
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Phase oscillator neural network as artificial central
pattern generator for robots

Pablo Kaluza a,n, Teodor Cioacă b
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a b s t r a c t

We design an artificial central pattern generator and we exemplify its integration using different

prototypic virtual robot models. The artificial central pattern generator is modeled through a network

of phase oscillators. Virtual robots are controlled by this central pattern generator using an interface

that interpolates stored angular states of their target poses. Finally, we consider control signals coming

from the robot’s environment to the central pattern generator and to the interface between the central

pattern generator and the robot. We show that the control signals can change the dynamics of the

system in order to modify the robot’s movement patterns. We study three cases: changing the

frequency of the pattern sequences, switching between gaits of locomotion and the reorientation of a

robotic entity.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Central pattern generators (CPGs) of biological systems are
autonomous networks of neurons that produce endogenously
periodic sequences of patterns without needing external rhythmic
input [1]. They have a key importance for animals, being respon-
sible for many functions such as locomotion, breathing, and in
general automatic movements of the animal body and organs.
Models of central pattern generators focused on biological aspects
have been proposed mainly for controlling gaits of animals [1–4].
Central pattern generators in the context of artificial neural
networks have been developed in terms of recurrent networks
with time-dependent recurrent back-propagation for learning,
but also by using closed chains of nodes with synchronously
updated and excitatory connections [5].

On the other hand, artificial central pattern generators are
nowadays particularly considered for robot control [6,7]. In such
applications, different models of central pattern generators are
proposed. In general, similar to the case of biological systems,
these models consist of coupled oscillators that map the states to
the body’s articulations. Thus, different gaits can be achieved by
properly tuning the coupling between these oscillators. In these
models there exists a quite important correlation between the

size of the neural network and the anatomical structure of the
robot. Other models of artificial circuits are used providing a
higher level of integration in order to obtain self-organized
adaptation in robot behavior [8]. Differently from these models,
we present in this work a CPG with characteristics independent
from the robot anatomy (robot shape). Additionally, our model is
designed in blocks allowing a very flexible adaptation to different
robot configurations.

Our aim is to engineer a toy system modeling an artificial
neural network of oscillators inspired by biological central pat-
tern generators. Further, we use this network to control the
movement of virtual prototypic robots in different environmental
scenarios. In particular, we want to describe the system using a
system of differential equations. As we will see, the internal
continuous dynamics of the CPG are very useful for controlling
the robot’s movement.

We build a model consisting of three blocks. The first one, the
central pattern generator (CPG), is a network of phase oscillators
with the ability to encode binary information (e.g. patterns) as
phase-locked motion. This approximation is well known in
models of associative memory which are the extensions of the
Hopfield model [9]. They replace the spins by phase oscillators,
falling in a class of Kuramoto models [10–18]. This network of
phase oscillators is driven by a pacemaker which activates the
different patterns of the sequences as a function of time.

The second part of the model consists of an interface between
the central pattern generator and the virtual robot (interface
CPG–robot). The function of this block is to map the patterns of
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the CPG to the angular states that describe the robot’s spatial
position. We have found that the dynamical properties of our
phase oscillator network are quite useful to interpolate the
angular states of the robot. Additionally, the dynamics produces
a realistic evolution of the robot movement. Finally, the third part
of the model describes the virtual prototypic robots. In this work
we consider four different robots in order to implement several
kinds of external controlling signals.

Given the characteristic of this model, the integration of
external control signals from the robot’s environment can be
easily implemented. Signals arriving to the central pattern gen-
erator or to the CPG–robot interface are considered. We study
different possibilities to use these external signals to modify the
speed of the sequences, gait switching and change in the direction
of the robot’s displacement.

This work is organized as follows. In the first section we
present the model with its different parts: the central pattern
generator (CPG), the CPG–robot interface and the robot operation.
Additionally, we show a detailed example for the CPG operation.
In the second section, we show the main results. We present key
examples of CPG–robot integration and interaction scenarios with
the external control signals from the environment. Finally, we
present the main conclusion and discussions in the last section.

2. Model

The model consists of three main blocks: the central pattern
generator (CPG), the interface between the CPG and the robot
body, and the actual virtual robot model. Fig. 1 shows a schematic
representation of the model.

The central pattern generator (CPG) has a pacemaker c, P

stored patterns kx with phase instants (delays) tk, and a retrieval
network of N phase oscillators. The retrieval network encodes
information as phase differences between the oscillators. The
actual state xðtÞ of this network evolves between the set of
patterns ðxÞ as function of the phase of c. That is, when c
activates a stored pattern k, the state xðtÞ of the retrieval network
evolves towards kx with k¼ 1,: :,P (we use a pre-superscript to
indicate the index of store pattern).

The CPG–robot interface acts as a transduction device between
the actual state xðtÞ of the CPG and the angular state of the robot
u
!
ðtÞ. Each state kx of the CPG is mapped to an angular state u

!k
of

the robot body (kx- u
!k

). Thus, the temporal evolution of the
robot movements u

!
ðtÞ is slaved to the temporal evolution of the

CPG xðtÞ. The robot is a prototypic virtual device that allows us to
study the results of the CPG. The robot states are defined by a
vector of angles u

!
ðtÞ, angles that indicate the actual spatial

position of the different members of the robot body. The number
of elements of the vector u

!
ðtÞ is equal to the number of degrees

of freedom A of the robot.
In the following paragraphs we study in detail each of these

blocks.

