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Highlights 

 Floral scent of Aristolochia gigantea changes rapidly over its three-day lifespan. 

 Distinct spatial units within the flower release markedly different volatile blends. 

 A function to choreograph pollinator behavior to mediate pollen transfer is 

posited. 

 

 

Abstract 

The olfactory components of floral advertisement can be complex, often showing 

dynamic patterns of emission and chemical composition that may reflect diverse 

functions related to pollination. In this study we investigated the spatial and temporal 

variation of volatile production in the distinctive kettle trap flowers of the Neotropical 

pipevine Aristolochia gigantea (Aristolochiaceae). These flowers show unusual 

complexity in scent chemistry and floral morphology in addition to conspicuous changes 

in scent at distinct stages during floral ontogeny. In this study, volatiles were collected 

from separate stages in development (bud, female, male, wilted flower), and from 

different functional units (limb, black ring, yellow disk, utricle, nectary) within each 

stage. Our results document a strikingly complex and dynamic floral scent composition 

for A. gigantea. Female stage floral emissions are dominated by sweet lemon-scented 

citronella-like compounds including (E)- and (Z)-citral, citronellol and citronellal, and at 

the same time include smaller amounts of pungent, brood-site associated volatiles such as 

dimethyl disulfide, 2-heptanone, and 3-methyl-1-butanol. Volatile emissions plummet 

one day later in male stage flowers, except for increased production of monoterpenoids 

and sesquiterpenoids, including a burst of linalool within the floral chamber. Volatiles 

emitted from wilted flowers resemble the vegetative background as soon as 48 hours post 
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anthesis. Multidimensional scaling revealed unexpected differentiation of volatile 

emissions across spatial units of the complex flower (e.g. within vs. outside of the trap), 

as well as at different stages of sexual expression as flowers matured. These results 

suggest that protogynous kettle trap flowers or inflorescences utilize a chemical division 

of labor, in concert with visual and tactile cues, to choreograph pollinator behavior such 

that female and male floral functions are optimized. 

 

Key words: brood site deception, floral scent, fly pollination, kettle trap flower, 

Phoridae, protogyny 

 

 

1. Introduction 

Flowers advertise to their animal visitors through a sophisticated interplay of visual, 

olfactory and other sensory stimuli whose primary functions are to attract pollinators and 

manipulate their behavior in ways that mediate pollen transfer (Dobson, 1994; Leonard et 

al., 2011). The olfactory components of floral advertisement can be highly complex, 

exhibiting dynamic patterns of emission and chemical composition that may reflect 

diverse functions regarding pollinator behavior (Raguso, 2008; Wright and Schiestl, 

2009). For example, specific components of a floral scent blend can function as long 

distance attractants, while others may induce feeding or signal the presence of a floral 

reward, among other functions (Dobson et al., 1996; Dötterl and Jürgens, 2005). 

Although flower petals often are the primary source of floral scent, volatile emissions are 

known to vary spatially among different floral organs (Dobson et al., 1990; Effmert et al., 
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2006) and can in some cases be localized to glandular regions within such organs, 

described by Vogel (1963) as “osmophores”. 

Floral scent also varies temporally, due to a variety of physiological and 

ecological causes (Proffit et al., 2008; Raguso and Weiss, 2015). For example, floral 

volatile emissions often decline within minutes to hours of pollination (Muhlemann et al., 

2006; Theis and Raguso, 2005), reflecting a down-regulation of volatile production by 

ethylene (Underwood et al., 2005) and a shift in allocation from floral display to fruit 

maturation, presumably to reduce both metabolic and ecological costs (Grison-Pigé et al., 

2001; Janzen, 1981). Temporal variation of floral scent emission is widespread in nature 

(Matile and Altenburger, 1988) and is especially apparent, for example, in 

sphingophilous (night-blooming, hawkmoth pollinated) flowers. In such cases, the 

nocturnal scent emissions, which can be rhythmic in flowers lasting more than one 

evening, are synchronized with the activity period of the nocturnal pollinators (Hoballah 

et al., 2005; Kolosova et al., 2001), and often are weaker or qualitatively different during 

the day (Prieto-Benítez et al., 2015; Raguso et al., 2003). Further, individual volatiles 

within a blend may follow different temporal rhythms (Nielsen et al., 1995), lending 

additional complexity to the challenge of interpreting the multiple functions of floral 

scent. One plant that uses temporal variation in scent emission to manipulate pollinator 

behavior and thereby increase reproductive fitness is the Australian cycad species, 

Macrozamia lucida (Zamiaceae). These gymnosperms attract (“pull”) their thrips 

pollinators (Cycadothrips chadwickii) to individuals bearing male cones and then repel 

(“push”) those same pollinators to individuals bearing female cones by modulating the 

emission rates of common monoterpene volatiles (e.g. β-myrcene) and cone temperature 



 5 

at different times of the day. A rhythmic increase in volatile emission, combined with a 

thermal blast, induces pollen-feeding thrips to leave male cones covered with pollen, after 

which they are attracted to female cones by the same volatiles at much lower emission 

rates, thus ensuring pollination by deceit (Terry et al., 2007; Terry et al., 2014). 

Temporal variation of volatile emission is also expected in flowers or 

inflorescences when male and female functions are separated temporally (dichogamy) 

rather than spatially. This is especially relevant in protogynous kettle trap flowers (e.g. 

Ceropegia, Apocynaceae) or inflorescences (e.g. Arum, Araceae) that utilize elaborate 

morphological, tactile, visual and chemical aspects to attract and trap their pollinators 

(Heiduk et al., 2015; Ollerton et al., 2009; Renner, 2006; Urru et al., 2011). Additionally, 

the morphological features of trap flowers can be subdivided into distinct spatial zones, 

for example, within vs. outside of the trapping chamber. The structural independence of 

such floral features suggests the possibility of concerted spatio-temporal patterns of 

volatile emission that could optimize plant reproductive fitness through highly 

choreographed pollinator manipulation (Angioy et al., 2003).   

Kettle trap flowers are thought to have first evolved in the basal angiosperm 

genus Aristolochia (Aristolochiaceae) (Oelschlägel et al., 2009), which includes some of 

the world’s largest flowers (Davis et al., 2008) and most unusual floral scent blends 

(Oelschlägel et al., 2015). Aristolochia is a diverse genus consisting of roughly 450 

species of vines, lianas, shrubs, or herbs with a predominately pantropical (but also 

warm-temperate) distribution (Endress, 1994; Judd et al., 2009; Wagner et al., 2014). 

