
March 19, 2013 16:55 WSPC/1793-5369 244-AADA 1250025

Advances in Adaptive Data Analysis
Vol. 4, No. 4 (2012) 1250025 (11 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S1793536912500252

NOISE-ASSISTED EMD METHODS IN ACTION

MARCELO A. COLOMINAS∗,‡, GASTÓN SCHLOTTHAUER∗,§,
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In this work we explore the capabilities of two noise-assisted EMD methods: Ensem-
ble EMD (EEMD) and the recently proposed Complete Ensemble EMD with Adaptive
Noise (CEEMDAN), to recover a pure tone embedded in different kinds of noise, both
stationary and nonstationary. Experiments are carried out for assessing their perfor-
mances with respect to the level of the added noise and the number of realizations used
for averaging. The obtained results partly support empirical recommendations reported
in the literature while evidencing new distinctive features. While EEMD presents quite
different behaviors for different situations, CEEMDAN evidences some robustness with
an almost unaffected performance for the studied cases.
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1. Introduction

Empirical Mode Decomposition (EMD) [Huang et al. (1998)] is an adaptive method
introduced to analyze signals that may be nonstationary and/or stemming from
nonlinear systems. It consists in a local and fully data-driven separation of a signal
in fast and slow oscillations. At the end of the decomposition, the original signal can
be expressed as a sum of amplitude and frequency modulated (AM-FM) functions
called “intrinsic mode functions” (IMFs) plus a final trend either monotonic or
constant.

Despite its proven usefulness, EMD may experience problems in some cases,
such as the presence of oscillations of very disparate amplitude in a mode, or the
presence of very similar oscillations in different modes, named as “mode mixing”.
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To overcome these problems, a new method was proposed: Ensemble Empirical
Mode Decomposition (EEMD) [Wu and Huang (2009)]. It performs the EMD over
an ensemble of the signal plus Gaussian white noise. The addition of white Gaussian
noise alleviates the mode mixing problem by populating the whole time-frequency
space to take advantage of the dyadic filter bank behavior of the EMD [Flandrin
et al. (2004)]. Still, both the optimal size of the ensemble and the amplitude of the
added noise are open questions. Although there are suggested values for these two
key parameters [Wu and Huang (2009)], there were no extensive experiments carried
out to clarify this point. In Niazy et al. [2009] the authors studied the denoising
of an AM signal via EMD and EEMD, exploring three values for the algorithm
noise and paying attention to the number of sifting iterations used for this last
method, and concluding that EEMD improves the accuracy and robustness of the
decomposition.

Besides the mode mixing alleviation, EEMD created some new problems.
Indeed, the reconstructed signal includes residual noise and different realizations
of signal plus noise may produce different number of modes, making difficult the
final averaging. In order to overcome these situations, a new method was recently
proposed: the “Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise” (CEEMDAN) [Torres et al. (2011)]. CEEMDAN adds a particular noise at
each stage, and achieves a complete decomposition with no reconstruction error.
Because of that, a smaller ensemble size can be used. Nevertheless, the amplitude
of the added noise is still an open issue. In this paper, we explore the capabili-
ties of these two noised-assisted EMD methods to recover a pure tone embedded
in different kinds of noise, paying special attention to the algorithm added noise
amplitude.

The paper is organized as follows. In Sec. 2 the main EEMD concepts are
recalled, and the new method CEEMDAN is explained. In Sec. 3 the experiments
are described and the results are presented. A discussion on them and features of
the studied methods can be found in Sec. 4.

2. EEMD and CEEMDAN

EMD decomposes a signal x(t) into a (usually) small number of IMFs or modes.
To be considered as an IMF, a signal must satisfy two conditions: (i) the number of
extrema and the number of zero crossings must be equal or differ at most by one;
and (ii) the mean value of the upper and lower envelopes is zero everywhere.