2.1. Central pattern generator

The central pattern generator (CPG) produces periodically
sequences of states without needing external rhythm units.
External input, however, can be used for control, to triggering
different actions or modifying some parameters of the CPG, as we
shall describe later on in this work. We design a CPG with two
blocks as Fig. 1 shows. It has a pacemaker c, a retrieval network
with N phase oscillators, and P memorized patterns ix with phase
instants ti (iA1, . . . ,P). The main idea behind this architecture is
to control the retrieval network dynamics by using the pacemaker
c through the couplings given by the stored patterns and phase

instants. This architecture with blocks, having a pacemaker in one
of them, has been also proposed for some other biologically
inspired central pattern generators [1,4].

The pacemaker c has the function of activating the patterns x’s,
one by one as a function of its phase, at phase instants ti.
Consequently, the pacemaker works as a clock that controls the
timing of the system. The retrieval network consists of N globally
coupled phase oscillators. Its function is to encode the stored
patterns x as phase differences between its N oscillators. The
retrieval network is a special case of the associative memory
proposed by Nishikawa et al.[14]. This network is characterized
by an energy function L, which is a function of N�1 phase
differences. The minima of this function can be located in states
where the phase differences are only zero or p (phase-locked
dynamics). Thus, the retrieval network has the capacity to encode
2N�1 patterns as phase differences. We take as reference the last
oscillator N for encoding. Thus, a pattern x is encoded as a vector of
N�1 phase differences x¼ ðDf1N , . . . ,DfN�1,NÞ with Dfij ¼fj�fi.
In the following we label these states by their decimal representa-
tion, i.e., for example with N¼3 oscillators we have x1

¼ ðp,0Þ and
x2
¼ ð0,pÞ (for the decimal label we use post-superscripts).
By construction, when a pattern xðsÞ is activated by the pace-

maker c at phase instant tðsÞ, the function L has only one
minimum corresponding to the state xðsÞ. Given the gradient
dynamics of the retrieval network, the oscillators converge to a
phase-locked state with the required phase differences. In this
way, the network can retrieve the stored patterns. The system can
be seen as an associative memory driven by a pacemaker.

In the following we present the different blocks of the CPG and
their dynamical operations.

Fig. 1. Schematic representation of the model. The model has three main blocks:

the central pattern generator CPG, the CPG–robot interface and the virtual robot.

The CPG has a pacemaker c, a number of P stored patterns kx with phase instants

tk , where k¼ 1, . . . ,P, and a retrieval network with N phase oscillators. We

consider three external inputs from the environment to the system: I1ðtÞ and

I2ðtÞ to the CPG, and, I3ðtÞ to the interface CPG–robot.
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2.1.1. Retrieval network

The following model of a dynamical system has been partially
studied in the context of cluster partitions of phase oscillators
networks by the author [19]. However, we present now a more
detailed analysis in terms of artificial neural networks of phase
oscillators. We use a type of associative memory of N phase
oscillators fi with i¼ 1, . . . ,N and fiA ½0 : 2pÞ. Its energy function
L is defined according to

L¼�
K

4N

XN

i ¼ 1

XN

j ¼ 1

ðcosðfj�fiÞþ f ijÞ
2: ð1Þ

In this expression, the constant K indicates the strength of the
coupling between the oscillators. Here, fij are the couplings
between the oscillators. The potential L depends only on the
phase differences between the oscillators, thus there are only
N�1 independent variables. Since we use the N oscillator as
reference, our independent variables are DfiN ¼fN�fi. In the
case that all the couplings f ij ¼ 0, the energy function L has 2N�1

minima with equal depth. They are located in the vertices of the
hypercube of size p with a vertex in the origin, in the space of
phase differences fDfijg. This case corresponds to a Kuramoto
model with double periodicity.

When a pattern xðsÞ has been selected by the pacemaker for
retrieval, L must have the only minimum on the corresponding
hypercube vertex. To ensure that, the couplings fij must be
properly chosen. The Hebbian rule for storing only a pattern in
the network can be written, according to our notation, as

f ijða,xðsÞÞ ¼ a 1�
2

p
9xðsÞi �x

ðsÞ
j 9

� �
: ð2Þ

In this equation, a is a parameter that controls the stability of
the fixed points located on the hypercube vertices. For a41, the
retrieval network is a special case of the Nishikawa model
[14,15,19] where only a pattern is stored and the network has
zero-error retrieval for it. In this case, the hypercube vertex
corresponding to xðsÞ is the only minimum, the other vertices
are at least saddle in one direction in the space of phase
differences.

The dynamics of the retrieval network comes from the nega-
tive gradient of Eq. (1) as

_f i ¼
K

N

XN

j ¼ 1

f ij sinðfj�fiÞþ
1

2
sin 2ðfj�fiÞ

� �
: ð3Þ

When a pattern xðsÞ is selected for retrieval through Eq. (2) in
Eq. (3), the actual state of the system xðtÞ evolves to the
corresponding vertex of the hypercube, independent from the
initial conditions, since there exists only one stable fixed point of
the dynamics.

