The reinstatement of *Latace* Phil. (Amaryllidaceae, Allioideae)

AGOSTINA BELÉN SASSONE†, MANUEL JOAQUÍN BELGRANO† & ENCARNACIÓN ROSA GUAGLIANONE†

†Instituto de Botánica Darwinion, Labardén 200, Casilla de Correo 22, San Isidro, BA1642HYD Buenos Aires, Argentina; e-mail: asassone@darwin.edu.ar

*author for correspondence

Abstract

The monotypic genus *Latace* has been formerly treated under its related genera *Leucocoryne* or *Nothoscordum*. The genus *Zoellnerallium*, on the other hand, was established to include the atypical *Nothoscordum andinum* (= *Ornithogalum andinum*) and, later another similar species, namely *Nothoscordum serenense*, was also placed in this genus. In this contribution we corroborate that *Latace* and *Zoellnerallium* are names applied to the same taxon, and different from *Nothoscordum* and *Leucocoryne*. According to the priority rule, *Latace* is the name to be used instead of *Zoellnerallium*. Consequently, the name *Latace* is reinstated, while *Zoellnerallium* is relegated to the synonymy, and three new combinations are proposed: *Latace andina* f. *andina*, *Latace andina* f. *lutea* and *Latace serenense*. In addition, the chromosome identity of *Latace* (= *Zoellnerallium*) and morphological features that support *Latace* as an independent unit are herein highlighted, and presented together with keys to related genera and to species of *Latace*; lectotypes, neotypes, a distribution map, and illustrations are also included.

Keywords: *Leucocoryne*, *Leucocoryneae*, *Nothoscordum*, *Zoellnerallium*

Introduction

The genus *Latace* Philippi (1889: 369) was based on the single species *Latace volkmanni* Philippi (1889: 369), from the Andes of Central Chile. The original description indicates the presence of three staminodes and, for this reason, several authors treated *Latace* under *Leucocoryne* Lindley (1829: 1293) (Engler 1900, Krause 1930, Traub 1963, 1967, Rahn 1998). Since then, *Latace* was unnoticed as an independent genus not only in floristic lists and catalogues (Marticorena & Quesada 1985, Guaglianone 1996, 2009, Zuloaga et al. 2008), but also in taxonomic, phylogenetic, ecological and phenetic works (Guaglianone 1973, Crosa 1975, 2004, Fay et al. 2006, Escobar et al. 2012, Jara-Arancio et al. 2014, Sassone et al. 2013, 2014). *Latace volkmanni* was based on a specimen collected by H. Volckmann in “Andes de Santa Rosa” (IV Region of Coquimbo, Chile) (Philippi 1889). Fuentes (1929) indicated that the herbarium SGO keep a sample of *Latace volkmanni* collected by Volckmann, between 1861–1862. Muñoz Pizarro (1960) and Muñoz-Schick (former curator at SGO, email written communication) consider SGO-46839 as the type specimen of *Latace volkmanni* (Fig. 1A).

On the other hand, *Zoellnerallium* Crosa (1975: 331) was established to include the atypical *Nothoscordum andinum* (Poeppig 1833: 9) Kunth ex Fuentes (1921: 238), as *Zoellnerallium andinum* (Poepp.) Crosa (1975: 331) owing the presence of purplish-red inner bulb cataphylls, curved long embryo, depressed epidermic cells of seeds, and short chromosomes (2.5–10 µm), mostly acrocentric (A) (vs. short rect embryo, non-depressed epidermal cells of seeds, and long metacentric chromosomes (M) in *Nothoscordum Kunth* (1843: 457), Crosa 1972). *Ornithogalum andinum* Poepp. (1833: 9), the basionym of *Zoellnerallium andinum*, and *Nothoscordum andinum*, was described based on a specimen collected in Chile “Cr. in Chili bor. glareosis ad Las cruces, Andes de Santa Rosa” (Poeppig 1833). The original description, although very brief: “*O. escapo terete; pedunculis umbellatis erectis, valde inaequalibus; perianthii lacinii, apice revolutis, oblorigis; filamentis linearisibus*”, clearly indicates that the tepals’ apices are involute, which is probably one of the most distinctive features of this taxon.

