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Turbidity currents derive their motion from the excess density imposed by suspended
sediments. The settling tendency of sediments is countered by flow turbulence, which
expends energy to keep them in suspension. This interaction leads to downward
increasing concentration of suspended sediments (stable stratification) in the flow.
Thus in a turbidity current sediments play the dual role of sustaining turbulence
by driving the flow and damping turbulence due to stable stratification. By means
of direct numerical simulations, it has been shown previously that stratification
above a threshold can substantially reduce turbulence and possibly extinguish it.
This study expands the simplified model by Cantero et al. (J. Geophys. Res., vol.
114, 2009a, C03008), and puts forth a proposition that explains the mechanism of
complete turbulence suppression due to suspended sediments. In our simulations it
is observed that suspensions of larger sediments lead to stronger stratification and,
above a threshold size, induce an abrupt transition in the flow to complete turbulence
suppression. It has been widely accepted that hairpin and quasi-streamwise vortices
are key to sustaining turbulence in wall-bounded flows, and that only vortices of
sufficiently strong intensity can spawn the next generation of vortices. This auto-
generation mechanism keeps the flow populated with hairpin and quasi-streamwise
vortical structures and thus sustains turbulence. From statistical analysis of Reynolds
stress events and visualization of flow structures, it is observed that settling sediments
damp the Reynolds stress events (Q2 events), which means a reduction in both the
strength and spatial distribution of vortical structures. Beyond the threshold sediment
size, the existing vortical structures in the flow are damped to an extent where
they lose their ability to regenerate the subsequent generation of turbulent vortical
structures, which ultimately leads to complete turbulence suppression.

Key words: geophysical and geological flows, turbidity currents, turbulence suppression

† Email address for correspondence: bala1s@ufl.edu

mailto:bala1s@ufl.edu


2 M. Shringarpure, M. I. Cantero and S. Balachandar

1. Introduction
Horizontal density differences in a fluid under the action of a gravitational

field result in flows known as gravity currents (Hopfinger 1983; Allen 2001).
Turbidity currents are special cases of gravity currents where suspended sediments
are responsible for the density difference. Turbidity currents are predominantly ocean
currents flowing along the ocean floor. They can be triggered by various mechanisms,
but essentially a turbidity current involves sediments flowing down the sloping ocean
floor dragging the surrounding water with it. The resulting flow is typically turbulent,
which in turn keeps the sediments in suspension to drive the flow. Turbidity currents
are known to reach speeds of the order of 5 m s−1 in submarine canyons (Krause et al.
1970) and travel hundreds of kilometres (Pirmez & Imran 2003). This ability to reach
high speeds and travel long distances makes turbidity currents an important sediment
transport mechanism in the submarine world (Kneller & Buckee 2000).

Suspended sediments play a crucial role in both sustaining and killing turbidity
currents. The increased density due to the suspended sediments drives the flow, and the
generated turbulence provides the energy required to keep the sediments in suspension.
The distribution of suspended sediments in a turbidity current is governed by balance
between downward flux of sediments due to settling and upward flux of sediments
due to turbulent mixing. This exchange leads to a stable stratification of sediments
in the flow. This stratification suppresses turbulence by limiting the exchange of
mass and momentum in the bed-normal direction, and in extreme cases can lead to
complete shutdown of turbulence. In such extreme cases, absence of turbulence leads
to heavy deposition of sediments, which results in complete cessation of the flow
(Talling et al. 2007; Cantero et al. 2012a). This dual role of sediments makes the
flow interesting and complex to analyse. In this work we dissect these two roles using
direct numerical simulation (DNS) and attempt to explain how suspended sediments
affect flow turbulence.

In an actual turbidity current there are sediments of various sizes (Parker 2008) and
the flow itself is highly turbulent with a large Reynolds number of O(106) or more.
Sufficiently large sediments do not get suspended into the flow, but are transported
along the bed as bedload through rolling and occasional saltation. On the other hand,
washload sediments are so fine that they effectively do not settle, and remain well
mixed in the flow. The effect of washload is to make the fluid heavier than its
surroundings. This work focuses on the intermediate size of sediments, which settle
towards the bed and can be re-entrained into suspension by turbulence. The particular
limit where the rate of deposition is exactly balanced by the rate of resuspension is
considered, and thus the total amount of suspended sediments is conserved in the flow.
The current in which there is zero net flux of sediments to the ocean bed is said to
be in bypass or auto-suspension mode. In other words, the driving potential of such a
current is always conserved. This regime of sediment transport is the limit between the
depositional mode, for which the net amount of sediments decay over time or distance
of spreading leading to ultimate cession of the current, and the resuspension mode, for
which the net amount of sediments increases along with the intensity of the current
(Parker 1982; Parker, Fukushima & Pantin 1986).

