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ABSTRACT

We define a probability measure on the space of polynomials over Rn in

order to address questions regarding the attainment of the norm at given

points and the validity of polynomial inequalities.

Using this measure, we prove that for all degrees k ≥ 3, the probability

that a k-homogeneous polynomial attains a local extremum at a vertex of

the unit ball of �n1 tends to one as the dimension n increases. We also give

bounds for the probability of some general polynomial inequalities.

Introduction

If P : E → R is a k-homogeneous polynomial over a Banach space E, its norm

is defined as the supremum of the values |P (x)| as x ranges over the unit sphere

of E. In studying if and where on the unit sphere such a supremum might

be attained, it is immediately clear that unless E is a Hilbert space, different

points on the sphere play different roles. Consider where a linear form on �2∞
(R2 with the max norm) attains its norm. Clearly the vertexes of the sphere

are the points to look at. In case of a homogeneous polynomial the importance

of these points is diminished, but still one would expect a higher likelihood of

norm-attainment at vertexes than at other specific points of the sphere.
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One may argue — by considering gradients of a polynomial at different points

and by comparing the �2-norms of vertexes vis-a-vis other points of the unit

sphere of �n∞ — that homogeneous polynomials over �n∞ are more likely to attain

their norms at vertexes than at any other point, and that such a likelihood will

grow as the dimension n tends to infinity. This has been partially addressed in

[3] and in [6].

The quantitative study of such questions requires the use of some measure

on the space of polynomials in order to refer to more or less “likely” sets of

polynomials. It is by no means obvious how such a measure should be defined.

If we restrict our attention to k-homogeneous polynomials in n variables, we

have an
(
n+k−1

k

)
-dimensional space P (kRn). This space has no preferred metric

structure, and indeed, different norms considered on R
n give rise to different —

and geometrically rather strange ([7]) — unit balls on P (kRn).

The aim of this paper is to introduce on P (kRn) — and on other spaces of

polynomials — a probability measure, and to present a case for its naturality

and “correctness”.

In Section 1 we introduce our measure. In order to do so we consider P (kRn)

as a dual Hilbert space. This structure has been considered on spaces of k-

homogeneous polynomials by Dwyer [4] and by Lopushansky and Zagorodnyuk

[5], and is also produced by the Bombieri norm of a polynomial (see [1] and [2]).

We consider standard Gaussian measure on this Hilbert space and calculate the

norm of some linear functionals. We also extend this approach to the space

P≤m(Rn) of polynomials of degree at most m.

In Section 2 we prove the following. Consider k-homogeneous polynomials

over �n1 (Rn with the 1-norm). Then for all degrees k ≥ 3, the probability that a

k-homogeneous polynomial attains a local maximum at a vertex of the unit ball

tends to one as the dimension n grows. The case of 2-homogeneous polynomials

is qualitatively completely different.

Finally, in Section 3 we calculate upper and lower bounds for the probability

of certain polynomial inequalities. We state and prove all our results in the real

setting; clearly analogous results can be obtained in the complex case.

Acknowledgment. The authors would like to thank Robert Deville, David

Pérez-Garćıa, and Nacho Villanueva for helpful comments in the preparation of

this paper.
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1. Gaussian measure in the space of Hilbertian polynomials.

The space of k-homogeneous polynomials in n real variables, P (kRn), is a(
n+k−1

k

)
-dimensional vector space. We will require a Hilbert space structure

on this space, and therefore need to introduce such a structure. We follow [5].

Denote euclidean n-space with �n2 , and consider an orthonormal basis

e1, . . . , en. The k-tensor product
⊗

k �
n
2 is spanned by ej1 ⊗ · · · ⊗ ejk with each

ji = 1, . . . , n. We denote by [j] or [i] the set {1, . . . , n}k of all such indexes.