EEMD defines the true IMF components (here notated as IMF in what follows)
as the mean of the corresponding IMFs obtained via EMD over an ensemble of trials,
generated by adding different realizations of white noise of finite variance to the
original signal x[n]. EEMD algorithm [Wu and Huang (2009)] can be described as:

(1) Generate xi[n] = x[n] + β wi[n], where wi[n] (i = 1, . . . , I) are different realiza-
tions of zero mean unit variance white Gaussian noise,
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(2) Fully decompose by EMD each xi[n] (i = 1, . . . , I) getting their modes IMFi
k[n],

where k = 1, . . . , K indicates the modes,
(3) Assign IMFk as the kth mode of x[n], obtained as the average of the corre-

sponding IMFs: IMFk[n] = 1
I

∑I
i=1 IMF i

k[n].

Observe that in EEMD, each xi[n] is decomposed independently from the other
realizations and so for each one a residue ri

k[n] = ri
k−1[n] − IMFi

k[n] is obtained.
In the CEEMDAN method [Torres et al. (2011)], the decomposition modes will

be noted as ĨMFk and, in order to obtain a complete decomposition, we propose to
calculate a unique first residue as:

r1[n] = x[n] − ĨMF1[n], (1)

where ĨMF1[n] is obtained in the same way as in EEMD. Then, we generate a new
ensemble of r1[n] plus different realizations of a given noise and compute the first
EMD mode of each element. By averaging of these first EMD modes, we obtain
ĨMF2. The next residue is defined as: r2[n] = r1[n] − ĨMF2[n]. This procedure
continues with the rest of the modes until the stopping criterion is reached.

Let us define the operator Ej(·) which, given a signal, produces the jth mode
obtained by EMD. Let wi be a realization of white noise with N (0, 1), (i = 1, . . . , I).
If x[n] is the targeted data, we can describe our method by the following algorithm:

(1) Decompose by EMD I realizations x[n] + β0 wi[n] to obtain their first mode
and compute:

ĨMF1[n] =
1
I

I∑
i=1

IMFi
1[n] = IMF1[n].

(2) At the first stage (k = 1) calculate the first residue as in Eq. (1): r1[n] =
x[n] − ĨMF1[n].

(3) Decompose realizations r1[n] + β1 E1(wi[n]), i = 1, . . . , I, until their first EMD
mode and define the second mode:

ĨMF2[n] =
1
I

I∑
i=1

E1(r1[n] + β1 E1(wi[n])).

(4) For k = 2, . . . , K calculate the kth residue:

rk[n] = r(k−1)[n] − ĨMFk[n]. (2)

(5) Decompose realizations rk[n]+βk Ek(wi[n]), i = 1, . . . , I, until their first EMD
mode and define the (k + 1)th mode as

ĨMF(k+1)[n] =
1
I

I∑
i=1

E1(rk[n] + βk Ek(wi[n])). (3)

(6) Go to step 4 for next k.
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Steps 4 to 6 are performed until the obtained residue can no longer be decomposed
(the residue does not have at least two extrema). The final residue satisfies:

R[n] = x[n] −
K∑

k=1

ĨMFk, (4)

with K being the total number of modes. Therefore, the given signal x[n] can be
expressed as:

x[n] =
K∑

k=1

ĨMFk + R[n]. (5)

Equation (5) makes the proposed decomposition complete and provides an exact
reconstruction of the original data. Observe that the coefficients βk = εk std(rk)
allow to select the SNR at each stage, but this possibility will not be exploited
in this study. It must be taken into account the fact that at stage k we generate
the ensemble by adding the kth mode of white Gaussian noise (Ek(wi[n])) to the
kth residue rk[n]; then we always compute the first mode of each element of the
ensemble (E1(·)). Figure 1 summarizes the proposed algorithm.

Concerning the amplitude of the added noise, Wu and Huang suggested to
use small amplitude values for data dominated by high-frequency signals, and
vice versa [Wu and Huang (2009)]. In the next section, we will explore differ-
ent values for given ε parameters and fix the same SNR for all the stages. In
all the implementations we use the EMD toolbox available at: http://perso.ens-
lyon.fr/patrick.flandrin/emd.html. CEEMDAN implementation is available at:
http://www.bioingenieria.edu.ar/grupos/ldnlys/.