Direct numerical simulation of a field-scale turbidity current is not possible
even with the current state-of-the-art high-performance computers. In order to gain
fundamental understanding of the effects of suspended sediments on turbulence,
simulations must be restricted to low and moderate Reynolds number turbidity currents.
The understanding gained from such simulations can then be extrapolated and used
in various models of field-scale turbidity currents. Recent investigations of turbulent
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turbidity currents using the ‘turbidity current with a roof’ (TCR) model (Cantero et al.
2009a; Cantero, Balachandar & Parker 2009b) demonstrate that turbulence can be
completely damped when the settling velocity of sediments exceed a certain threshold
value. This study extends the work by Cantero et al. (2009a,b) in a significant
way to obtain a comprehensive understanding of the mechanism of total turbulence
suppression. The earlier theoretical model (TCR) employed an artificial rigid top
boundary, which somewhat complicated its direct applicability to actual turbidity
currents. As a result, even when stratification suppressed turbulence close to the
bottom boundary, turbulence continued to generate near the rigid top boundary and
diffused downward to the bottom boundary, thus influencing turbulence suppression
by stratification. This feature affected identification of the suppression mechanism and
prevented clear interpretation of the results. Here a model of equilibrium turbidity
currents that uses a stress-free top boundary is implemented, which limits turbulence
generation to only the bottom boundary. The present approach allows complete
suppression of turbulence over the entire layer of fluid. However, as in the TCR
model, the slow streamwise development of the current is ignored by not allowing
entrainment of ambient fluid.

The model presented in this work preserves the essential features of turbidity
currents, i.e. the flow is entirely driven by the suspended sediments and the settling
of sediments self-stratifies the flow. These features are representative of an actual
turbidity current in the bypass mode. The present model has been used to separate
the driving and the stratification effects of the suspended sediments by individually
turning these effects on and off. The most intriguing aspect of the results is the
abrupt nature of total turbulence suppression with increase in the settling velocity of
sediments (a proxy for the size of sediments). More precisely, below a threshold value
of settling velocity the turbidity current remains vigorously turbulent, and the level of
turbulence is only moderately influenced by the suspended sediments. However, once
the threshold value is crossed, an abrupt change in behaviour occurs and turbulence
is totally extinguished. This abrupt transition is akin to the onset of instability in a
laminar flow, but the key difference is that the nature of reverse-transition to laminar
conditions is inherently nonlinear. This work further explores this transition both from
a statistical point of view and also from a mechanistic point of view in terms of how
the auto-generation of turbulent vortical structures is completely disrupted above the
threshold.

The mathematical model of turbidity currents employed in this study serves
the purpose of developing fundamental understanding of interaction of suspended
sediments and turbulence. Existence of a critical settling velocity for a given Reτ
and channel slope θ has practical implications. This observation means that only a
certain size of sediments can be kept in suspension in a flow of given intensity.
The knowledge we gain brings us closer to understanding the transition of turbidity
currents from being net erosional (self-accelerating) to net depositional. The validation
of this simple, yet effective mathematical model is difficult, as laboratory experiments
cannot recreate such conditions and the field observations are too complex to be
exactly relevant. However, some indirect indications of turbulence suppression exist.
Experiments by Sequeiros et al. (2009) show transition from net erosional to net
depositional flow. In such a transition the net depositional flow will eventually lead
to complete shutdown of turbulence and the flow. However, in the laboratory this
eventual state cannot be observed owing to the size constrains of the flume. Talling
et al. (2007) reported field observations that sudden turbulence suppression can occur,
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FIGURE 1. (Colour online) Schematic representation of the model of a turbidity current. The
model preserves the most essential features of turbidity currents, i.e. the flow is entirely driven
by the suspended sediments and the settling of sediments self-stratifies the flow.

leading to abrupt loss of carrying capacity of the flow, in turn leading to heavy
sedimentation.

2. Problem formulation
The turbidity current is modelled as an inclined channel with a slope of θ with

respect to the horizontal. The flow in the channel is driven by a monodisperse
suspension of sediments which drag the fluid in the streamwise direction and also
settle down, stratifying the flow (see figure 1). The suspension is assumed to be dilute
so that collision between sediment particles and rheology effects can be neglected,
settling velocity is independent of concentration, and Boussinesq approximation can be
employed. Under these circumstances the flow is governed by the following equations:

∂u
∂t
+ u ·∇u=− 1

ρw
∇p+ ν∇2u+ ρ − ρw

ρw
g, (2.1)