Define on
⊗

k �
n
2 an inner product by setting

〈v, w〉 =
〈∑

[j]

cj1···jkej1 ⊗ · · · ⊗ ejk ,
∑
[i]

di1···ikei1 ⊗ · · · ⊗ eik

〉

=
∑
[j]

∑
[i]

cj1···jkdi1···ik〈ej1 , ei1〉 · · · 〈ejk , eik〉

=
∑
[j]

cj1···jkdj1···jk .

Define also the symmetrization projector S :
⊗

k �
n
2 →⊗

k �
n
2 by

S(ej1 ⊗ · · · ⊗ ejk) =
1

k!

∑
σ

ejσ(1) ⊗ · · · ⊗ ejσ(k) ,

where σ runs through all permutations of {1, . . . , k}. We denote the image of

S by
⊗

k,s �
n
2 . Note that

⊗
k,s �

n
2 is spanned by the symmetric tensors

S(ej1 ⊗ · · · ⊗ ejk) = S(e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
α1

· · · en ⊗ · · · ⊗ en︸ ︷︷ ︸
αn

)

(which we will denote eα), while α ∈ N
n
0 with |α| = α1 + · · ·+ αn = k (we will

also write α! = α1! · · ·αn!). Note that each index α corresponds to k!
α! indexes

in [j]; we will denote the correspondence by j �→ α.
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We consider in
⊗

k,s �
n
2 the inner product induced by the ambient space⊗

k �
n
2 . Thus we have, if j �→ α and i �→ β,

〈eα, eβ〉 =〈S(ej1 ⊗ · · · ⊗ ejk), S(ei1 ⊗ · · · ⊗ eik)〉

=
1

k!

1

k!

∑
σ

∑
μ

〈ejσ(1) ⊗ · · · ⊗ ejσ(k) , eiμ(1) ⊗ · · · ⊗ eiμ(k)〉

=
1

k!

1

k!

∑
σ

∑
μ

〈ejσ(1) , eiμ(1)〉 · · · 〈ejσ(k) , eiμ(k)〉

=
1

k!

1

k!

∑
σ

∑
μ

δjσ(1)iμ(1) · · · δjσ(k)iμ(k) = δαβ
1

k!

1

k!
k!α! =

α!

k!
δαβ ,

and in particular ‖eα‖ =
√

α!
k! , so

{√
k!
α!e

α
}
is an orthonormal basis of

⊗
k,s �

n
2 .

For each x ∈ �n2 , the tensor x⊗ · · · ⊗ x is symmetric, so

x⊗ · · · ⊗ x =
∑
[j]

xj1 · · ·xjkej1 ⊗ · · · ⊗ ejk =
∑
[j]

xj1 · · ·xjkS(ej1 ⊗ · · · ⊗ ejk)

=
∑
|α|=k

xα
k!

α!
eα =

∑
|α|=k

xα
√
k!

α!

(√
k!

α!
eα
)
,

where we have written xα = xα1
1 · · ·xαnn .

Now〈
x⊗ · · · ⊗ x,

∑
|α|=k

aα

√
α!

k!

(√
k!

α!
eα
)〉

=

〈 ∑
|β|=k

xβ

√
k!

β!

(√
k!

β!
eβ
)
,
∑
|α|=k

aα

√
α!

k!

(√
k!

α!
eα
)〉

=
∑
|β|=k

∑
|α|=k

aαx
β

√
k!

β!

√
α!

k!

〈√
k!

β!
eβ ,

√
k!

α!
eα
〉

=
∑
|α|=k

aαx
α.

Thus the polynomial P : Rn → R defined by P (x) =
∑

|α|=k aαx
α is identi-

fied with the linear form over
⊗

k,s �
n
2 given by the inner product multiplica-

tion 〈·, vP 〉, where vP =
∑

|α|=k aα

√
α!
k!

(√
k!
α!e

α
)
, and the linear form ex over

P (kRn) defined by evaluation at x is identified with the inner product against
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the element x⊗ · · · ⊗ x of
⊗

k,s �
n
2 . Note then that we have

‖P‖ =

( ∑
|α|=k

a2α
α!

k!

