

5. Conclusions

This paper presented an experimental and analytical
study of a parallel-sided channel with one wall pul-
sating periodically. We observed that the oscillations
induced by the flow of the mass that limits one
side of the channel occurred at a frequency close to
the natural frequency of the system. The gap varied
following an almost sinusoidal wall of motion. The
mean velocity in the channel attained a relatively
high value compared to the horizontal squeeze flow
produced by the oscillating mass.

The analytical study we propose was based on
the assumption of a self-similar behavior of the flow
inside the channel. The study allowed us to analyze the
nature of the flow-induced oscillation in the context
of an inviscid flow assumption.

This theoretical framework enabled gaining phys-
ical insight into some aspects of the flow-induced
movement. The rotating trend of the mass was
explained in terms of the quadratic dependence of
the pressure with streamwise coordinate. A very good
agreement was obtained between the theory and the
experimental pressure, measured at the midlength of
the channel. This was achieved when the damping
coefficient was assigned a value that was substantially
lower than the recorded one, indicating that the
viscous effects should not be seen as the only factor
producing a significant forcing of the mass.

Our article has privileged a study based on
analytical solutions. Even if interesting, numerical
approaches are delicate and have issues associated
with the accuracy of the solutions when the oscillation
amplitude is large and the gaps are quite narrow.
Future work can bring into the analysis some aspects
that we have left without consideration and that may
have relevance in terms of the physics of the problem,
such as the development of three-dimensional effects
or the role of downstream flow structures.
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