Scent-mediated pollinator attraction and imprisonment in the protogynous kettle trap 

flowers of Aristolochia occur on the first day of anthesis, during the female phase of the 
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flower (Fig. 1) (Proctor et al., 1996). Visitors to Aristolochia flowers either are detained 

or simply remain within the floral chamber, and are showered with pollen when the 

flower transitions to the male phase, after which they depart as the flower senesces 

(Cammerloher, 1923; Costa and Hime, 1983; Gonzalez and Stevenson, 2000). Although 

Aristolochia flowers vary in size and morphology, the floral bauplan remains relatively 

constant throughout the genus. One of the largest-flowered species in the genus is A. 

gigantea, a liana native to tropical northeastern Brazil, especially in Bahia and Minas 

Gerais (Capellari-Junior, 1991; Costa & Hime, 1981). Flowers of A. gigantea are 

zygomorphic and consist of three congenitally united sepals that form a distinctive tube-

shaped perianth that expands basally into a hollow trapping chamber (utricle) 

(Cammerloher, 1923; Correns, 1891; Costa and Hime, 1983; Gonzalez and Stevenson, 

2000). Above the utricle, a narrow floral tube leads to a constricted opening, from which 

extends a conspicuous laminar surface (limb) with a calico-patterned visual display 

resembling the appearance of rotting flesh (Fig. 2A, B). Within the trap, six stamens are 

entirely adnate to a syncarpous style forming a gynostemium that is positioned above an 

inferior ovary (Gonzalez and Stevenson, 2000). Furthermore, the utricle contains two 

patches of glandular trichomes that secrete nectar on the first day of anthesis and become 

dark and visually conspicuous on the second day (Hipólito et al., 2012). The flowers are 

strongly protogynous with the gynoecium mature at anthesis (Hipólito et al., 2012), or 

sooner (own observations). Transition to the male phase occurs a day later, followed by a 

pronounced senescence beginning as soon as the third day of anthesis (own 

observations).  
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To the human nose, the character bearing note of the floral scent of A. gigantea is 

surprisingly pleasant, considering the fetid stench one might expect to accompany the 

flowers’ meat-like visual display, as has been observed for A. grandiflora (Burgess et al., 

2004) and A. gorgona (Blanco 2002). Instead of carrion, female stage flowers have an 

intense citronella scent. This observation is paradoxical given that the main floral visitors 

are phorid flies of the genus Megaselia (Phoridae; Diptera) (Hipólito et al., 2012), many 

of which utilize decaying organic matter (including senesced Aristolochia flowers) as 

brood sites (Disney and Sakai, 2001; Sakai, 2002). Thus, one might expect a brood-site 

deceptive flower pollinated by Megaselia flies to smell of decaying vegetation, as was 

described for Aristolochia argentina (Trujillo and Sérsic, 2006), rather than of sweet 

lemon. However, human perception can be misleading in chemical ecology, as mint and 

mustard compounds acceptable to the human palate can be deadly to insects (Isman, 

2000), and biologically active volatiles are not always those that are most strongly 

emitted from flowers (Milet-Pinheiro et al., 2013). Thus, the powerful citronella scent of 

A. gigantea may mask more dilute but biologically active floral volatiles. Such 

compounds might include the oligosulfides (e.g. dimethyl trisulfide) characteristic of 

carrion-mimicry (Jürgens et al., 2013), indole and cresols present in fecal-mimicry 

(Jürgens et al., 2006; Urru et al., 2011), or the short-chain alcohols, ketones and esters 

indicative of yeast/fermentation mimicry (Goodrich and Raguso, 2009).    

In this study we used chemical analysis to analyze the full suite of volatile 

compounds emitted by the distinctive kettle trap flowers of Aristolochia gigantea and to 

test for spatial and temporal differences in volatile production in this Neotropical 

pipevine. Specifically, we aimed to determine whether volatile compounds typical of 
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carrion, feces or rotting fruit/sap are emitted by the flowers of A. gigantea, but simply are 

not perceived by the human nose due to the masking effect of citronella-scent. Building 

on prior studies of similar trap flowers (Hadacek and Weber, 2002; Kite, 1995), we tested 

whether volatiles emitted by the flesh-like limb of A. gigantea differ in composition from 

those produced within the utricle, and whether volatile chemical patterns shift or even 

cease as flowers progressed from female to male phase (Stensmyr et al. 2002). Our 

studies revealed high chemical complexity and diversity of scent composition in flowers 

of A. gigantea across most biosynthetic classes, which changes markedly during floral 

ontogeny and between flower parts. These results suggest several avenues for further 

study, including behavioral assays and phylogenetic/comparative initiatives.    

 

 

2. Materials and Methods 

2.1 Plant Material 

Aristolochia gigantea flowers used for volatile collection were obtained from a single 

large individual liana cultivated in the president’s greenhouse of the University of South 

Carolina, Columbia, SC, USA. No information was available concerning the provenance 

of this plant, but it was identified to species by Mario Blanco (Univ. de Costa Rica). 

Pressed vouchers were deposited at the A.C. Moore Herbarium, University of South 

Carolina (USCH). The plant was watered and fertilized ad libitum and flowers were taken 

for analyses as they bloomed sequentially from March to early June in 2004 and 2005. 

The plant was grown in a glasshouse under natural lighting, as the glass panes were not 

whitewashed. Additional plants were studied at the Jardin Botanique de Montréal, 



 9 

Canada by JH in 2011. These included A. gigantea (accession number 2097-1997), with 

flowers whose meat-like limb is extended into two dangling lobes, with an overall 

average limb length of 33 cm (some exceeding 50 cm), and A. gigantea (accession 

number 1461-2000), whose floral limbs lack the wattle-like extensions and thus are 

obovoid in shape (average limb length of 12 cm), similar to the plant studied in South 

Carolina. Finally, we used an additional, lobe-limbed individual of A. gigantea cultivated 

by Paul Cooper at Cornell University to verify certain volatile compounds and their mass 

spectra.  

 

2.2 Volatile Collection 

To test for spatial and temporal variation in volatile production, A. gigantea flowers of 

each distinct ontogenic stage (female, male, wilted; mean + sem fresh mass over all 

stages = 12.779 + 1.164 g) were dissected into individual functional units (limb [4.285 + 

0.439 g], black ring [0.757 + 0.106 g], yellow disk (entrance to floral tube; 1.320 + 0.090 

g) and utricle = floral chamber [3.711 + 0.254 g]; N = 9-15 replicates of each dissected 

flower part; see Fig. 2C) and subjected to volatile collection in parallel. In addition, we 

tested whether two patches of glandular trichomes (nectaries) within the utricle also 

might function as osmophores by dissecting them from the utricle (mean + sem fresh 

mass 0.617 + 0.050 g), along with a slightly larger section of the opposite wall of the 

chamber (0.808 + 0.107 g) (about 21% total mass of the utricle), and collecting volatiles 

from them as described below. Fresh masses were obtained for most individual 

treatments immediately after volatile collection. 
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In addition, volatiles were collected from whole (entire) cut flowers at each stage, 

as well as from whole cut buds one day prior to anthesis, with cut pedicels excluded from 

the headspace bag. Volatiles were collected from 2-7 replicates of each age-flower part 

combination from the South Carolina plant in 2004 and 2005. Freshly cut entire flowers 

as well as dissected floral parts were placed within individual nylon resin oven bags 