) 1
2

,

‖ex‖ =

( ∑
|α|=k

x2α
k!

α!

) 1
2

=

( n∑
r=1

x2r

) k
2

= ‖x‖k,

and 〈ex, ey〉 =
∑
|α|=k

xαyα
k!

α!
=

( n∑
r=1

xryr

)k

= 〈x, y〉k.

The norm defined above on P (kRn) is referred to as the Bombieri norm in [1]

Note that the space of linear forms over P (kRn) includes a variety of func-

tions, many of which are defined by evaluation of k-linear forms or evaluation

of derivatives. Indeed, if v1, . . . , vk are k elements of Rn, then evaluation at

v1, . . . , vk defined by

P �→ φ(v1, . . . , vk)

(where φ is the unique symmetric k-linear form such that φ(x, . . . , x) = P (x))

is a linear form, as is (taking v1 = · · · = vk−1 = a and vk = v)

P �→ ∂P

∂v
(a) = kφ(a, . . . , a, v).

We shall need to consider the norms of such forms, as well as the angles between

them. For example, it is not hard to calculate that when ‖a‖ = 1, the norm of

this last functional is

∥∥∥∂(·)
∂v

(a)
∥∥∥ = ‖kS(a⊗ · · · ⊗ a⊗ v)‖ =

[
k‖v‖2 + (k2 − k)〈a, v〉2] 1

2 .

We consider on P (kRn) the standard Gaussian measure W corresponding to

its Hilbert space structure, i.e., the measure

W (A) =
1

(2π)d/2

∫
A

e−‖P‖2/2 dP, for any Borel set A ⊂ P (kRn),

where d =
(
n+k−1

k

)
, the dimension of P (kRn).
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If ϕ : P (kRn) → R is a linear form, then due to the rotation invariance of the

measure W we may calculate

W{P :ϕ(P ) ≤ a}

=W
{
P :

ϕ(P )

‖ϕ‖ ≤ a

‖ϕ‖
}

=
1√
2π

∫ a
‖ϕ‖

−∞
e−

ω2
1
2 dω1

1

(2π)
d−1
2

∫
Rd−1

e−
1
2 (ω

2
2+···+ω2

d) dω2 · · · dωd

=
1√
2π

∫ a
‖ϕ‖

−∞
e
− (‖ϕ‖ω1)2

2‖ϕ‖2 dω1 =
1√

2π‖ϕ‖
∫ a

−∞
e
− t2

2‖ϕ‖2 dt.

Thus ϕ is a normal random variable with mean 0 and standard deviation ‖ϕ‖.
We note also that the measure W has another form of rotation invariance:

if T : Rn → R
n is an orthogonal linear map, and T ∗ : P (kRn) → P (kRn) is

T ∗(P ) = P ◦ T , then T ∗ preserves the measure W .

We will consider the space P≤m(Rn) of polynomials of degree at most m as

the �2-sum

P≤m(Rn) =

m⊕
k=0

P (kRn)

with the product measure, which we will continue to denote W . Thus every

linear form ψ : P≤m(Rn) → R may be written

ψ(P ) = ψ

( m∑
k=0

Pk

)
=

m∑
k=0

ψk(Pk),

where Pk is the k-homogeneous part of P and ψk is the restriction of ψ to the

space P (kRn). The norm ‖ψ‖ is then given by

‖ψ‖2 =
m∑

k=0

‖ψk‖2,

and ψ is a gaussian random variable with mean zero and standard deviation

‖ψ‖.
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2. Polynomials on �n1

We consider now the problem of where a polynomial P ∈ P (k�n1 ) attains its

norm. Pérez-Garćıa and Villanueva have proved in [6] that there is a set of pos-

itive measure (independent of the dimension n) of 2-homogeneous polynomials

not attaining their norms on vertexes of the unit sphere.