2.1.2. Pacemaker c
We have shown that it is possible to tune the couplings of the

retrieval network in order to have only one minimum in the
potential L. So thus, the system can retrieve the desired selected
pattern xðsÞ starting from any initial condition. Our aim is to make
the coupling time-dependent, so that, we can select different
patterns as a function of time.

The pacemaker controls the time dependence of the coupling
fij. It is modeled by a phase oscillator c (cA ½0 : 2pÞ) with a
natural frequency o. Its dynamics are given by

_c ¼o: ð4Þ

The states x’s are retrieved as a function of the phase of c.
When a pattern xðsÞ must be activated at phase instant tðsÞ, during
a phase fraction B, the corresponding couplings f ijðcÞ, according to

the selection rule 2, are expressed as

f ijðc,xðsÞÞ ¼ a 1�
2

p
9xðsÞi �x

ðsÞ
j 9

� �
gðsÞðcÞ: ð5Þ

In this equation

gðsÞðcÞ ¼Yðc�tðsÞÞ�Yðc�B�tðsÞÞ: ð6Þ

Here, YðxÞ is a step function (YðxÞ ¼ 0 if xo0, and YðxÞ ¼ 1 if x40).
Then, the function gðsÞðcÞ is a unit pulse which is different from zero
in the interval between c¼ tðsÞ and c¼ tðsÞ þB.

When there are P stored patterns in the central pattern
generator, the general form for the couplings becomes

f ijðcÞ ¼ a
XP

k ¼ 1

1�
2

p 9kxi�
kxj9

� �
gkðcÞ: ð7Þ

In this way, the pacemaker establishes, for a period B of its
cycle, a specific pattern that is to be reached by the dynamics of
the retrieval network. The time-dependent coupling can be seen
as a set of high order synapses. The synapses between the
oscillators of the retrieval network are modulated by a third
neuron, the pacemaker. Models of high order synapses have been
already proposed for artificial neural networks [20,21].

2.1.3. CPG operation

In order to show the operation of this model, we construct a
system with N¼6 oscillators in the retrieval network and we
store P¼4 patterns. The stored patterns have been randomly
chosen among the 25

¼ 32 possible patterns that can be encoded
by the retrieval network. They are the patterns 1x

21
, 2x

10
, 3x

5
and

4x
18

and are used in our system to play the sequence
1x

21
-

2x
10
-

3x5-
4x

18
. We select, for simplicity, the phase

instants for these patterns according to tk ¼ 2pðk�1Þ=4 (with
k¼ 1, . . . ,P). Each pattern is activated during a phase period
B¼ p=4. The pacemaker has o¼ 1.

The system evolves according to the dynamics equation Eq. (4)
for the pacemaker, and the couplings from Eq. (7). However, the
dynamics of the retrieval network (Eq. (3)) need to have a new
term with white noise ZðtÞ of intensity T as follows:

_f i ¼
K

N

XN

j ¼ 1

f ij sinðfj�fiÞþ
1

2
sin 2ðfj�fiÞ

� �
þTZiðtÞ: ð8Þ

The retrieval network must operate with noise in order to allow
the dynamics to escape from the unstable fixed points, otherwise
the system stalls in such points and it is not possible to perform
sequences of patterns.

A detailed study of the effect of the noise in systems of phase
oscillators with gradient dynamics can be found in Ref. [22]. With
noise, the state of the system xðtÞ does not evolve to the stable
fixed point xðsÞ and the phase-locked synchronization breaks
down. However, xðtÞ is moving around xðsÞ if the noise intensity
is small and the oscillators form a well-localized cloud around
their average position xðsÞ. The width of this cloud is determined
by the intensity of the noise T. Consequently, in the case of a low
noise intensity, the phase differences have well defined values
and the correct identification of the selected pattern is achieved.
On the other hand, with large noise intensity it does not exist a
well defined cloud around the equilibrium xðsÞ and it is not
possible to recognize the pattern anymore. Therefore, a small
intensity of noise does not change the stability properties of the
system. Characteristic to living system, such a behavior is similar
to the tremor exhibited in the limbs of animals. Filtering out
unwanted tremor components is not the focus of this work, but
progress in the field has dealt with this issue [23,24]. Finally, we
have chosen a small noise intensity in order to perform a proper
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pattern recognition, and allowing the system to simultaneously
scape from the unstable fixed points.

The model has been integrated using a stochastic second order
Runge Kutta algorithm [25] with Dt¼ 0:01 and white noise with
intensity T¼0.01. For this example we use K¼5 and a¼ 2.

Fig. 2 shows the temporal evolution of the system.
Fig. 2(a) shows the actual energy LðxðtÞÞ of the system as a
function of time. We observe that when a state kx is activated
at phase instant tk, LðxðtÞÞ increases its value since the actual state
xðtÞ is no longer the minimum. After that, the system evolves
slowly since it must escape from the unstable fixed point. When it
moves relatively far from the fixed point, the dynamics is much
faster and the system finds the global minimum corresponding to
the selected pattern kx. Then, the dynamics is again slow since the
system is reaching the stable fixed point of the dynamics. This
process is repeated by each pattern of the sequence.

Fig. 2(b) shows the euclidean distance in the space of phase
differences between the actual state of the system xðtÞ and the
closest binary state (on the vertices of the hypercube). We observe
that when a state is activated at time tk, the distance increases
slowly while the system escapes from the unstable fixed point. The
distance increases even more until the new selected pattern kx
becomes the nearest one. Thus, the distance decreases again
indicating that the system has reached the selected pattern kx.