(Reynolds Consumer Products, Lake Forest, IL) for 30 minutes to allow floral volatiles to 

equilibrate prior to collection. Headspace bags were prepared by cutting and resealing 

oven bags to standardized dimensions for whole flowers (15 x 15 cm) and dissected 

flower parts (11 x 11 cm) using an impulse heat sealer (American International Electric, 

Inc., City of Industry, CA). Following a 30 minute equilibration of each sample, a solid 

phase micro-extraction (SPME) fiber coated with polydimethylsiloxane and 

divinylbenzene (PDMS/DVD, 65µm film thickness, Supelco, Bellefonte, PA) was 

introduced to the equilibrated headspace and exposed for an additional 30 minutes, 

followed by immediate gas chromatography-mass spectrometry (GC-MS) analysis. These 

methods are sufficient to capture a broad spectrum of volatiles, including N- and S-

bearing compounds likely to be present in brood-site deceptive flowers (Goodrich and 

Raguso, 2009). Vegetative and ambient controls were collected and subtracted from the 

floral volatile samples to identify volatiles unique to floral tissues. Peaks associated with 

the vegetative background were not integrated if they did not meet our criteria (3X that of 

the vegetative GC-MS peak areas) for designation as flower-emitted. Wound volatiles 

associated with the dissection of floral tissues were identified by comparing the 

chromatograms of cut vs. intact floral tissues, and were subtracted from the actual 

experimental replicates.  
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2.3 GC-MS Analysis 

SPME samples were thermally desorbed at 240C in the injection port of a Shimadzu 

GC-17A gas chromatograph coupled with a Shimadzu QP5000 electron impact 

quadrupole mass spectrometer used as a detector. Directly after desorption, volatiles were 

injected in splitless mode onto a polar polyethylene glycol GC column (30m length, 

0.25mm ID, 0.25µm film thickness, ECTM Wax, Grace, Deerfield, IL) using helium as a 

carrier gas with a flow rate of 1.2ml min-1. Oven temperature was held at 40C for 3 

minutes, then ramped at 10C min-1 to 260C and held for 5 minutes. Mass spectra were 

obtained using an ionization energy of 70 eV and an interval of 0.29 seconds. 

Chromatographic peaks were integrated using Shimadzu GCMSsolution software (v. 

4.20) and were tentatively identified using NIST, Wiley, and Adams mass spectral 

libraries (see Schlumpberger and Raguso, 2008). When possible, peak identity was 

confirmed using authentic standards. When standards were not available, the Kovats 

Retention Index of each peak was calculated and compared to published values by 

consulting databases such as Pherobase  

(http://www.pherobase.com/database/kovats/kovats-index.php) and Flavornet 

(http://www.flavornet.org/flavornet.html), as well as the primary literature (see Friberg et 

al., 2013). When neither authentic standards nor published Kovats Indices were available, 

the tentative mass spectral library identification was listed as a place holder for that 

compound when the matching strength was 90% or greater. If none of these requirements 

were satisfied, the peak identity was classified as “unknown” and listed with the ten most 

abundant mass spectral ion fragments in ascending order of m/z.  

http://www.pherobase.com/database/kovats/kovats-index.php
http://www.flavornet.org/flavornet.html
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Volatile compounds were assigned to categories following Knudsen et al. (2006), 

including aromatic compounds (containing a benzene ring), aliphatic compounds (linear 

or branched compounds lacking aromatic rings), terpenoids (C10 [monoterpenoids] or C15 

[sesquiterpenoids] isoprene-derived compounds which may be oxygenated), N- and S-

bearing compounds. Compounds whose mass spectra were not distinctive enough to 

allow assignment were categorized as “unknown”. The aliphatic category includes 

products of very different biosynthetic pathways with distinctive chemical ecological 

functions, such as the linolenic acid derived C6 and C8 alcohols and esters associated 

with wounding, collectively known as the “green leaf volatiles” (Matsui, 2006). When 

possible, compounds from sub-categories such as this were grouped beneath the major 

headings of chemical classification (see Table 1). Contrary to Knudsen et al (2006), we 

have included C5 branched compounds derived from LEU and ILE among the aliphatics, 

in recognition that aliphatic compounds are not a natural group, and that the classification 

scheme of Knudsen et al. (2006) largely reflects structure, not biosynthetic origin.   

 

2.4 Multivariate Analyses 

The total ion chromatogram peak areas for each floral volatile compound were converted 

into presence/absence values (1 if present, 0 if absent). Reduction to presence/absence 

values can be considered the end point of ever-increasing power transformations (Clarke 

and Gorley, 2006), and was used to give equal weight to each compound present in a 

sample based on our non-quantitative volatile sampling procedures (SPME-GC-MS, non-

standardized floral masses). Presence/absence data were then used to visualize spatio-

temporal changes in floral scent using multidimensional scaling (MDS) analysis in 
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PRIMER v6 (Clarke and Gorley, 2006). Briefly, presence/absence data were used to 

calculate a similarity matrix using the Sørensen similarity index (the qualitative 

equivalent to the Bray-Curtis similarity index) as described by Majetic et al. (2014). A 

two-way crossed analysis of similarity (ANOSIM) was then used to examine differences 

between flower stages and between flower parts, using 10,000 permutations to calculate 

global R-values to assess the similarity between each pairwise comparison, with larger 

global R-values (ranging from 0-1) accompanied by significant p-values indicating high 

dissimilarity (Clarke, 1993; Clarke and Gorley, 2006). To assess similarities between 

each stage-part sample type (e.g. female chamber vs. male limb, etc.) a one-way 

ANOSIM was calculated by combining stage and part into a single factor (stage x part) 

and using the same statistical criteria as above. When ANOSIM indicated significant 

differences between stage-parts we conducted a similarity percentage test (SIMPER) to 

explore how each volatile contributed to the overall differences (see Arguello et al., 

2013). Because SIMPER analyses are less meaningful when based on presence/absence 

data (all contributions to dissimilarity are equal) we applied a less stringent but still 

conservative data transformation by calculating the relative abundance of each compound 

with respect to the total peak area within each sample, and then applying a square root 

transformation to each standardized value. This allowed us to explore the ranked 

percentage of likely volatile contributions to the dissimilarity of sample groups while still 

restricting the effect of highly abundant compounds in each sample.  

 

3. Results 

3.1 Chemical Composition 
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The floral scent of Aristolochia gigantea is strikingly complex. SPME-GC-MS analyses 

revealed a total of 168 volatile compounds, belonging to diverse chemical classes, across 

all floral organs and ontogenic stages (Table 1). We identified 28 uniquely floral 

monoterpene (C10) hydrocarbons, alcohols, aldehydes and acetates, along with a similar 

number of flower-specific sesquiterpene (C15)-related compounds. The floral scent of A. 

gigantea also includes a large number (40) of aliphatic ketones (with related alcohols and 

aldehydes), especially a series of 2-ketones emitted largely on the first day of anthesis. 