We will show that for degree k ≥ 3, the probability of a k-homogeneous

polynomial attaining a local extremum at a vertex tends to one as the dimension

n increases. We do this by considering gradients at the vertexes and reducing

the problem to a question about gaussian random variables. Let us begin then

with a probabilistic lemma.

Lemma 2.1: Let X,Y1, . . . , Yn−1 be independent gaussian random variables

with mean zero and standard deviations σX = 1, σYi = 1/
√
k, and call ωn the

probability that

|X | ≥ max{|Y1|, . . . , |Yn−1|}.
Then, as n increases, ωn tends to zero slower than 1/n (that is, nωn → ∞).

Proof. Consider the distribution of |X |

F (u) = Prob{|X | ≤ u} = 2

∫ u

0

e−
y2

2
dy√
2π

;

F is a probability distribution function on [0,∞) whose density is

dF (u) = 2e−
u2

2
du√
2π
.

Thus Fn is also a probability distribution function on [0,∞)

(F (u))n =

(
2

∫ u

0

e−
y2

2
dy√
2π

)n

,

whose density is

dFn(u) = 2n

(
2

∫ u

0

e−
y2

2
dy√
2π

)n−1

e−
u2

2
du√
2π
.

Fixing an such that Fn(an) =
1
2 (i.e., F (an) = (12 )

1/n), we see that an → ∞.

Now if X is a normal (0, 1) random variable and Y an independent normal

(0, 1/
√
k), then to find the probability of |X | ≥ |Y |, we normalize

|X | ≥
∣∣∣∣ Y‖Y ‖

∣∣∣∣ 1√
k
,
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and must find the Gaussian area measure of{
(x, y) ∈ R

2 : |x| ≥ 1√
k
|y|
}
,

which is

4

∫ ∞

0

∫ √
kx

0

e−
y2

2
dy√
2π
e−

x2

2
dx√
2π
.

For |X | ≥ max{|Y1|, . . . , |Yn−1|}, we have

ωn = 2n
∫ ∞

0

(∫ √
kx

0

e−
y2

2
dy√
2π

)n−1

e−
x2

2
dx√
2π
.

Multiplying by n,

nωn =

∫ ∞

0

2n

(
2

∫ √
kx

0

e−
y2

2
dy√
2π

)n−1

e−
x2

2
dx√
2π
,

and changing variables: u =
√
kx, we have

=

∫ ∞

0

2n

(
2

∫ u

0

e−
y2

2
dy√
2π

)n−1

e−
1
2ku

2 du√
2π

√
k

=

∫ ∞

0

2n

(
2

∫ u

0

e−
y2

2
dy√
2π

)n−1

e−
u2

2
e
k−1
2k u2

√
k

du√
2π

=
1√
k

∫ ∞

0

e
k−1
2k u2

dFn(u)

≥ 1√
k

∫ ∞

an

e
k−1
2k u2

dFn(u)

≥ 1√
k
e
k−1
2k an

2

∫ ∞

an

dFn(u)

=
1

2
√
k
e
k−1
2k an

2 → ∞,

as n→ ∞.

Before we proceed to the theorem, let us fix some notation. Consider the

closed unit ball of �n1 . Its extreme points are {e1, . . . , en,−e1, . . . ,−en}. De-

note by Aj the set of k-homogeneous polynomials P such that |P | has a local

maximum at the vertex ej (and thus also at −ej). Then the probability that a
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polynomial has a local extremum at some vertex of the unit ball is the measure

of the union

W

( n⋃
j=1

Aj

)
.

We have the following theorem.

Theorem 2.2: For all degrees k ≥ 3, the probability that a k-homogeneous

polynomial attains a local extremum at a vertex of the unit ball of �n1 tends to

one as the dimension n increases.