3. Experiments and Results

In order to better understand the influence of the amplitude of the added noise in
both EEMD and CEEMDAN, a pure tone of the form

s[n] = sin(0.2 n), n = 1, 2, . . . , 256, (6)

was corrupted with three different kinds of noise (which will be described in their
corresponding subsections). Each noise realization was built upon one same real-
ization for these three cases, and the same realizations were used for both methods.
Figure 2 summarizes this approach.

Different values for the SNR of the signal plus corrupting noise (referred to as
“input SNR” in what follows) were used, and also different values for the algorithms
parameters. Given a set of (input and algorithm) parameters, J = 100 noisy tones
were decomposed by the two methods and a distance e was computed for each of
them as follows:

e(η, ε, I)j = ‖s[n] − IMFk∗
j
(η, ε, I)[n]‖2, (7)
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Fig. 1. CEEMDAN algorithm. gIMF1 is obtained in the same way as in EEMD. A unique first
residue r1[n] is computed and a new ensemble of r1[n]+β1E1(w[n]) is generated. gIMF2 is obtained
by averaging the first EMD modes of those elements. The procedure continues with the rest of
the modes until the stopping criterion is reached.

where j = 1, . . . , J stands for the input noise realization, η is the input SNR, ε

the algorithm noise amplitude, I the ensemble size, IMFk∗
j

the k∗th mode obtained
from the jth noisy tone (by either of the two methods), and

k∗
j = arg min

k
‖s[n] − IMFkj (η, ε, I)[n]‖2 (8)

indicates the closest (in distance) mode to the original noiseless tone.
Final results were obtained by averaging over the J noisy tone decomposition

distances: e(η, ε, I) = 〈e(η, ε, I)j〉. A small value for e indicates a good tone recov-
ering and thus an avoidance of mode mixing. On the other hand, if e has a large
value, this means that mode mixing was strong and the algorithm was not able to
catch the tone with enough energy in only one mode.

Exploiting the no reconstruction error property of CEEMDAN, a small ensemble
size (up to 20) was performed. To have a fair comparison between the two methods,
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Fig. 2. Experimental design. The test signal is a pure tone (left) embedded in three different
kinds of noise (right). For a same total energy, the standard deviation of those noises is supposed
either constant (top), abruptly doubling its value at the mid-time (middle), or linearly increasing
(bottom).

the exact same set of noise realizations was used in both of them. Sifting iterations
were not limited and the default stopping criterion from Rilling et al. [2003] was
used. Algorithm noise parameter ε values belonging to the interval [0.025; 0.5] with
a 0.025 step and to the interval [0.6; 2.0] with a 0.1 step have been used.

3.1. Constant amplitude noise

As a first experiment, the noise was added with an equal standard deviation
throughout the duration of the signal. Then, 100 noisy tones of the form

sσ0 [n] = s[n] + σ0 std(s)wj [n] (9)

were decomposed using different algorithm parameters, where wj [n] is a zero mean
unit variance Gaussian noise realization. Constant σ0 was fixed in order to obtain
the following SNRs: 9 dB, 6 dB, 3 dB, and 0 dB.

The results of the average distances computed from decompositions via both
methods are presented on Fig. 3. In these plots, the input SNR was kept constant,
and results for different number of realizations were superimposed. On the first two
rows, EEMD presents a two-regime situation with a local minimum around 0.2 for
the algorithm noise. This situation disappears in the third and fourth rows, with
a minimum at an intriguingly high level of algorithm noise. Instead, CEEMDAN
displays almost the same behavior in all cases: a smaller local minimum around 0.2,
with an expected vertical shifting corresponding to the performance improvement
when the input SNR increases.
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Fig. 3. Results for constant amplitude noise. No. of realizations: 5 (dotted), 10 (solid), 15 (dashed)
and 20 (dashed dotted). EMD performance is shown in thick gray for comparison purposes.

3.2. Step in the amplitude noise

As a second case, the noise was added with a given amplitude in the first half
of the signal, and with twice the amplitude in the second half. Noisy tones of
the form

sσs [n] = s[n] + std(s)wj
s[n] (10)

with

wj
s[n] =

{
σs wj [n], if n = 1, 2, . . . , 128,

2 σs wj [n], if n = 129, 130, . . . , 256,

were decomposed. In this case, wj [n] stands for the exact same jth noise realization
as in the constant amplitude case. To achieve the same SNRs as in the previous
example, the constants were related by σs =

√
2/5σ0.