We identified 27 fatty acid- and amino-acid derived aliphatic compounds, 6 of which are 

alcohols or esters with a 3-methyl-1-butanol moiety, along with related alcohols and 

ketones. Twelve compounds could be unequivocally categorized as alkanes or alkenes, 

with another 19 unknowns that could not be identified or assigned to class. Finally, 

flowers of A. gigantea emit 9 aromatic compounds (e.g. anisole, benzyl alcohol), three of 

which are esters of 3-methyl-1-butanol, along with one sulfur-bearing compound 

(dimethyl disulfide) and no nitrogen-bearing compounds. Flowers emitted additional 

terpenoid compounds shared with vegetative tissues, which were omitted from further 

analysis as non-floral background chemistry, due to similar volatile profiles between 

immature flower buds and leaves (not shown). Similarly, several green-leaf volatiles (e.g. 

hexyl acetate, (Z)-3-hexen-1-ol) detected from dissected flower parts were omitted from 

further analysis as artifacts of wounding.  

 

3.2 Temporal Patterns of Scent Emission 

Strong differences in volatile composition were observed between different reproductive 

stages of the protogynous flowers of A. gigantea during their development (Figs. 3A, C), 
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both in the number and diversity of volatile compounds produced (ANOSIM global R = 

0.979, p = 0.004), as well as in the total amount of scent emitted. Female stage flowers 

emit the most intense and chemically diverse volatile blends, with a total of 137 

compounds across all floral parts (Fig. 3). Female stage whole flowers are characterized 

by the simultaneous emission of 2-heptanone, dimethyl disulfide, 3-methyl-1-butanol and 

its associated acetate, along with potent amounts of lemon-scented terpenoids, including 

citronellal, (Z)-citral (neral), (E)-citral (geranial), citronellol, nerol, and geraniol (Table 

1).  

Floral scent changes dramatically as flowers enter the male phase of development, 

usually one day after opening. Volatile emission is highly reduced (resulting in 78 total 

compounds across all floral parts), represented both by diminished emissions of 

compounds present in the female stage and also by the emission of novel volatiles (Figs. 

3A, B; Table 1).  Male stage whole flowers transition to the production of novel and 

intense emissions of linalool, (Z,E)--farnesene and (E,E)--farnesene and their 

oxygenated derivatives (Table 1). The ontogenic reduction of volatile emission continues 

in wilted (senescent) flowers (resulting in 43 total compounds across all floral parts), 

which chemically resemble the vegetative background (Fig. 3A, B; Table 1). Wilted 

flowers continued to produce 3-methyl-1-butanol and anisole (found in all floral stages), 

but ceased to produce β-myrcene and (E)-β-ocimene present in greater quantity in female 

and male stage flowers (Table 1). Whole flower analyses of A. gigantea from the Jardin 

Botanique de Montréal and from Cornell University revealed the same major patterns, 

with MS detector-saturating amounts of citrals and related terpenoids emitted by first day 
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flowers and noteworthy peaks of linalool, farnesenes and related compounds emitted by 

second day flowers (data not shown).  

 

3.3 Spatial Patterns of Scent Emission  

Spatial patterns of scent composition differed markedly within and between sexual stages 

(Figs. 3C, S1, 2; Table S1) (two way ANOSIM, flower parts; global R = 0.607, p = 

0.001; flower stages; global R = 0.774, p = 0.001).  For clarity of presentation, we discuss 

spatial patterns in two inclusive categories; external flower parts visible to approaching 

insects (limb, black ring, and yellow disk of the floral tube), and internal parts that would 

be apparent to trapped visitors (utricle and nectaries).  

 

3.3.1 External Floral Parts 

The large, meat-like floral limb emits 87 volatiles during female phase, including massive 

amounts of citrals and complex blends of ketones and alcohols, but is essentially 

scentless in male and wilted phases, emitting only small amounts of 12-13 compounds 

respectively (ANOSIM global R = 0.742, p = 0.003; Fig. 4A, B; Table 1). Consistent 

amounts (peak areas) of 3-methyl-1-butanol and anisole are emitted from the limb 

throughout each flower’s lifetime, whereas the relative percentages of these compounds 

increase (as statistical artifacts) as other volatiles cease. 103 volatile compounds were 

identified from the velvet-black ring of the limb during female phase, dominated by a 

series of 2-ketones (2-pentanone through 2-tridecanone) along with some branched 

ketones and alcohols, many of which are specific to this tissue and ontogenic stage and 

are seldom emitted from male or senescent flowers (Table 1).  Similarly, the conspicuous 
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yellow disk of the open floral tube emits 52 volatiles during female phase but only 14 

compounds in male and wilted phases, degrading from a complex blend of ketones, 

alcohols and 3-methylbutyl esters to a simple blend of compounds common to the male 

phase utricle, such as linalool (see section 3.3.2 below).   

 

3.3.2 Internal Floral Parts 

The contrast between female and male stage volatile emissions from the utricle was the 

most surprising result of this study (ANOSIM global R = 0.521, p = 0.002). Dimethyl 

disulfide is emitted by female stage flowers only, with the greatest amount emitted from 

the chamber and the black ring of the limb surrounding the entrance to the floral tube, but 

is absent from the lobed, calico patterned portion of the limb resembling rotting flesh. 

Quantitatively, the scent of female-stage chambers is dominated by large peaks of 3-

methylbutyl 3-methylbutanoate, benzyl methyl ether, β-myrcene and (E)-β-ocimene, 

along with several alkanes and terpene hydrocarbons (e.g. limonene, (E)-β-

caryophyllene) common to the foliage of A. gigantea.  By day 2, when anthers are 

dehiscing and the stigmatic surface is senescing within the utricle, there is a nearly 

complete turnover in volatile composition within this chamber, with large amounts of 

linalool, methyl geranate, (Z,E) and (E,E)-α-farnesene emitted in place of the compounds 

listed above (Figs. 4C, D; Table 1). Follow-up assays revealed that the major acyclic 

terpenoids are produced in disproportionately large amounts by the twin patches of 

nectar-secreting tissue within the utricle. 
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4. Discussion 

4.1 The multidimensional floral scent of Aristolochia gigantea 

Based on morphological characters alone (Fig. 2), one might expect the impressively 

meat-like flowers of Aristolochia gigantea to be pollinated by saprophytic flies and to 

emit a nauseating carrion-like stench (Burgess et al., 2004; Proctor et al., 1996). Indeed, 

we detected small amounts of dimethyl disulfide (Table 1, Fig. 4C), which, along with 

dimethyl trisulfide, is indicative of carrion mimicry in brood-site deceptive flowers 

worldwide (Jürgens et al., 2013). However, in such cases volatile sulfides are the 

dominant components of simple scent bouquets (Jürgens et al., 2006; Kite and 

Hetterscheid, 1997; Stensmyr et al., 2002) that attract calliphorid, sarcophagid and 

muscid flies (Moré et al., 2013; van der Niet et al, 2011; Shuttleworth and Johnson, 

2010). The complex pattern of floral volatiles emitted by A. gigantea departs markedly 

from the simple expectations of carrion mimicry. Dimethyl disulfide is not emitted by the 

large, meat-like limb, but instead by the utricle (floral chamber) and the bright yellow 

disk of the floral tube leading to it during the first day of anthesis, when the stigmatic 

lobes of the gynostemium are receptive (Table 1, Fig. 4C). Conversely, the meat-like 

limb emits lemon-scented, oxygenated monoterpenes during the same period, in amounts 

that saturated our MS detector (Fig. 4A), on a schedule that coincides with the arrival of 

pollen-bearing phorid flies to these flowers (Costa and Hime, 1981, Hipólito et al., 2012). 