Proof. We must consider first the independence of the events Aj . Note that P

belongs to Aj if it has a local extremum at ej , and this happens if the gradient

∇P (ej) points in the correct direction, i.e.,

P ∈ Aj ⇔
∣∣∣ ∂P
∂ej

(ej)
∣∣∣ ≥ ∣∣∣∂P

∂ei
(ej)

∣∣∣ for all i.

Thus we must check the independence of the random variables

1

k

∂(·)
∂ei

(ej), defined by P �→ φ(ej , . . . , ej, ei).

In the notation of Section 1, these are the linear forms eα where

α = (. . . , k − 1︸ ︷︷ ︸
j

, . . . , 1︸︷︷︸
i

, . . .).

Note that if k = 2, α = (. . . , 1︸︷︷︸
j

, . . . , 1︸︷︷︸
i

, . . .), and both

1

2

∂(·)
∂ei

(ej) and
1

2

∂(·)
∂ej

(ei)

are the same linear form. However, for any k ≥ 3,

1

k

∂(·)
∂ei

(ej) is e
α given by α = (. . . , k − 1︸ ︷︷ ︸

j

, . . . , 1︸︷︷︸
i

, . . .),

1

k

∂(·)
∂er

(es) is e
β given by β = (. . . , k − 1︸ ︷︷ ︸

s

, . . . , 1︸︷︷︸
r

, . . .),

so 〈1
k

∂(·)
∂ei

(ej),
1

k

∂(·)
∂er

(es)
〉
= 〈eα, eβ〉 = α!

k!
δαβ = 0 if α �= β.
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Thus for k ≥ 3 all the partial derivatives involved are independent random

variables. Note also that ∂(·)
∂ei

(ej) has mean 0 and standard deviation ‖∂(·)
∂ei

(ej)‖.
These standard deviations turn out to be

σi =
∥∥∥∂(·)
∂ei

(ej)
∥∥∥ =

⎧⎨
⎩ k, if j = i,√

k, if j �= i.

Call ωn = W (Aj) the probability of attaining a local extremum at ej (by the

rotation-invariance of W , W (Aj) is the same for all j). This probability can

then be described as follows. Suppose Y1, . . . , Yn−1 and X are independent

normal random variables with mean 0 and standard deviations σYi =
√
k and

σX = k (normalizing, we may suppose σYi = 1/
√
k and σX = 1). Then ωn is

the probability that

|X | ≥ max{|Y1|, . . . , |Yn−1|},
and we may apply the lemma.

We then have, by independence of the Ac
j ’s, for any fixed degree k ≥ 3,

1−W

( n⋃
j=1

Aj

)
=W

( n⋂
j=1

Ac
j

)
=

n∏
j=1

W (Ac
j)

=

n∏
j=1

(1 −W (Aj)) =

n∏
j=1

(1− ωn) = (1 − ωn)
n

=
[
(1− ωn)

− 1
ωn

]−nωn → e−∞ = 0, as n→ ∞.

Thus

W

( n⋃
j=1

Aj

)
→ 1

as n tends to infinity.

Note that the case of degree k = 2 is completely different due to the lack of

independence of the random variables involved.

3. Polynomial inequalities

In this section we give a formula for the measure of sets of polynomials verifying

quite general polynomial inequalities. We denote by ϕi linear forms over the

space of polynomials P≤m(Rn). The angle between the linear forms ϕ1 and ϕ2

will be denoted by (ϕ1, ϕ2) ∈ (0, π). We have the following.
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Theorem 3.1: Let ϕ1 and ϕ2 be linear forms over P≤m(Rn), and a > 0. Then

the measure of the set of polynomials

{P ∈ P≤m(Rn) : |ϕ1(P )| ≥ |ϕ2(P )|+ a}
is bounded below by

e−
r2

2

( 1
π
− r√

2π

)[
arctan

( ‖ϕ1‖
‖ϕ2‖ − cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)

+ arctan

( ‖ϕ1‖
‖ϕ2‖ + cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)]
,

and bounded above by

e−
r2

2
1

π

[
arctan

( ‖ϕ1‖
‖ϕ2‖ − cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)
+ arctan

( ‖ϕ1‖
‖ϕ2‖ + cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)]
,

where

r =
a

‖ϕ1‖ sin(ϕ1, ϕ2)
.