Results with a constant input SNR are depicted on Fig. 4. As in the previous
case, EEMD presents two regimes in the two first rows. It is also clear how EEMD
performance almost stabilizes for 10 realizations. Again CEEMDAN shows a similar
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Fig. 4. Results for step in the amplitude noise. No. of realizations: 5 (dotted), 10 (solid),
15 (dashed) and 20 (dashed dotted). EMD performance is shown in thick gray for comparison
purposes.

behavior for all input SNRs. Performance stabilization seems to be almost reached
at 15 realizations.

3.3. Increasing amplitude noise

As a final example, the noise was added with a linearly increasing amplitude. The
decomposed noisy tones were

sα[n] = s[n] + α n std(s)wj [n]. (11)

To keep the same SNRs as in the two previous examples, the slope was α =√
NPN

n=1 n2 σ0, with N = 256 being the signal length. Again, wj [n] is the same jth

realization as in the previous examples.
The results are presented in Fig. 5. As before, the input SNR was kept constant.

In this case, the EEMD two-regime situation seems to be a little bit stronger.
CEEMDAN performance is almost unaffected for the input SNR, with the same
expected vertical shifting while the input SNR increases. As in the previous two
examples, there is an oscillation for small levels of algorithm noise to be clarified in
future works.
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Fig. 5. Results for increasing amplitude noise. No. of realizations: 5 (dotted), 10 (thin black),
15 (dashed) and 20 (dashed dotted). EMD performance is shown in thick gray for comparison
purposes.

4. Discussion

The rationale behind noise-assisted variations on EMD is that some adequate level
of added (algorithm) noise should improve upon the identification of well-structured
signals embedded in observation (input) noise. Intuitively, a too small amount of
added noise should be of no effect, while a too strong one should end up with
so erratic waveforms that identification should again be very difficult. In between,
it is expected that some optimum could be attained, e.g. a minimum when the
performance measure is the distance between the actual waveform and the estimated
one. It is therefore remarkable to see that such a local minimum is indeed observed
in many of the considered examples. Moreover, this is most often so for a value of
the standard deviation of the algorithm noise that is close to 0.2, the value suggested
by Wu and Huang in Wu and Huang [2009].

However, some differences occur between EEMD and CEEMDAN, that can be
summarized in the two main following points:

(1) As for EEMD, the observed behavior tends to differ from the expected one in
two respects. For small to moderate input noise, the valley around 0.2 (where

1250025-9



March 19, 2013 16:55 WSPC/1793-5369 244-AADA 1250025

M. A. Colominas et al.

the distance attains its minimum) is supplemented by a second valley, with a
less pronounced minimum, that is obtained for much higher levels of algorithm
noise. This two-regime situation tends to disappear as the input noise increases,
with no local minimum around the recommended value. EEMD performance
is therefore improved by adding more noise, but it is necessary in this case
to perform more realizations, especially if a low reconstruction error is needed.
Finally, the global minimum seems in this case to be not as low as CEEMDAN’s.

(2) As for CEEMDAN, there is a similar behavior in all situations, no matter
how large is the input noise: the results for CEEMDAN have almost the same
“shape” for different kinds of noise. For small levels of algorithm noise, there
is however an oscillation in the performance for which we have currently no
explanation and which would deserve more attention in future investigations.
Nevertheless, it appears that CEEMDAN seems to have some built-in robust-
ness, the performance being not affected by the input SNR, and the global
optimum being attained around the suggested value of 0.2 for standard devia-
tion of the algorithm noise.

5. Conclusion

The present work has extensively studied the influence of the two key parameters
(added noise amplitude and number of realizations) of two noise-assisted EMD
methods in typical, yet not universal, situations. As expected, both of them have
evidenced some form of stochastic resonance [Gammaitoni et al. (1998)], showing a
value of algorithm noise for which performance reaches its best.

Future investigations will attempt to shed some light into the very small noise
amplitude zone of CEEMDAN, where unexplained oscillations appear, as well as
casting explicitly the considered noise-assisted methods in a stochastic resonance
framework.
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