Finally, Fig. 2(c) presents the closest state (smaller euclidean
distance) of the system as a function of time. Note that a selected
state kx becomes the nearest to the actual state xðtÞ after a delay
from the phase instant tk, since the system must evolve towards

it. Additionally, it remains as the closest one when a new state has
been selected. This indicates, obviously, that the internal
dynamics of the associative memory block given by K and a must
be faster than the dynamics of the pacemaker o. Otherwise, the
system does not have enough time to find the request state before
a new state is selected. In the same way, the phase period B can be
chosen shorter than the phase difference between two consecu-
tive states, with the only condition that it must be longer than the
internal dynamics of the retrieval network.

The fact that the internal dynamics of the retrieval network must
be faster than the pacemaker indicates the existence of a kind of
threshold frequency. High frequencies of the pacemaker o cannot be
followed by the retrieval network and the sequences cannot be
perfectly performed. The threshold frequency must be studied as a
probabilistic quantity due to the stochastic dynamics of the system. In
effect, there is a probability Pðo,K ,a,TÞ for a sequence to be perfectly
performed for a given system (fixed x’s and t’s). Large values for K

and a accelerate the dynamics of the retrieval network. In the same
way, high noise intensity T helps the system to escape from the
unstable fixed point and accelerate the retrieval process. In this work
we do not study the statistical properties of such a function and we
have considered in the examples values for these parameters that
make this function Pðo,K ,a,TÞ approximately equals to the unit.

2.2. Robot operation

The configuration of the robot body is encoded as a vector of
angles u

!
with A elements. Each angle ui corresponds to a particular

articulation that gives the orientation of a body member in space
(degree of freedom). A robot gait consists of a periodic temporal
sequence of P configurations u

!k
with k¼ 1, . . . ,P.

In order to control a robot, we need to specify a continuous
evolution between the angular states u

!k
. A naive way for

describing the state transition is to use linear interpolation
between two consecutive states. Not only the angular path
between the states is needed, but also the dynamics u

!
ðtÞ to

evolve on this path. Robot movements cannot be instantaneous
(infinite acceleration). Starting from a state (zero speed), the body
moves slowly initially and accelerates moving to the next state. In
the same way, it cannot stop suddenly; it must decelerate and
reach the next state while achieving the halt speed. As we shall
show, the proposed CPG is able to reproduce this interpolation of
angles with dynamics that resemble a biological systems.

2.3. Interface CPG–Robot

In order to control the robot movements with the CPG an
interface between them is required. Our idea is to generate a map
between the actual state of the CPG, xðtÞ, and the angular vector
u
!
ðtÞ corresponding to different robot poses. More specifically,

when the actual state of the CPG xðtÞ is one of the stored patterns
kx (fixed point), the position state u

!k
must be a set of joint angles

from the robot’s configuration set. In consequence, the numbers
of patterns kx that the CPG must store is equal to the number of
robot states u

!k
played in the gaits sequence.

When the robot moves between two consecutive angular
states u

!k
and u
!kþ1

, the actual state of the robot u
!
ðtÞ must be

a blend of these two states. An usual way to compute this mixing
is using a linear interpolation between these angular states and
provide the transit dynamics for this path. In the interface CPG–
robot the interpolation and the dynamics for robot state u

!
ðtÞ are

provided by the internal dynamics of the CPG as follows:

u
!
ðtÞ ¼

1

p
XP

k ¼ 1

ð
kx � xðtÞÞ u!

k
: ð9Þ
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Fig. 2. Sequence 1x
21
-

2x
10
-

3x
5
-

4x
18

. (a) Energy function L evaluated on the

actual state xðtÞ as a function of time. (b) Euclidean distance in the phase difference

space between the actual state xðtÞ and the closest corner of the hypercube as a

function of time. (c) Closest state (smaller Euclidian distance) as a function of time.
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This equation indicates that when the actual state xðtÞ of the
CPG coincides with the pattern kx, their dot product is one, and
the angular state u

!k
is the actual robot state u

!
ðtÞ. On the other

hand, when xðtÞ is moving in the space of phase differences
between the fixed points, its projections on the different states
are not null, and the actual state u

!
ðtÞ is a combination of the u

!k

states. Note that in order to perform the dot product, the CPG–
robot interface must have access to the stored patterns x’s as
described in Fig. 1.

However, one question arises: what is the CPG interpolation
characteristic of the angular states by using Eq. (9)? Is it linear? In
order to respond these questions we have studied numerically
how the actual state xðtÞ of the CPG evolves in the phase

difference space when it moves between orthogonal patterns kx.
In particular, we have considered, for this purpose solely, states
with only one element equal to p. They are states of the form x2n

with n an integer number.
Fig. 3 shows an evolution for a CPG with N¼4 oscillators in the

retrieval network. We have stored three orthogonal patterns
1x

1
¼ ðp,0;0Þ, 2x

2
¼ ð0,p,0Þ and 3x

4
¼ ð0;0,pÞ. The CPG evolves

following the sequence 1x-2x-3x periodically. As Fig. 3 shows
we observe that the evolution corresponds to straight paths
linking the fixed points (hypercube vertices). This indicates that
when the system evolves between two states kx and kþ1x, the
actual state xðtÞ is obtained by a linear interpolation between such
two states. Note that the simulation is performed with noise,
however, its intensity is quite small to note its effects in the
trajectory.