This interplay between floral morphology and scent constitutes a botanical paradox, as 

the visually contrasting lemon-like disk (Fig. 2A, C) leading to the chamber smells of 

rotting meat and decaying fruit, whereas the meat-like limb (Figs. 1, 2) emits a lemon-

scented plume powerful enough to attract visitors from a distance.  
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Stefan Vogel’s (Vogel, 1963; English translation, 1990) landmark study of 

osmophores - the floral tissues responsible for biosynthesis and release of volatiles - was 

published before capillary GC-MS was first used to analyze floral scent. Vogel discussed 

the anatomy and histology of Aristolochia aff. cordiflora, which closely resembles A. 

gigantea (1990; his Fig. 11, p. 37). (Note, given the absence of a yellow disk in A. 

cordiflora and the absence of vouchers from Vogel’s study at Mainz, we infer that his 

plant likely was A. gigantea).  He was struck by the similarities in floral bauplan between 

these taxa but was misled by the descriptions of Hoene (1942), who attributed an 

unpleasant scent to flowers of A. gigantea cultivated in the Jardim Botânico, Rio de 

Janeiro, an observation that was disputed by Costa and Hime (1981) in subsequent 

studies at the same location. Vogel also was surprised by the strong, non-fetid quality of 

this flower’s scent, which he compared to Melissa oil (Melissa officinalis = lemon balm), 

an essential oil dominated by citrals and citronellal (Shabby et al. 1995). Initially, he 

suggested that the conspicuous yellow disk of the floral tube was the primary source of 

volatiles, due to its glandular surface, high starch content and weak thermogenic 

properties, and his observation that the starch granules within this tissue were exhausted 

(along with scent and heat) by the second day of anthesis. However, further investigation 

convinced Vogel “that the thin limb [is] likewise odoriferous”. Despite Vogel’s 

conjecture, based on his careful anatomical study of the yellow disk, our SPME-GC-MS 

analyses show that lemon-scented monoterpenoids are emitted exclusively from the floral 

limb of A. gigantea (Fig. 4, Table 1). The yellow disk emits a diverse mix of non-

terpenoid volatiles, some of which are shared with (and may adsorb passively from) the 
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utricle (Table 1). However, the yellow disk is adnate to the velvet-like black ring of the 

limb, which is the richest source of floral volatiles in A. gigantea. The complex vascular 

network diagrammed by Vogel (1990; his Fig. 12 II, p. 40) within the yellow disk may 

communicate with the adjacent ring and thus mediate volatile translocation and secretion.  

 Having determined the chemical identity, timing and source of the strong 

citronella scent emitted by flowers of A. gigantea (Fig. 4, Table 1), we have yet to 

discover its function. The smell of citronella often is associated with repellent properties 

for flies and mosquitoes (EPA, 1999; Fradin and Day, 2002), and it is possible that the 

citral plume emitted by the limb of A. gigantea is a floral filter that prevents deleterious 

insects from entering the floral chamber (Shuttleworth and Johnson, 2009). Other 

pollinator groups may be attracted to citronella, including bees (Faria and Stehmann, 

2010; Pearson and Dressler, 1985) and non-saprotrophic flies (Howlett, 1912), but 

available data do not support this hypothesis (Costa and Hime, 1981; Hipólito et al., 

2012). Finally, Hadacek and Weber (2002) suggest that spatial scent gradients and 

chemical contrast may enhance pollinator capture in kettle trap flowers with complex 

scent blends (see section 4.3 below). In our system, phorid flies may be attracted from a 

distance by the visual and olfactory cues of lemons or similar fruit, but upon arrival at 

flowers of A. gigantea, are compelled by dimethyl disulfide and fermentation-related 

volatiles to enter the floral tube and chamber (Fig. 1), where they feed on nectar and 

pollen (Hipólito et al., 2012). “Bait and switch” floral advertisement has been described 

for Epipactis helleborine orchids, whose flowers attract caterpillar-hunting wasps with 

the scent of wounded leaves, then reward the wasps with nectar instead of protein 

(Brodmann et al., 2008). Depending on the precise time at which the chamber scent of A. 
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gigantea shifts from carrion/fermentation volatiles to sweet floral emissions (linalool, 

ocimenes, farnesenes; Fig. 4C, D), the shift in scent may either encourage phorid flies to 

feed (pull) or, alternatively, may compel them to leave the utricle (push), seeking other 

flowers.   

 

4.2 Insights from Phorid Fly Pollinators 

Our speculation on the possible behavioral importance of spatio-temporal orchestration of 

volatile release in flowers of A. gigantea underscores the importance of making field 

observations of native floral visitors to wild plants. Hipólito et al. (2012) studied natural, 

blooming populations of A. gigantea in Chapada Diamantina, Bahia, Brazil, and noted 

the same powerful citronella floral scent that we document here. The primary pollen-

carrying insects found within the floral chambers of A. gigantea were several morpho-

species of scuttle flies (family Phoridae) in the genera Pseudohypocera and Megaselia, 

which arrived at newly opened flowers between 06:30 and 08:00 hrs, coincident with the 

onset of scent emission. Flies directly approached the yellow disk, landed at the mouth of 

the floral tube and entered the utricle. Flies remained within the utricle during the female 

phase, feeding on the secretions of twin patches of glandular trichomes on the chamber 

wall and from the stigmatic lobes of the gynostemium (Costa and Hime, 1981). These 

secretions qualify as true nectar, dominated by sucrose (56-69%) with smaller 

percentages of fructose (20-30%) and glucose (12-14%) (Hipólito et al., 2012) as well as 

amino acids (Costa and Hime, 1981). Phorid flies moved throughout the utricle during 

the first day seeking nectar and remained within the flowers even though the trichomes of 

the floral tube did not hinder their departure (Hipólito et al., 2012). By the following 
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morning (male phase), nectar is no longer secreted by the (now darkened) nectaries, and 

floral scent has shifted perceptibly. Video recordings indicate that flies remaining in the 

utricle at this point move to the gynostemium and feed on pollen before exiting through 

the floral tube carrying pollen, and then taking flight from the black ring (Hipólito et al., 

2012). Based on their frequency as visitors, the pollen masses attached to their bodies and 

the quantity of pollen tubes associated with flowers they have visited, Hipólito et al. 