Proof. In order to project the set {|ϕ1| ≥ |ϕ2| + a} onto R
2 to calculate its

measure, we orthonormalize {ϕ1, ϕ2}. Thus, let
ψ = ϕ2 − c

ϕ1

‖ϕ1‖ , where c = ‖ϕ2‖ cos(ϕ1, ϕ2)

and note that ‖ψ‖ = ‖ϕ2‖ sin(ϕ1, ϕ2). Now |ϕ1| ≥ |ϕ2|+ a if and only if

|ϕ1| − a ≥
∣∣∣ψ + c

ϕ1

‖ϕ1‖
∣∣∣,

i.e.,

−|ϕ1|+ a ≤ ψ + c
ϕ1

‖ϕ1‖ ≤ |ϕ1| − a,

which, when ϕ1 > 0, is

−ϕ1 − c
ϕ1

‖ϕ1‖ + a ≤ ψ ≤ ϕ1 − c
ϕ1

‖ϕ1‖ − a,

−(‖ϕ1‖+ c)
ϕ1

‖ϕ1‖ + a ≤ ψ ≤ (‖ϕ1‖ − c)
ϕ1

‖ϕ1‖ − a,

− (‖ϕ1‖+ c)

‖ψ‖
ϕ1

‖ϕ1‖ +
a

‖ψ‖ ≤ ψ

‖ψ‖ ≤ (‖ϕ1‖ − c)

‖ψ‖
ϕ1

‖ϕ1‖ − a

‖ψ‖ .

Analogously, when ϕ1 < 0 we have

(‖ϕ1‖ − c)

‖ψ‖
ϕ1

‖ϕ1‖ +
a

‖ψ‖ ≤ ψ

‖ψ‖ ≤ − (‖ϕ1‖+ c)

‖ψ‖
ϕ1

‖ϕ1‖ − a

‖ψ‖ .
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The measure of {|ϕ1| ≥ |ϕ2|+a} is then the Gaussian area measure Γ(A+

⋃
A−)

of A+

⋃
A−, where

A+ =
{
(s, t) : − (‖ϕ1‖+ c)

‖ψ‖ s+
a

‖ψ‖ ≤ t ≤ (‖ϕ1‖ − c)

‖ψ‖ s− a

‖ψ‖
}

and

A− =
{
(s, t) :

(‖ϕ1‖ − c)

‖ψ‖ s+
a

‖ψ‖ ≤ t ≤ − (‖ϕ1‖+ c)

‖ψ‖ s− a

‖ψ‖
}
.

Since A+ can be taken onto A− by a rotation, Γ(A+

⋃
A−) = 2Γ(A+).

We calculate first the upper bound. Let v be the vertex of A+. Then

r =‖v‖ =
∥∥∥( a

‖ϕ1‖ ,
−ac

‖ψ‖‖ϕ1‖
)∥∥∥ =

(a2(‖ψ‖2 + c2)

‖ψ‖2‖ϕ1‖2
) 1

2

=
a

‖ψ‖‖ϕ1‖
(‖ϕ2‖2 sin2(ϕ1, ϕ2) + ‖ϕ2‖2 cos2(ϕ1, ϕ2)

) 1
2

=
a

‖ϕ1‖ sin(ϕ1, ϕ2)
.

Now, A+ is contained in the region U which — in polar coordinates — is

U =
{
(θ, ρ) : arctan

(
− (‖ϕ1‖+ c)

‖ψ‖
)
≤ θ ≤ arctan

( (‖ϕ1‖ − c)

‖ψ‖
)
, r ≤ ρ <∞

}
.