We have found that the same behavior is found in systems
with higher dimensionality (larger number of oscillators) if we
store orthogonal patterns of the form x2n

in the CPG. In general

RðtÞ ¼
1

p
XN�1

i ¼ 1

xiðtÞ ¼ 1: ð10Þ

R(t) is an order parameter for this system. Eq. (10) indicates that
the evolution of xðtÞ occurs on a hyperplane of dimension N�2
that intersects the axes at p in the space of phase differences.

The dynamics of the CPG does not only induce a linear
interpolation between states, it also produces a particular trajec-
tory for the robot. While the CPG starts to escape from an
unstable fixed point because of the noise (see Fig. 2), the
dynamics is very slow (as discussed previously). When the actual
state xðtÞ is far from the initial unstable fixed point the system
moves faster and accelerates (faster movements of the robot).
Finally, when xðtÞ is reaching the next stable fixed point, the
dynamics is again slow, and the robot stops its movement.

0
0.2

0.4
0.6

0.8
1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Δφ 41

Δφ42

Δφ
43

Fig. 3. Evolution of xðtÞ=p in the phase space difference for a CPG with N¼4

oscillators and P¼3 patterns 1x
1
¼ ðp,0;0Þ, 2x

2
¼ ð0,p,0Þ and 3x

4
¼ ð0;0,pÞ.

Fig. 4. Dancing robot. (a) Pattern 1x
1
- u
!1
¼ ð�80;40,40,�80;0,0Þ. (b) Pattern 2x

2
- u
!2
¼ ð�80;40,150;40,20;20Þ. (c) Pattern 3x

4
- u
!3
¼ ð�10;95,85;10,�20,�20Þ.

(d) Pattern 4x
8
- u
!4
¼ ð20;40,140;70,�20,�20Þ. (e) Pattern 5x

16
- u
!5
¼ ð�60;60,60;60,20;20Þ. (f) Generic angle vector u

!k
¼ ða1,a2,a3,a4,a5,a6Þ. Body angles are

expressed in degrees.
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Note that according to the interface operation, the robot
angular state u

!
ðtÞ is coupled to the dynamics of the CPG xðtÞ.

For this reason, the noise coming from the stochastic dynamics is
also translated to the robot movements. A more realistic model of
interface could filter this noise.

3. Results

In this section we present four examples of virtual robots
where we study different aspects of this model and the possibility
of controlling them by integration of external signals from the
robot’s environment.

3.1. Dancing robot

The first example of a prototypic robot is a ‘‘dancing robot’’
that performs a sequence of P¼5 key poses (Fig. 4(a)–(e)). It has
six degree of freedom A¼6 as Fig. 4(f) shows. Since we have five
configurations, the CPG has N¼6 oscillators in the retrieval
network. The other parameters of the CPG are: o¼ 1, a¼ 6,
K¼1, B¼ 2p=5 and phase instants tk ¼ 2pðk�1Þ=5 with k¼ 1,: :,P.

Fig. 5 shows the temporal evolution of the system. Supple-
mentary material video1 shows the temporal evolution of the
robot as a short animation clip. We observe in Fig. 5(a) the energy
function LðxðtÞÞ as a function of time. When a pattern is selected to
be the minimum of the system, L increases its value since the
actual state of the CPG is no longer a suitable candidate. Following
this situation, xðtÞmoves to the selected minimum and L decreases

to the minimum value. This process is repeated for the different
states as long the system is running.

Fig. 5(b) shows the closest state of the CPG with respect to the
corners of the hypercube as a function of time. The state of the
CPG xðtÞ evolves among the stored orthogonal states 1x

1
, 2x

2
, 3x

4
,

4x
8

and 5x
16

periodically as a function of time. Fig. 5(c) presents
the elements of the vector position u

!
ðtÞ of the robot as a function

of time. We observe the slow acceleration and deceleration at
instants when the patterns are changed by the pacemaker.
Between these points, the movements are faster, as we require
for a realistic dynamics.

The dynamics of this system is stochastic, thus, the time
needed by the system to escape from an unstable fixed point is
different for each newly retrieved pattern. As a consequence, each
cycle of the system is different from the others, and the robot,
obviously, follows a stochastic trajectory.

In order to generate any different sequence from these
patterns, we can mention two ways. The first one consists in
creating a new different map between the stored patterns kx of
the CPG and the angular states u

!k
. However, this possibility

cannot be studied in this work since we do not expand and adapt
Eq. (9), in this purpose, by an artificial network. The second
possibility consists in the assignation of new t values for the
stored patterns. This second way is particularly simple to imple-
ment in our CPG model, since we do not need to change the
network architecture in any way. In the next example of a virtual
robot, we show the implementation of this second possibility.

Finally, we can mention the possibility to integrate the first
input control signal I1ðtÞ. Consider the case when we need to
change the frequency o of the CPG. In such a case, we can make
the natural frequency of the pacemaker a function of I1ðtÞ, i.e.,
o¼ f ðI1ðtÞÞ. (see Fig. 1). This simple mechanism of control allows
us to change the speed of the robot’s movement. A more
developed example of this technique is shown later in our last
example of a virtual robot.