Ravenna (2000) considered that the characters described by Crosa, were too weak to segregate *Nothoscordum andinum* as an independent genus. In the same work, Ravenna (2000: 15) placed *Latace*, together with *Zoellnerallium*,...
FIGURE 1. A: Lectotype of Latace volkmanni Phil. (SGO 046839); B: Original color illustration of Latace volkmanni Phil. Gartenflora 38: Taf. 1302-I; C: Isotype of Nothoscordum serenense Ravenna (SGO 107989); D: Neotype of Ornithogalum andinum Poepp. (SI 044519).

in the synonymy of Nothoscordum. This author established that Zoellnerallium andinum and Latace volkmanni were conspecific, and stated that they should be considered as part of Nothoscordum subgenus Latace. Additionally, a second species, Nothoscordum serenense Ravenna (1973: 3), was also mentioned as a member of Nothoscordum subgenus
Latace (Ravenna 2000). Few years later, Crosa (2004) justified the recognition of Zoellnerallium on the basis of new karyological studies, and increased the number of species of the genus by the transfer of Nothoscordum serenense to Zoellnerallium, as Zoellnerallium serenense (Ravenna) Crosa (2004: 166).

The identity of Zoellnerallium as an independent genus was recently demonstrated by molecular phylogenies (e.g. Sassone & Giussani 2013, Jara-Arancio et al. 2014, Souza et al. 2015). Species of Zoellnerallium constitute a monophyletic group, sister to Leucocoryne (Souza et al. 2015). At present, Zoellnerallium is included in tribe Leucocoryneae (Amaryllidaceae, Allioideae) with other five American genera: Beauverdia Herter (1943: 505), Ipheion Rafinesque (1836:12), Leucocoryne, Nothoscordum, and Tristagma Poeppig (1833: 8) (Sassone et al. 2014).

In view of the contradictory positions on the boundary and rank of the mentioned taxa, the main objective of the present contribution was to evaluate the identity of Latace and Zoellnerallium and their distinction from Nothoscordum and Leucocoryne.

Material and Methods

In order to understand the taxonomic history of the involved taxa, an exhaustive bibliography search and a complete study of protologues were conducted. Therefore morphological diagnostic characters, karyological and anatomical features, and geographical distribution were also considered.

Morphological studies were performed on herbarium specimens housed at BA, BAA, BAB, LP, MERL, SGO, and SI (acronyms follow Thiers 2015). Preserved flowers and fruits were rehydrated and examined using a Nikon SMZ 2800 stereomicroscope. Additionally, images of type specimens available at JSTOR (http://plants.jstor.org/) were studied using digital tools of magnification.

Type specimen of Ornithogalum andinum could not be located. Poeppig’s herbarium specimens and types are stored in W, with duplicates in several other herbaria (Stafleu & Cowan 1986). Staff at B, BM, BR, C, CGE, FI, G, H, HAL, K, L, LE, LZ, M, MO, NY, OXF, P, PC, PRC, SI, SGO, US, and W, was consulted without any success (neither searching under Nothoscordum or Zoellnerallium).

To observe crystals from herbarium specimens, 1 cm\(^2\) of epidermis was cut from the inner bulb cataphylls. The samples were rehydrated in warm soapy water and observations were done with Light Microscope Nikon Microphot-FXA, equipped with a photographic camera.

The distribution map was generated from coordinates reported on specimen labels or using georeferenced localities when coordinates were not reported on labels, employing the package ‘raster’ (Hijmans & van Etten 2015) available in the R statistical package 3.2.2 (R Development Core Team 2010).

The identity and status of Latace and Zoellnerallium

After conducting the study of protologues and types, Latace volkmanni and Zoellnerallium andinum are undoubtedly names applied to the same natural unit. Consequently, these names are considered as synonyms. Since Latace volkmanni and Zoellnerallium andinum are the type species of their respective genera, both Latace (1889) and Zoellnerallium (1975) are also considered synonyms. Hence, according to Art. 11.4 of ICN, McNeill et al. (2012), Latace is the name to be used instead of Zoellnerallium.

The independence of Latace (= Zoellnerallium) as a genus is undoubtedly corroborated by different kinds of data (Table 1). Regarding morphological features, Latace (= Zoellnerallium) can be easily differentiated from Nothoscordum by the presence of purplish-red inner bulb cataphylls with several calcium oxalate crystals (styloids, Fig. 2C), involute tepals’ apices and style notably exerted (Fig. 2A), as it was previously proposed by Crosa (1975, 2004). The absence of staminodes was also corroborated separating it from the close genus Leucocoryne (3–6 fertile stamen + 3–6 staminodes vs. 6 fertile stamen + 0 staminodes).