(2012) considered Megaselia spp. to be the primary pollinator of A. gigantea in the 

Chapada Diamantina. Pseudohypocera spp, flies also were found with pollen grains 

attached to their bodies, but were less abundant at the study localities. Females 

outnumbered males by a roughly 5:1 ratio for both species. Costa and Hime (1981) 

identified a similar assemblage of floral visitors to cultivated A, gigantea plants in Rio de 

Janeiro, dominated by Pseudohypocera kerteszi (91% of all visits). The only pollen type 

carried by this species belonged to A. gigantea, suggesting that these flies do not visit 

other flowers locally. Costa and Hime (1981) observed pollen deposition on the 

mesonotum of P. kerteszi flies, where setae facilitate its accumulation until the flies are 

cloaked with pollen. Pseudohypocera kerteszi flies are distributed across tropical 

America, where they are major kleptoparasites of meliponine (stingless bee) hives, in 

which their larvae develop by consuming brood resources (pollen, nectar, nest materials; 

Robroek et al., 2003a). However, only adult female P. kerteszi flies are observed to enter 

the hives of their meliponine bee hosts (Robroek et al., 2003b), whereas nearly all (96%) 

of the P. kerteszi flies observed by Costa and Hime (1981) to visit flowers of A. gigantea 

were male. Thus, the floral volatiles of A. gigantea are more likely to mimic sexual 
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attraction of male P. kerteszi than brood-site cues that attract female flies to stingless bee 

hives.     

 Sex-specific attraction is a common theme in fly-pollinated Aristolochia species. 

Megaselia flies also pollinate other species of Aristolochia, including A. inflata in 

Panama (Sakai 2002) and A. argentina in Argentina (Trujillo and Sérsic, 2006), whose 

floral scents evoke organic decay to human sensibilities, but have not yet been chemically 

analyzed.  All visitors to A. inflata and A. argentina were females. In contrast, males 

accounted for 334 of 349 visitors (mostly Megaselia scalaris, M. aurea and M. perdita) 

to 32 flowers of the Brazilian species A. littoralis (= elegans) naturalized in Florida, USA 

(Hall and Brown, 1993). Similarly, all individuals of three pollen-carrying Megaselia 

morpho-species visiting A. pallida in Italy were male (Rulik et al., 2008). Clearly, further 

insights on the floral evolution of many Neotropical Aristolochia species will require a 

deeper understanding of the chemical and reproductive ecology of Megaselia flies, whose 

1500 described species represent a small fraction of actual phorid diversity (Disney, 

1994).  Megaselia flies are thought of as generalized scavengers, probably due to the 

ubiquitous and polyphagous Megaselia scalaris (Loew), which is frequently used in 

forensic studies (Disney, 2008). Nevertheless, there are many examples of extremely 

specialized larval hosts in this genus, from frog eggs to the hyphae of fungi developing 

within adult pentatomid bugs (Brown and Horan, 2012; Ceryngier et al., 2006). 

Interestingly, larvae from several Megaselia species feed exclusively on flowers of 

Aristolochia species (Disney and Sakai, 2001), some of which (e.g. A. inflata) appear to 

have evolved a nursery pollination mutualism (Sakai, 2002).  

 

4.3 Variations on a Floral Trap  
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One advantage to studying species-rich lineages of flowering plants is the opportunity to 

explore the diversification of specific floral niche dimensions (Johnson, 2010) and their 

repeated evolution (Castellanos et al., 2004). With at least 450 species, a pan-tropical 

distribution and an unusual floral bauplan conducive to trap-and-release pollination 

systems, the genus Aristolochia provides rich opportunities to study floral niches poorly 

represented in the post-glacial temperate environments that have dominated the study of 

pollination (Johnson and Steiner, 2000). The extensive literature on Aristolochia reveals 

strong associations with different lineages of Diptera, including several species pollinated 

by the Phoridae, as discussed in section 4.2 above. Additional pollinator niches in 

Aristolochia include Anthomyiidae and Chloropidae (Elachiptera sp., all males) in 

Russian A. manshuriensis (Nakonechnaya et al., 2008), Drosophilidae in Panamanian A. 

maxima (Sakai, 2002), Chironomidae in Indian A. tagala (Murugan et al., 2006), 

Ceratopogonidae (Foripomya sp.) in Pakistani A. bracteolata (Razzak et al., 1992) and 

Sri Lankan A. indica (Petch, 1924), and female Chloropidae and Milichiidae in 

Panamanian A. pilosa (Wolda & Sabrosky, 1986). Chemical analyses, combined with 

behavioral assays (see Hall and Brown, 1993) performed on any of these species would 

likely reveal fundamental aspects of brood-site, mate location, or food location by 

members of these fly lineages. Central American A. grandiflora is a classic example of 

carrion mimicry, with immense, fetid trap flowers that lack nectaries (Cammerloher, 

1923; Hilje, 1984). Interestingly, A. grandiflora successfully recreates the niche of rotting 

flesh, as it not only attracts calliphorid flies as pollinators, but also elicits oviposition by 

hundreds of non-pollinating phorid flies and similar numbers of staphylinid beetles that 

prey upon their larvae (Burgess et al., 2004). In a bizarre twist on fly pollination, flowers 
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of the European A. rotunda specifically attract chloropid flies with a chemical blend 

(hexyl esters and short chain alkanes) that mimics the wound volatiles emitted by 

recently killed mirid bugs (Hemiptera). These kleptoparasitic flies (Trachysiphonella 

ruficeps) steal food from other insects, and in this case specifically imbibe the secretions 

from mirid bugs killed by other arthropods (Oelschlägel et al., 2015). Finally, the larger 

Aristolochiaceae, which now includes the former Piperaceae, Saururaceae and 

Hydnoraceae (APG, 2016), includes additional pollinator niches, including fungal 

mimicry in the ground-blooming genus Asarum and the cauliflorous Aristolochia arborea 

(Kaiser, 2006; Sinn et al., 2015; Vogel, 1978). The fetid, fleshy flowers of Hydnora 

africana, a root parasitic species, emit sulfur volatiles (Burger et al., 1988) and form 

subterranean chambers that trap tenebrionid beetles in southern Africa, suggesting a 

rotting-hide niche (Bolin et al., 2009).  