3.2. Quadruped robot. Gait switching

In this example we study the possibility to switch between
two different gaits using an external signal I2ðtÞ connected to the
phase instants t’s of the CPG (see Fig. 1). Consider the quadruped
robot from Fig. 6. It has four degrees of freedom corresponding to
its legs (Fig. 6(e)). Different gaits can be achieved depending on
the patterns taken for a sequence. The system has been con-
structed storing P¼4 patterns (Fig. 6(a)–(d)), such that the
retrieval network has N¼5 phase oscillators. The other para-
meters of the system are: K¼1, a¼ 2 and o¼ 1.

We want to switch between two gaits, each of them being
a sequence of two patterns. The first sequence S1 ¼ ðx

1,x2
Þ

corresponds to the walking gait. The second one S2 ¼ ðx
4,x8
Þ

corresponds to the running gait. The external input I2ðtÞ must
switch the system from S1 to S2 at t¼10. We chose the external
input as I2ðtÞ ¼ 0 for to10, and I2ðtÞ ¼ 1 for t410.

The external signal controls the phase instants of the stored
patterns as follows: t1 ¼ 0�DI2ðtÞ and t2 ¼ p�DI2ðtÞ, and, t3 ¼ 0�
Dð1�I2ðtÞÞ and t4 ¼ p�Dð1�I2ðtÞÞ. We use the constant D¼100 in
this example. With this selection of interaction, only two patterns
are plugged simultaneously in Eq. (7). For to10, t1 ¼ 0 and
t2 ¼ p, and, t3 ¼�100 and t4 ¼ p�100. For t410, t1 ¼�100
and t2 ¼ p�100, and, t3 ¼ 0 and t4 ¼ p.

Fig. 7 shows an example of evolution for the gait switching.
Supplementary material video2 shows a schematic animation of
the simulation. Fig. 7(a) shows the temporal evolution of the
energy function evaluated in the actual state xðtÞ of the CPG. We
observe that at t¼10 when the external signal I2ðtÞ changes the
system evolves to an intermediate energy value. After that, the
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!
ðtÞ as a function of time.

P. Kaluza, T. Cioacă / Neurocomputing 97 (2012) 115–124120



Author's personal copy

system continues evolving between the same maximum and
minimum values.

Fig. 7 shows the order parameter R(t) as a function of time. In the
transition between gaits S1-S2 at t¼10, it holds that Ra1. That
indicates that, during the transition, the CPG produces an interpola-
tion between all stored patterns x’s. This process is particularly
useful for us since it allows a continuous transition between the
angles until the new sequence (gaits) is well established.

Fig. 7(c) shows the closest state of the system kx (hypercube
vertex) to the actual one xðtÞ as a function of time. Here we can
see clearly how the system evolves. For to10 the system evolves
between x1 and x2, while for t410 the system evolves between
x4 and x8.

Finally, Fig. 7(d) presents the angles of the robot’s configura-
tion. For to10, legs one and four (a1 and a4), and two and three
(a2 and a3) are in phase respectively. These two pairs are in
opposite phases. This configuration corresponds to the waking
gaits. After the application of the external signal, t410, legs one
and three (a1 and a3), and two and four (a2 and a4) are in phase
respectively. Such a configuration corresponds to the running
gaits. That shows that the gaits switching works properly.

Note that the running gait in a real animal must be faster than
the walking gait. We can implement this speed difference by
using the input I1ðtÞ, increasing the frequency of the pacemaker as
we have pointed out for the dancing robot.

3.3. Hexapod. Signaling to the interface

We consider in this example a hexapod virtual robot (ant-like).
The hexapod has A¼6 degree of freedom, one for each leg. The
walking gaits of this robot consist of P¼2 patterns shown in
Fig. 8(a), (b). Fig. 8(c) indicates the angles we consider. The CPG in
this case has N¼3 oscillators in order to store these two patterns.
The other parameters of the system are: K¼0.75, a¼ 8 and o¼ 3.
The phase delays are for this example t1 ¼ 0 and t2 ¼ p.

In case that the absolute values (amplitudes) of the angles of
the legs have the same value, the robot has, obviously, no
deviation from the robot’s axis of symmetry while moving. Turn-
ing left (right) can be achieved maintaining the previous gaits, but
making the amplitude values of the angles of the right (left) side
aR (aL) larger than the values of the angles in left (right) side.

Now the aim is to reorient the robot displacement towards a
target (in this example, a sugar cube, see Fig. 8(c)). Consider the
external signal I3ðtÞ that has as information the angle x between
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Fig. 6. Quadruped robot configurations. (a) Pattern 1x
1
- u
!1
¼ ð30,�30,�30;30Þ.

(b) Pattern 2x
2
- u
!2
¼ ð�30;30,30,�30Þ. (c) Pattern 3x

4
- u
!3
¼ ð30,�30;30,�30Þ.

(d) Pattern 4x
8
- u
!4
¼ ð�30;30,�30;30Þ. (e) Generic angle vector u

!k
¼ ða1,a2,a3,a4Þ

in degrees. The black marks show the tracks from above of the quadruped robot.
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the symmetry axis of the robot body (direction of displacement)
and the direction to the target, hence I3ðtÞ ¼ x. We want to use this
information in our model in order to change the direction of the
advancing robot. Achieving this is possible by connecting the
external signal I3ðtÞ to the CPG–robot interface (see Fig. 1).