Thus

2Γ(A+) ≤ 2Γ(U)

= 2
1

2π

∫ (‖ϕ1‖−c)
‖ψ‖

− (‖ϕ1‖+c)
‖ψ‖

∫ ∞

r

ρe−
ρ2

2 d ρd θ

=
1

π

[
arctan

(
(‖ϕ1‖ − c)

‖ψ‖
)
+ arctan

(
(‖ϕ1‖+ c)

‖ψ‖
)]
e−

r2

2

= e−
r2

2
1

π

[
arctan

( ‖ϕ1‖
‖ϕ2‖ − cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)

+ arctan

( ‖ϕ1‖
‖ϕ2‖ + cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)]
.

For the lower bound, consider the ray L through 0 and v; L separates A+

into a lower region A+1 and an upper region A+2. Rotate A+ around 0 until L

coincides with the positive s-axis. Then we can calculate the Gaussian measure
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of A+2 (here α2 is the angle between L and upper boundary of A+2):

Γ(A+2) =
1

2π

∫
A+2

e−
‖(s,t)‖2

2 d sdt =
1

2π

∫
A+2−(r,0)

e−
‖(x+r,t)‖2

2 d xd t

=
1

2π

∫
A+2−(r,0)

e−
x2+t2+2xr+r2

2 d xd t

=
1

2π

∫
A+2−(r,0)

e−
‖(x,t)‖2

2 e−rxe−
r2

2 d xd t

=
e−

r2

2

2π

∫ α2

0

∫ ∞

0

ρe−
ρ2

2 e−rρ cos θd ρd θ

=
e−

r2

2

2π

∫ ∞

0

ρe−
ρ2

2

∫ α2

0

e−rρ cos θd θd ρ.

Now, the function f(t) = e−rρ cos θ is increasing in (0, π), and f(0) = e−rρ, so∫ α2

0

e−rρ cos θd θ ≥ α2e
−rρ,

thus

Γ(A+2) ≥ e−
r2

2

2π

∫ ∞

0

α2ρe
− ρ2+2rρ

2 d ρ =
α2e

− r2

2

2π

∫ ∞

0

ρe−
(ρ+r)2

2 e
r2

2 d ρ

=
α2

2π

∫ ∞

0

ρe−
(ρ+r)2

2 d ρ

=
α2

2π

∫ ∞

r

(u− r)e−
u2

2 d u

=
α2

2π

[ ∫ ∞

r

ue−
u2

2 d u− r

∫ ∞

r

e−
u2

2 d u

]

=
α2

2π
e−

r2

2 − rα2√
2π

1√
2π

∫ ∞

r

e−
u2

2 d u

≥ α2

2π
e−

r2

2 − rα2e
− r2

2

2
√
2π

=
α2

2
e−

r2

2

( 1
π
− r√

2π

)
.

And similarly for A+1,

Γ(A+1) ≥ α1

2
e−

r2

2

( 1
π
− r√

2π

)
,
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where α1 is the angle between L and the lower boundary of A+1. Thus, con-

sidering that

α1 + α2 =
[
arctan

((‖ϕ1‖ − c)

‖ψ‖
)
+ arctan

((‖ϕ1‖+ c)

‖ψ‖
)]
,

we have the lower bound

2Γ(A+) ≥ e−
r2

2

( 1
π
− r√

2π

)[
arctan

( (‖ϕ1‖ − c)

‖ψ‖
)
+ arctan

( (‖ϕ1‖+ c)

‖ψ‖
)]
,

which is

2Γ(A+) ≥e− r2

2

( 1
π
− r√

2π

)

×
[
arctan

( ‖ϕ1‖
‖ϕ2‖ − cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)
+ arctan

( ‖ϕ1‖
‖ϕ2‖ + cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)]
.

This completes the proof.