As to karyological features, the chromosomes complement (2n = 24, x = 12, 4M+8A, Crosa 2004) shows unique characteristics within tribe Leucocoryneae. The relation of the quantity of metacentric (M) and acrocentric (A) chromosomes and the size of chromosomes cannot be compared with any other genus of tribe Leucocoryneae (Crosa 2004, Souza et al. 2015, Table 1).
TABLE 1. Differences between *Latace*, *Leucocoryne*, and *Nothoscordum*.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Latace</th>
<th>Leucocoryne</th>
<th>Nothoscordum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of red-purple inner bulb cataphylls</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Presence of abundance of crystals in the bulb</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Presence of staminodes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Tepal</td>
<td>Cucullate or tepal apices involute</td>
<td>Non cucullate nor tepal apices involute</td>
<td>Non cucullate nor tepal apices involute</td>
</tr>
<tr>
<td>Karyotype formula</td>
<td>4M + 8A (Souza <em>et al.</em> 2015)</td>
<td>3M + 2A or 4M + 1A (Crosa 1988, Souza <em>et al.</em> 2015)</td>
<td>4M or 3M + 2A (Crosa 1972, 2004 (Souza <em>et al.</em> 2009)</td>
</tr>
<tr>
<td>Chromosome number</td>
<td>2n = 24 (Crosa 2004)</td>
<td>2n = 10, 18, 19 (Crosa 1988, Jara-Arancio <em>et al.</em> 2012, Souza <em>et al.</em> 2015)</td>
<td>2n = 8, 10, 16, 18, 24 26, 32 (Crosa 2004)</td>
</tr>
<tr>
<td>Chromosome size range (µm)</td>
<td>2.5–14 (Crosa 2004)</td>
<td>9–22 (Crosa 1988)</td>
<td>12–24 (Crosa 1975)</td>
</tr>
<tr>
<td>Geographical distribution</td>
<td>Chile and Argentina</td>
<td>Chile</td>
<td>North and South America</td>
</tr>
</tbody>
</table>

The distinctiveness of *Latace* is also supported by recent molecular data. While studying the phylogenetic relationships among species of *Leucocoryne* (Jara-Arancio *et al.* 2014, Souza *et al.* 2015) or testing the monophyly of tribe Leucocoryneae (Sassone & Giussani 2013), based on a nuclear marker (ITS region), plastidial markers (*matK* and *ndhF*) and combined data (ITS +plastidial markers), these authors corroborated the monophyly and recognized *Latace* (under *Zoellnerallium*) as an independent lineage, which can clearly be distinguished from *Nothoscordum* and *Leucocoryne*.

**Taxonomic treatment**

*Latace*, as here circumscribed, is a small genus of Amaryllidaceae, subfamily Allioideae, tribe Leucocoryneae, which comprises two species from South America.

**Identification key to genera**

1. Fertile stamens 3 (rarely 6), and staminodes 3 (rarely 6). Chile .......................................................... *Leucocoryne* 2
   - Fertile stamens 6 .......................................................................................................................... *Zoellnerallium* 2
2. Inner bulb cataphylls white. Tepals not cucullate, tepal apices not involute after anthesis. From North America to South America. ............................................. *Nothoscordum* 3
   - Inner bulb cataphylls red-purple. Tepals cucullate or tepal apices involute after anthesis. Argentina and Chile ......................... *Latace* 3

**Latace** Philippi (1889: 369). Type:—*Latace volkmanni* Phil. [= *Latace andina* (Poepp.) Sassone].

≡ *Zoellnerallium* Crosa (1975: 331). Type:—*Zoellnerallium andinum* (Poepp.) Crosa [= *Ornithogalum andinum* Poepp.].  