This problem can be easily solved in the interface CPG–robot.
We plug in the amplitude of the angles: the right side
aR ¼ ða�0:2I3ðtÞÞ, for the angles of the left side aL ¼ ðaþ0:2I3ðtÞÞ.
Here a¼20 is the reference angle. The position vectors are now:
u
!1
¼ ðaR,�aR,aR,�aL,aL,�aLÞ and u

!2
¼ ð�aR,aR,�aR,aL,�aL,aLÞ.

Hence, the angular amplitude is now a function of the target
position with respect to the robot.

Fig. 9 shows the angles as a function of time. The supplementary
material video3 shows a capture of this simulation. The angle x varies
linearly from left (xo0) to right (x40) as a function of time Fig. 9(a).
Fig. 9(b–g) shows the angles in degrees for the leg orientations.

Initially, for t¼0, the angle x¼�50, so the target is on the left
side of the robot. In this situation, aR4aL, and the robot should be
able to turn left. At t¼15 the target is in front of the robot, and,
x¼0 and aR¼aL. Thus, the robot has a straight trajectory curve
towards the target. Finally, for t415, the target is in the right side
and aRoaL. With the new angles the robot can turn right. This
simple interaction allows us to change the direction of displace-
ment without affecting the operation of the CPG.

3.4. Penguin robot. Signaling the pacemaker

In this last example we present another possibility in order to
change the robot’s displacement direction. Consider the penguin
robot from Fig. 10. Each wing is controlled by its own CPG, we call
them CPGL and CPGR, for the left and right side respectively. The
left CPGL has a natural frequency oL, and the right CPGR has a
natural frequency oR. Each of these CPGs has N¼3 oscillators and
P¼2 stored patterns each one (both have the same patterns). Each
wing has only one degree of freedom A¼1. The angle aR for the
right wing, and the angle aL for the left wing are shown in
Fig. 10(a) and (b). The other parameters of the system are K¼0.75,
a¼ 9 and o¼ 3. The phase instants are set as t1 ¼ 0 and t2 ¼ p.

In order to swim straightforward, the penguin must move both
wings simultaneously and in phase with the same speed. If it
wants to turn left (right), the right (left) wing must move faster
than the left (right) wing. The different speeds of the wings can be
induced by varying the natural frequencies of the pacemakers of
their CPGs as implemented in our example.

The particularity now in this example is that the pacemakers
of these two CPGs are coupled by a Kuramoto interaction k. Thus,
in case that both pacemakers have the same natural frequency
oR ¼oL, they synchronize in phase, and both wings have the
same speed and phase. If the natural frequencies are different
oRaoL, the pacemakers are no longer synchronized and they can
have different speeds as we need in order to turn. The critical k
value needed to have phase synchronization is function of the

Fig. 8. Hexapod robot. (a) Pattern 1x
1
- u
!1
¼ ð20,�20;20,�20;20,�20Þ. (b) Pattern 2x

2
- u
!2
¼ ð�20;20,�20;20,�20;20Þ. (c) Angle vector u

!k
¼ ða1,a2,a3,a4,a5,a6Þ. Angle

x between the robot body symmetry axis and the target (sugar).
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frequency difference between oL and oR as it is know from
Kuramoto theory of phase oscillators [10].

The penguin must follow the target (fish) (see Fig. 10(c)). The
angle x between its direction of displacement and the target is
taken as input I1ðtÞ. If x40 (target on the right side), I1ðtÞ ¼ 0:75, if
xo0 (target on the left side), I1ðtÞ ¼ �0:75, and for x¼0 (target in
front), I1ðtÞ ¼ 0. The external signal I1ðtÞ changes the natural
frequency of the pacemakers according to

oL ¼oþ I1ðtÞ, ð11Þ

oR ¼o�I1ðtÞ: ð12Þ

Thus, the frequency of the CPG increases or decreases depending
on the direction in which the penguin must swim.

The dynamics of the pacemakers are given by:

_cL ¼oLþk sinðcR�cLÞ, ð13Þ

_cR ¼oRþk sinðcL�cRÞ: ð14Þ

Fig. 11 shows an example of evolution for this system. Supple-
mentary material video4 shows an animation of the robot during
this simulation. In this example, the position of the target changes as
a function of time, for 0oto20 the target is in front of the penguin
(x¼0). For 20oto50 the target is on the right side (x40), and for
50oto80, the target is on the left side (xo0). Finally, for t480
the target is again in front of the penguin (see video4).

Fig. 11(a) and (b) shows the evolution of the energy functions
of the CPGL and CPGR respectively. We observe that their evolu-
tions are in phase during the periods when oL ¼oR (to20
and t480). During these time intervals, the wings exhibit also
in phase oscillations (see Fig. 11(c) and (d)). There are some
temporal differences due to the stochastic nature of the system.
So, along these time intervals, the robot moves straightforward.

During the time interval when oRaoL (20oto80), both
CPGs are essentially disconnected and they can work with
different frequencies as we see in Fig. 11a,b,c,d. In this situation
the control input signal I1ðtÞ allows hypothetically changing the
direction of displacement of the robot that is following the target.

Note that the Kuramoto interaction between the pacemakers
allows the system to evolve gradually between the different states of
synchronization of the pacemakers (from phase synchronization to
desynchronization). As a consequence, there are not abrupt changes
in the dynamics of the system (movements) even when the external
control signal I1ðtÞ has discontinuities or fast changes.