It is intriguing to consider that each of the niches described above for Aristolochia 

(and others yet to be documented) have arisen through convergent evolution in other 

lineages with kettle trap flowers (Renner, 2006).  Despite the elaborate morphology of 

Aristolochia flowers, kettle trap floral plans are not unique to this genus. Flowers of 

Ceropegia (Apocynaceae, Asclepiadoideae) and inflorescences of Arum (Araceae) show 

strikingly similar floral ground plans including sophisticated trapping mechanisms that 

are enhanced by dichogamous maturation of the fertile organs (Gibernau et al., 2004; 

Masinde, 2004; Ollerton et al., 2009). Remarkably, in each of the respective genera, the 

trap is formed by the modification of a different floral or sometimes vegetative tissue. For 

example, the genus Aristolochia utilizes the first floral whorl, i.e. a congenitally united 

calyx to form the trapping chamber. In contrast, Ceropegia achieves the same structure 
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by congenital fusion and basal inflation of the corolla (Ollerton et al., 2009), while the 

genus Arum and related plants forgo floral tissues altogether and enclose their male and 

female florets within a highly modified bract (Bröderbauer et al., 2012; Meeuse and 

Raskin, 1988). As recognized by Vogel (1990), whose treatise on osmophores featured 

many examples from these lineages, floral scent can be highly chemically diverse among 

Ceropegia, Arum, Amorphophallus and other aroid lineages, including chemically 

mediated mimicry of carrion, herbivore and carnivore feces and rotting fruit/yeast (Kite 

et al., 1998; Stökl et al., 2010; Urru et al., 2011). One remarkable parallel to the niche 

described above for Aristolochia rotunda (pollination by kleptoparasitic flies) was 

described recently for Ceropegia dolichophylla, to which volatile spiroacetals attract 

Milichiid fly pollinators that, under normal circumstances, feed from the secretions of 

wounded arthropods (Heiduk et al., 2010).   

 Our study of Aristolochia gigantea was inspired, in large part, by Hadacek and 

Weber’s (2002) detailed chemical analysis of floral scent in Sauromatum guttatum, an 

aroid that has served as a model system for the study of thermogenesis in plants (Meeuse, 

1975; Raskin et al., 1989). Although a range of chemical methods had been used to 

document scent composition in S. guttatum (Borg-Karlson et al., 1994; Skubatz et al., 

1996; Smith and Meeuse, 1966), Hadacek and Weber (2002) used SPME-GC-MS to 

provide the first glimpse at unexpected chemical complexity (over 200 identified 

volatiles) and spatial variation in scent blends emitted along the length of the sterile 

spadix and by the florets and club shaped organs enclosed within the spathe. These 

authors speculated that the strong lemon scent (β-citronellene) emitted by the distal end 

of the appendix provides chemical contrast with fetid volatiles within the trap, making it 
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easier for fly pollinators to locate the reproductive organs. A similar hypothesis could be 

advanced for A. gigantea, whose flowers smell like lemon on the outside and emit 

dimethyl disulfide and fermentation-related volatiles from the utricle and its entrance. 

This discussion underscores an important feature of kettle trap flowers: pollinators must 

be induced to enter them, either through visual contrast, chemical gradients, tactile cues 

and/or heat (Angioy et al., 2004; Diaz and Kite, 2006). This holds true for other 

pollinator niche dimensions in kettle trap flowers, in which strong fragrances and 

thermogenesis attract scarab beetles to Philodendron and related aroids as rendezvous 

sites (Dötterl et al., 2012; Gottsberger and Silberbauer-Gottsberger, 1991).  

 

4.4 Caveats and New Horizons 

We are well aware that the primary data set for this study is pseudoreplicated, as data 

were collected from multiple flowers on the same cultivated plant over two consecutive 

years. Our use of multivariate methods is entirely illustrative, rather than for strict 

hypothesis testing (Figs. 3C, S1, 2, 3). Unlike Hipólito et al. (2012), our primary goal was 

not to assess population level variation in nature, but to utilize a cultivated, mass 

blooming plant for in-depth chemical analyses in the tradition of Vogel’s (1990) 

histological studies of cultivated plants.  Our intensive sampling scheme would have been 

challenging to perform within the plant’s native range (Chapada Diamantina, Bahia; 

Hipólito et al., 2012) or even in the Jardim Botânico, Rio de Janeiro (Costa and Hime, 

1981). Given the stunning spatio-temporal variation in scent composition documented 

here, our sampling strategy was essential to generate confidence in the reproducibility of 

our data. Subsequent analyses from other individuals of A. gigantea cultivated in 
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Montreal, Canada and at Cornell University are highly consistent with the data presented 

here.   

Another caveat is that the complex floral scent composition documented in Table 

1 is best viewed as a conservative estimate, based on several methodological 

considerations. First, the use of GC-MS alone was not sufficient to confidently identify 

all compounds analyzed in this study, resulting in many mass spectra that are not 

identifiable without further analytical approaches. Second, floral scent of A. gigantea 

includes related series or “runs” of very similar compounds (e.g. sesquiterpene 

hydrocarbons) that ideally would require additional chromatographic dimensions to fully 

separate (Marriott and Shellie, 2002). The use of GCxGC-MS could easily double the 

number of compounds identified in samples as rich as these.  Moreover, many of the 

volatile compounds identified in this study (e.g. linalool, citronellol) contain chiral 

centers and may exist in different enantiomers (Dötterl et al., 2006). Again, the 

incorporation of a chiral GC column into a multi-dimensional GC-MS analytical system 

(Begnaud et al., 2006) would be necessary to fully characterize the enantiomeric diversity 

of these samples.   

Finally, in the absence of a definitive behavioral assay, we are left to speculate 

how such a highly coordinated, spatially and temporally dynamic display of volatile 

floral chemistry might manipulate pollinator behavior to the plant’s reproductive 

advantage. Iterative chemical fractionation vetted with bioassays (e.g. Murphy and 

Feeny, 2006) is a core approach in the field of chemical ecology, with the desirable 

outcome of focusing chemical analysis on behaviorally active or ecologically important 

fractions of a natural blend (see Oelschlägel et al., 2015). In the absence of controlled 
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bioassays with Megaselia and other phorid flies, we cannot begin to prudently evaluate 

the behavioral roles of so many female stage volatiles. The growing literature on the 

pollination of Aristolochia highlights the importance of phorid flies to floral 

diversification in a lineage of ancient angiosperms, and reinforces how little we know 

about this diverse family of flies and the other flowers that they pollinate (Borba and 

Semir, 2001). The Phoridae are comparable in diversity to the Drosophilidae (fruit and 

fungus flies, c. 3000 spp) and the Sciaridae (fungus gnats, c. 1700 spp), two fly families 

whose members pollinate diverse lineages of Pleurothallid orchids (c. 4000 spp) in 

tropical America, such as Lepanthes (Blanco and Barboza, 2005) and Dracula (Policha et 

al., 2016). Integrated studies of floral chemistry and pollinator behavior promise to shed 

light on the origins and maintenance of such diversity. 
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Figure 1. The sequence of pollinator imprisonment for flowers of Aristolochia gigantea. 