**Description** (emended here by Guaglianone & Sassone):—Perennial herbs, 15–45 cm high. Roots fibrous, white. Bulb indeterminate, tunicate, simple or prolific, with numerous collateral bulbils, without conspicuous alliaceous smell. Outer cataphylls cartaceous, light-brown, the next ones papery, 2 grey, 1–2 brown, and 5–10 purplish-red, with several calcium oxalate crystals (styloids, Fig. 2C). Central cataphylls fleshy, with starch-like reserve substances in the inner sheaths: starch grains simple and semi-compound. Leaves few, elegulate, linear, green, glabrous; leaf sheaths forming a purple subterranean neck. Scapes 1–2, lateral, subcilindrical, glabrous, reddish at the base. Inflorescences with 3–12(–15) flowers arranged in an umbellate cyme. Spathe formed by 2 bracts fused at the base, cylindrical, membranous-papery, plurinerved; pedicels cylindrical, glabrous. Flowers bisexual, hypogynous, trimerous, actinomorphic, white or

_Latace_ includes two species distributed in Argentina (Jujuy, Mendoza, Neuquén, and San Juan), and Chile (Regions III, IV, V, VI, VII, X, and Metropolitana). These species inhabit sandy hills, scattered places and/or arid soils; _Latace andina_ is commonly found in mountain areas, meanwhile _Latace serenense_ grows at sea level places (Fig. 2D).

### Identification key to species of _Latace_

1. Tepals lanceolate, 8.2 mm × 2–3 mm, apices involute when mature. Argentina and Chile .................................................. _L. andina_
   - Tepals lanceolate-elliptical, cucullate, 8–10 mm × 4 mm, apices not involute. Chile ........................................... _L. serenense_

1. **_Latace andina_** (Poepp.) Sassone _comb. nov._

_Bas._ *Ornithogalum andinum* Poeppig (1833: 9) ≡ *Nothoscordum andinum* (Poepp.) Kunth ex Fuentes (1921: 238) ≡ *Zoellnerialium andinum* (Poepp.) Crosa (1975: 332). **Type** (neotype, designated here)—CHILE. [IV Región de Coquimbo] Elqui, Baños del Toro, December 1923, _E. Werdermann_ 199 (SI 044519!, Fig. 1D).


≡ _Nothoscordum strictum_ Gay (1853: 114). Type (lectotype designated by Guaglianone 1975: 35):—CHILE. Prov. Coquimbo, Los Patos, 3380 m, Jan 1837, _C. Gay_ 441 (Pl, isolecotype SGO 46830, digital image SGO 0001089!).

≡ _Latace volkmanni_ Philippi (1889: 369) ≡ *Leucocoryne volkmannii* (Phil.) Engler (1900: 10) ≡ *Leucocoryne volkmannii* (Phil.) Engl. ex Traub (1963: 35) comb. superfl. Type (lectotype designated by Muñoz Pizarro (1960: 36):—CHILE. Coquimbo. Andes de Doña Ana, Rosa, 1861-62, _H. Volckmann_ s.n. (SGO 046839!, “Andes de Doña Ana” in label). Fig. 1A. Note:—Flowers in the type specimen of _Latace volkmanni_ do not match the original description and illustration, as previously indicated by Ravenna (2000). The type material presents flowers with 6 stamens and tepals are fused only at the base, while the description indicates the presence of 3 fertile stamens + 3 staminodes, and tepals fused in a tube of half their length. Due to the fact that the characters described in the protologue are generally used to distinguish species of *Leucocoryne*, the original description linked _Latace_ with this genus. Additionally, Ravenna suggested that the color figure that follows the description (Fig. 1B) is a “bad reconstruction from dry material, tepals appear to be more fused as they actually are, and the lack of anthers in one of the stamen verticilles, resulted from poorness of the specimen”. On the other hand, the illustration of the plant habit seems to be based on SGO’s specimen (SGO 046839): the bulb presents purplish-red inner bulb cataphylls, the inflorescence is composed by 7 flowers, tepals’ apices are slightly involute, and the style is notably exerted.


**Description:**—Plants of 15–27(–40) cm high. Bulb subglobose, 13–22(–30) mm diameter, prolific. Neck (1–)1.5–4 cm long.; leaf blades 6–20 cm long. Scape 11–24(–35) cm long. Inflorescences with 4–11(–15) flowers, formed by 2–3 contracted cymes, each composed by 2–5 flowers, sometimes with atrophied flowers at the base of the inflorescence. Bracts 8–10(–15) mm long; pedicels 5–45(–85) mm long. Flowers white or yellowish with reddish lines; tepals lanceolate, 8.2–8.6 mm × (1.8–)2.5–3 mm, after anthesis the apex of the tepals rolled inwards, and the ovary is exposed. Staminal filaments yellow, 4 mm × 0.9 mm; anthers 2–3 mm long. Ovary 2.1–2.7 mm long.; ovules 5–8(–14) per locule; style 5–6 mm long., exerted, stigma 3-lobed, papillose, persistent.