4. Discussions and conclusions

In this work we have presented a model of central pattern
generator, a model of interface between the CPG and the virtual
robots, and the integration of different control signals coming
from the robot environment.

The central pattern generator constructed with phase oscilla-
tors can be seen as an associative memory driven by a pacemaker.
This architecture in blocks agrees with many proposed models of
central pattern generators [1]. In particular our model is very
robust because its retrieval mechanism; the system has a gradient
dynamics in a potential with only one minimum.

Several previous models of CPG for gaits generation use for
each degree of freedom of the robot or animal an oscillator [2,3,6],
so thus, the number of oscillators is a function of the shape of the
robot or animal. In contrast, in our model of CPG, the size of the
system (number of oscillators of the retrieval network) is a
function only of the number of patterns P that are stored for the
sequences.

Differently from the model of Steingrube et al. [8], where the
different sequences of the CPG are generated by stabilizing
particular periodic orbits as a function of the external signals, in
our model, several sequences can be generated by varying the
phase instants t’s of the stored patterns. Obviously, all the

Fig. 10. Penguin robot. (a) Pattern 1x
1
- u
!1
¼ ð30Þ. (b) Pattern 2x

2
- u
!2
¼ ð�30Þ.

(c) Angle vector Pattern u
!k
¼ ðaÞ with a¼ aL and a¼ aR for CPGL and CPGR

respectively. There are two central pattern generators, CPGL and CPGR, they are

coupled by a Kuramoto interaction of strength k¼ 0:5.
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involved patterns must be stored in the network in the couplings
between the pacemaker and the retrieval network.

We want to emphasize the necessity of a stochastic dynamics
in the retrieval network of the CPG for the robot to operate
naturally and properly. Without noise, the system cannot escape
from the unstable fixed points and the CPG cannot generate the
sequences. The utility of noise in neural system is well known,
being the stochastic dynamics proposed as a principle of brain
functionality [26].

The function of the CPG is to generate binary patterns and
interpolate between them. That function is independent from the
concrete application of the patterns and depends only on the
interface which makes use of the CPG. This suggests that our CPG
can be used as an independent unit of a bigger system. Different
movements can be driven by the same CPG if the proper inter-
faces are connected to it.

The interface between the robot and the CPG makes use of the
rich internal dynamics of the retrieval network. We have found that
using orthogonal patterns, the CPG generates linear interpolation
between the consecutive states of the sequences. Additionally,
dynamical characteristics of acceleration and deceleration close to
the fixed points produce realistic movements for the robots.

We have shown how external controlling signals can be imple-
mented in order to change the robot dynamics. These signals have
been connected in different parts of the system. We have presented
in four examples: several possibilities of controlling, changing the
frequency of the CPG, generation and switching of gaits, and
controlling the robot orientation while tracking targets.

Finally, we want to note the possibility of hardware imple-
mentation of this model in real physical devices. In effect, devices
of electronic oscillators with synchronization properties have
been recently proposed for fast sensing and labeling of image
objects [27]. The modularity characteristics of the presented
model can be very helpful since the same CPG device can be
used in different implementations, independently from the phy-
sical characteristic of the robots as it has been previously shown.

Acknowledgments

We thank Prof. Alexander S. Mikhailov very much for valuable
discussions and support for this project.

Appendix A. Supplementary material

Supplementary data associated with this article can be found
in the online version of http://dx.doi.org.10.1016/j.neucom.2012.
05.019.

References

[1] S.L. Hooper, Central pattern generators, Curr. Biol. 10 (5) (2000) R176–R177.
[2] J.J. Collins, I.N. Stewart, Coupled nonlinear oscillators and the symmetries of

animal gaits, J. Nonlinear Sci. 3 (1993) 34992.
[3] K.V. Baev, Y.P. Shimansky, Principles of organization of neural systems

controlling automatic movements in animals, Prog. Neurobiol. 39 (1992)
45–112.

[4] F. Brocard, S. Tazerart, L. Vinay, Do pacemakers drive the central pattern
generator for locomotion in mammals? Neuroscientist 16 (2010) 139–155.

[5] J. Hertz, A. Krogh, R. Palmer, Introduction to the Theory of Neural Computa-
tion, Addison-Wesley Publishing Company, 1991.

[6] A.J. Ijspeert, Central pattern generators for locomotion control in animals and
robots: a review, Neural Netw. 21 (2008) 642–653.

[7] S. Conforto, I. Bernabucci, G. Severini, M. Schmid, T. D’Alessio, Biologically
inspired modelling for the control of upper limb movements: from concept
studies to future applications, Front. Neurorobotics 3 (3) (2009).

[8] S. Steingrube, M. Timme, F. Wörgötter, P. Manoonpong, Self-organized
adaptation of a simple neural circuit enables complex robot behaviour, Nat.
Phys. 6 (2010) 224–230.

[9] J.J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci. USA 79 (8) (1982) 2554–2558.

[10] Y. Kuramoto, Chemical Oscillations, Waves, Turbulence, Springer, New York,
1984.

[11] J.A. Acebrón, L.L. Bonilla, V.C.J. Pérez, F. Ritort, R. Spigler, The Kuramoto
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