(1) Pollinators and other visitors are attracted to the female stage flowers via chemical 

and other cues on the first day of anthesis. White striations on a red background resemble 

the appearance of flesh while the contrast of a bright yellow spot on a black background 

provides a visual cue for orientation to the chamber entrance. (2) To enter into the 

chamber, visitors must traverse a floral tube lined with downward facing trichomes which 

simultaneously prevent them from leaving. (3) For pollination to be successful, visitors 

must be carrying pollen from a conspecific flower to deposit on the receptive stigma 

located at the basal end of the chamber. A pellucid zone of tissue or “window pane” 

above the gynostemium allows sunlight into the chamber indicating a false exit from the 

trap. Positive phototaxis draws the insects near the gynostemium allowing pollen to be 

passively deposited on the stigmatic surface. (4) Insects must remain captive overnight to 

receive pollen from the dehiscent anthers on the second day of anthesis. A food source is 

provided by two patches of glandular hairs within the chamber which function as 

nectaries. As sunlight passes through the window pane on day 2, the insects are drawn 

near the reproductive organs again and are loaded with pollen in the process. (5) As the 

flowers begin to senesce on late day 2 or on early day 3 the trichomes that were once 

blocking the exit from the trap lose their turgidity and allow the insects to escape. Cross 

pollination is achieved when insects bearing pollen are deceived again by another female 

A. gigantea flower. 
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Figure 2. (A) Anterior view of the Aristolochia gigantea var. brasiliensis limb showing a 

red and white striated visual display, with a black and yellow zone of tissue (referred to 

as black ring and yellow disk in this paper) near the entrance of the floral tube leading to 

the floral chamber. (B) Posterior view of the Aristolochia gigantea var. brasiliensis 

flower indicating the placement of the floral chamber (utricle). At the basal end of the 

utricle extends the ovary leading to the pedicel. (C) A cross section through the flower 

with labels indicating the spatial units from which volatiles were sampled at each 

ontogenic stage of floral development (female stage, male stage, wilted stage). 
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Figure 3. (A) GC-MS total ion chromatograms of volatiles collected from Aristolochia 

gigantea whole flowers at distinct ontogenic stages of floral development (female, day 1; 

male, day 2; wilted, day 3). Female stage flowers emit a highly complex blend of 

volatiles including a simultaneous (and paradoxical) emission of brood-site associated 

compounds (dimethyl disulfide (1), 3-methyl-2-butanol (2), 3-methyl-1-butanol acetate 

(3), 2-heptanone (4), 3-methyl-1-butanol (5)) and sweet citrus associated compounds 

(citronellal (6), (Z)-citral (neral) (7), (E)-citral (geranial) (8), citronellol (9), nerol (10), 

geraniol (11)). Volatile emission is highly reduced in male stage flowers except for the 

novel production of linalool (12) during this stage. After three days, wilted flowers nearly 

cease volatile emission altogether and chemically resemble the vegetative background. 

For structures see Fig. S4. 
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(B) Pie charts depicting the number of volatiles produced within each designated 

compound class as a proportion relative to the total number of volatiles produced by 

intact whole flowers at each stage of development (female whole flowers = 101 total 

compounds, male whole flowers = 25 total compounds, wilted whole flowers = 7 total 

compounds). Numbers within the pie wedges represent the number of volatiles produced 

within each designated compound class. Pie chart areas are scaled to depict the total 

relative volatile emission (based on average total peak area) by whole flowers at each 

stage. Male whole flower and wilted whole flower pie chart areas are shown at 10X and 

100X magnification respectively because they are too small for proper viewing at 1X 

magnification (male 2% total scent emission relative to female, wilted 0.14% total scent 

emission relative to female).  

 

(C) Multidimensional (MDS) scaling plot constructed using the Bray-Curtis similarity 

index showing the relationship of floral volatile composition between each Aristolochia 

gigantea stage-part combination sampled. Flower stage is grouped by color (female = 

maroon, male = pale blue, wilted = green), while the same floral parts across all floral 

stages share the same symbol (square = whole flower, upside triangle = limb, circle = 

black ring, downside triangle = yellow disk, diamond = utricle, cross = nectary). 
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Figure 4. (A) GC-MS total ion chromatograms of volatiles collected from dissected 

Aristolochia gigantea limbs at distinct ontogenic stages of development. Strong emission 

of sweet citrus associated compounds (citronellal (6), (Z)-citral (neral) (7), (E)-citral 

(geranial) (8), citronellol (9), nerol (10), geraniol (11)) is specific to the female stage 

limb. Several brood-site associated compounds (3-methyl-2-butanol (2), 3-methyl-1-

butanol (5)) are also produced by the female limb at this time point. Both male stage 
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flowers and wilted stage flowers show highly reduced volatile emission and chemically 

resemble the vegetative background. For structures see Fig. S4. 

 

(B) Pie charts depicting the number of volatiles produced within each designated 

compound class as a proportion relative to the total number of volatiles produced by the 

limb at each stage of development (female limb = 87 total compounds, male limb = 12 

total compounds, wilted limb = 13 total compounds). Pie chart areas are scaled to depict 

the total relative volatile emission by the limb at each stage. Male limb and wilted limb 

pie chart areas are each shown at 100X magnification because they are too small for 

proper viewing at 1X magnification (male 0.44% total scent emission relative to female, 

wilted 0.36% total scent emission relative to female). 

 

(C) GC-MS total ion chromatograms of volatiles collected from dissected Aristolochia 

gigantea utricles at distinct ontogenic stages of floral development. Volatile emission of 

the female stage utricle is weak yet diverse including brood-site associated volatiles 

(dimethyl disulfide (1), 3-methyl-2-butanol (2), 3-methyl-1-butanol acetate (3), 3-methyl-

1-butanol (5)), several branched chain esters, and various monoterpenes and 

sesquiterpenes. By day two the male stage utricle ceases production of brood-site 

associated volatiles (except for 3-methyl-1-butanol) and produces an intense emission of 

linalool (12), methyl geranate (15), (Z,E)--farnesene (16), and (E,E)--farnesene (17) as 

well as increased emission of -myrcene (13) and (E)--ocimene (14). After three days, 

wilted utricles nearly cease volatile emission altogether and chemically resemble the 

vegetative background. Asterisks indicate ambient contaminants. For structures see Fig. 

S4. 

 

(D) Pie charts depicting the number of volatiles produced within each designated 

compound class as a proportion relative to the total number of volatiles produced by the 

utricle at each stage of development (female utricle = 39 total compounds, male utricle = 

61 total compounds, wilted utricle = 18 total compounds). Pie chart areas are scaled to 

depict the total relative volatile emission by the utricle at each stage. The wilted utricle 

pie chart area is shown at 20X magnification because it is too small for proper viewing at 

1X magnification (female 11% total scent emission relative to male, wilted 0.56% total 

scent emission relative to male).  
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Table 1. A heat map as a visual representation of individual gas-chromatographic peak 

areas of volatiles across all floral stages and units sampled. Columns are organized from 

left to right by flower stage (female, male, wilted, bud) with each stage including all 

dissected floral units (see Fig. 2C). Compounds in rows are assigned into chemical 

classes and grouped by retention time and corresponding Kovats Retention Index in 

ascending order. Blue color shading is based on a log scale of peak area with the lightest 

blue shade spanning two log increments (1-10,000 units) and white space representing no 

volatile production. Identification of compounds was based on: bold = comparison with 

authentic standards, * = comparison to published Kovats Indices, not bold = a 90% or 

greater match with mass spectral library, mass spectral fragments = when none of the 

above criteria were satisfied. 
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