Note that when a = 0, r = 0, and we have that the measure of {P ∈
P≤m(Rn) : |ϕ1(P )| ≥ |ϕ2(P )|} is exactly

1

π

[
arctan

( ‖ϕ1‖
‖ϕ2‖ − cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)
+ arctan

( ‖ϕ1‖
‖ϕ2‖ + cos(ϕ1, ϕ2)

sin(ϕ1, ϕ2)

)]
.

Note also that when ϕ1 and ϕ2 are orthogonal, then

W{|ϕ1| ≥ |ϕ2|} =
2

π
arctan

(‖ϕ1‖
‖ϕ2‖

)
.

We also have, in general,

Corollary 3.2: If ‖ϕ1‖ ≥ ‖ϕ2‖, then

W{|ϕ1| ≥ |ϕ2|} ≥ 2

π
arctan

(‖ϕ1‖
‖ϕ2‖

)
.

Proof. Fix λ = ‖ϕ1‖
‖ϕ2‖ , and consider the function

F (z) =
1

π

[
arctan

( λ− z√
1− z2

)
+ arctan

( λ+ z√
1− z2

)]
.

Then F is even, and

F ′(z) =
2λz(λ2 − 1)√

1− z2(1 − z2 + (λ− z)2)(1− z2 + (λ+ z)2)
> 0
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for 0 < z < 1. Thus we have

W{|ϕ1| ≥ |ϕ2|} = F (cos(ϕ1, ϕ2)) ≥ F (0) =
2

π
arctan

(‖ϕ1‖
‖ϕ2‖

)
.

We end with two examples related to well-known inequalities. In both, what

we see is that a certain inequality is valid for a large set of polynomials, and that

the measure of this set tends to one as the degree grows. We use the notation

and comments given at the end of Section 1.

Example 1: A Chebyshev-type inequality.

Say P ∈ P≤m(Rn), and write P =
∑m

k=0 Pk. Chebyshev’s inequality says

that ‖Pm‖ ≤ 2m−1‖P‖. Using our results, we obtain: for any x of norm one,

any y of norm one orthogonal to x, and any c > 1,

|Pm(x)| ≤ cm |P (y)|

for a large set of polynomials P . Indeed, the measure of the complement can

be calculated to be

W
{
P :

∣∣∣Pm

(x
c

)∣∣∣ > |P (y)|
}
=

2

π
arctan

( 1

cm
√
m+ 1

)
,

by considering in Theorem 3.1

ϕ1 =
(
0, 0⊗ 0, . . . , 0⊗ · · · ⊗ 0,

x

c
⊗ · · · ⊗ x

c

)
and

ϕ2 = (y, y ⊗ y, . . . , y ⊗ · · · ⊗ y).

This measure tends to zero as m grows.

Example 2: A Markov-type inequality.

Say P is a polynomial of degree m. Markov’s inequality says that

sup‖x‖=1 ‖∇P (x)‖2 ≤ m2‖P‖. Using our results, we obtain: for any x, y,

and v of norm one, with x ⊥ y and v �= ±y,

|〈∇P (x), v〉| ≤ m2 |P (y)|

for a large set of polynomials P . Indeed, the measure of the complement

W
{
P :

∣∣∣ ∂P
∂ v

m2

(x)
∣∣∣ > |P (y)|

}
,
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can be calculated to be bounded above by

1

π

[
arctan

( √
2m2+3m+1√
6m4+6m3

− cos(v, y)

sin(v, y)

)
+ arctan

( √
2m2+3m+1√
6m4+6m3

+ cos(v, y)

sin(v, y)

)]
,

by considering in Theorem 3.1,

ϕ1 =
( v

m2
, x⊗ v

m2
, . . . , x⊗ · · · ⊗ x⊗ v

m2

)
and

ϕ2 = (y, y ⊗ y, . . . , y ⊗ · · · ⊗ y).

But
√
2m2+3m+1√
6m4+6m3

tends to zero as m grows. Since the function arctan is odd,

the measure tends to zero.
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