**Note:**—The type specimen of *Ornithogalum andinum* is missing, hence we decided to designate a neotype, as it is recommended by Art.9.7 of the ICN, McNeill et al. (2012). In order to choose the specimen, we followed the protologue and the concept of the name used by former authors (Fuentes 1921, Guaglianone 1973, 2009, Crosa 1975, 2004).
Identification key to forms of Latace andina

1. Perigone dingy greenish-white ................................................................. f. andina
- Perigone opaque yellowish .................................................................................. f. lutea

1a. f. andina (Fig. 3A)

Habitat and Distribution:—Chile (Regions Metropolitana, IV, V, VI, VII, and X) and Argentina (Jujuy, Mendoza, Neuquén, and San Juan). This taxon inhabits arid soils of montane areas, between 1500 and 3500 m elevation (Fig. 2D).

Phenology:—Flowering and fruiting from December to March.


1b. f. lutea (Ravenna) Sassone comb. nov.


Habitat and Distribution:—Chile (Regions V and Metropolitana) around Laguna del Inca (Los Andes, Valparaíso) and scattered places in the Andes above Santiago, in Argentina this form was found in the provinces of Mendoza and Neuquén. Latace andina f. lutea habits between 1500 and 3000 m elevation (Fig. 2D).

Phenology:—Flowering and fruiting from October to February.

2. Latace serenense (Ravenna) Sassone, **comb. nov.**

Bas.: *Nothoscordum serenense* Ravenna (1973: 200) ≡ *Zoellnerallium serenense* (Ravenna) Crosa (2004: 166). Type:—CHILE. In collibus arenosis prope Serenam prov. Coquimbo Chiliae, September 1971, P.F. Ravenna 2003 (holotype Herb. Ravenna; isotype SGO 107989!) Fig.1C; 4B.

**Description:**—Plants of 30–45 cm high. Bulb ovate, 15–20 mm diameter, prolific. Neck 3.5–6 cm long.; leaf blades 9–21 cm long. Scape 22–33 cm long. Inflorescences with 3–12 flowers. Bracts 5–10 mm long; pedicels 22–33 cm long. Flowers white or yellowish, with greenish lines, tepals cucullate, 8–10 mm × 4 mm. Staminal filaments yellow 4.5–5.9 mm × 1 mm; anthers 1.3–1.4 mm × 0.5–1 mm. Ovary 2.2–2.5 mm long.; ovules 8–13 per locule; style 4–7 mm long., exerted, stigma 3-lobed, papillose, persistent.

**Habitat and Distribution:**—Chile (Regions III and IV). This species is present in sandy hills, frequently growing with *Leucocoryne coquimbensis* F.Phil., *Sisyrinchium graminifolium* Lindl., *Conanthera campanulata* Lindl., *Rhodophiala bagnoldii* Traub. and/or *Alstroemeria recumbens* Herb. (Ravenna 1973). Fig. 2D.

**Conservation status:**—According to Ravenna et al. (1998) *Latace serenense* is endangered, being necessary its protection and conservation.

**Phenology:**—Flowering and fruiting from September to November.

**Specimens examined:**—CHILE. III Región de Atacama: Huasco, 20–30 km al S. de Freirina. Camino a Quebradita 300–500 m, 9 September 1949, W. Biese 2697 (SGO 104255!); Huasco a Tres Playitas, primera ladera pasado el puente, 5 September 2000, M. Muñoz S. 4088 (SGO 146644!)

**Acknowledgements**

We express our gratitude to staff at B, BA, BAA, BAB, BM, BR, C, CGE, FI, G, H, HAL, K, L, LE, LP, LZ, M, MERL, P, PRC, SI, SGO, US and W for access to material. We thank S. Arroyo-Leuenberger (B) and L. M. Giussani (SI) for her valuable comments and critical discussion on early drafts of the manuscript. We are in debt with M. Muñoz-Schick (SGO) for facilitating the material for the study, and with the subject Editor L. Peruzzi and anonymous reviewers for their comments on this manuscript. This study was supported by a fellowship awarded to Lic. A. B. Sassone by the Academia Nacional de Ciencias Exactas, Físicas y Naturales (Argentina), the Consejo Nacional de Investigaciones Científicas y Técnicas, and by a grant of ANCYPT, Préstamo BID-PICT 2013 0298.

**References**


http://dx.doi.org/10.4067/S0717-66432012000200003