∇ ·u= 0, (2.2)
∂c

∂t
+ (u+ V) ·∇c=D ∇2c, (2.3)

where u= {u, v,w} is the velocity vector, p is the pressure, ρw is the density of water,
ν is the kinematic viscosity of water, c is the volumetric concentration of sediments,
ρ = ρw(1 + Rc) is the density of the mixture with R = (ρs − ρw)/ρw and ρs the
density of the sediments, g = {gx, 0,−gz} is the acceleration due to gravity with gx

and gz the components along the streamwise and bed-normal directions of the channel,
V = {Vx, 0,−Vz} is the terminal settling velocity of an isolated sediment particle in a
quiescent ambient, and D is the diffusivity of the sediments. By using these equations
it is assumed that the inertial effects of the sediments are of second order compared
to settling effects (Ferry & Balachandar 2001; Cantero, Balachandar & Garcı́a 2008a;
Cantero, Garcı́a & Balachandar 2008c).

Sediment particles are assumed to be non-cohesive and large enough that their
Brownian motion can be ignored. It is now well established that even such large
particles effectively diffuse due to long-range hydrodynamic interactions mediated by
particle number density fluctuations (Segre et al. 2001; Mucha & Brenner 2003). Thus
D is taken to be the effective constant diffusivity of the sediments. The diffusive term
in (2.3) also provides a mechanism to resuspend sediments from the bed (Garcia &
Parker 1993).



Dynamics of complete turbulence suppression in turbidity currents 5

The channel is assumed to be periodic in the streamwise and spanwise directions.
The height of the simulation domain is h. The length of the simulation domain
(streamwise direction) is Lx = 4π h and the width (spanwise direction) is Ly = 4π h/3.
Along the streamwise and spanwise directions periodic boundary conditions are
imposed for all variables. The top boundary of the channel is smooth with a no-stress
boundary condition, while the bottom boundary represents the bed where a no-slip
condition is imposed. The top and bottom boundary conditions for concentration state
that settling exactly balances resuspension. Thus, for the top and bottom boundaries
the imposed boundary conditions are

u= 0 at z= 0, (2.4)
∂u

∂z
= 0,

∂v

∂z
= 0 and w= 0 at z= h, (2.5)

−cVz =D
∂c

∂z
at z= 0 and z= h. (2.6)

An important consequence of assuming (2.6) is that the net volume concentration of
sediments within the domain is conserved. This allows for the statistically stationary
state of the turbulent flow.

2.1. Mean flow equations
The problem defined in § 2 has a fully developed statistically stationary state.
The mean flow equations obtained by averaging the momentum and concentration
equations over turbulence read

ν
d2ū

dz2
− d

dz
(u′w′)+ Rc̄gx = 0, (2.7)

1
ρw

dp̄

dz
+ d

dz
(w′2)+ Rc̄gz = 0, (2.8)

and

D
d2c̄

dz2
+ Vz

dc̄

dz
− d

dz
(c′w′)= 0. (2.9)

Here, the mean variables are represented by an overbar (·̄) and the fluctuations from
the mean are represented by a prime (·′). Averaging is performed over time and over
the two homogeneous directions x and y. Since there is no gravitational acceleration
along the spanwise direction (y), the mean flow is assumed two-dimensional with
v̄ = 0. Furthermore, owing to the incompressibility of the fluid and to the no-
penetration condition at the top and bottom boundaries, w̄= 0.

Observe that pressure appears only in (2.8), from which

p∗ = p̄+ ρww′2 + ρwRgz

∫ z

0
c̄(η) dη, (2.10)

where p∗ is the mean dynamic pressure that remains after subtracting the
hydrostatic pressure due to suspended sediments, and its only role is to ensure the
incompressibility condition.

From (2.7) the bottom shear stress τb can be expressed as

τb

ρw
= Rgx

∫ h

0
c̄(z) dz, (2.11)
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since the stress at the top boundary is zero and the Reynolds stress (u′w′) is zero at the
top and bottom boundaries. Based on (2.11), a velocity scale is defined as

u2
∗ =

τb

ρw
= Rgxc̄

(v)h, (2.12)

where

c̄(v) = 1
h

∫ h

0
c̄(z) dz (2.13)

is the volume-averaged sediment concentration.
It is apparent that for V = |V | = 0 the sediment concentration will remain well

mixed without any vertical gradient, i.e. dc̄/dz= 0. In this limit the problem reduces to
a channel flow driven by a uniform body force given by ρwRgxc̄(v).

Following the work by Geyer (1993), turbulent sediment fluxes can be approximated
as

−w′c′ =Dt
dc̄

dz
, (2.14)

where Dt = κu∗z(1 − z/H) is the turbulent diffusivity and κ is the constant in the
velocity log law (u+ = (1/κ) log(z+) + B). Equation (2.9) can be integrated to the
Rouse profile

c̄

c̄b
=
[
(H − z)/z

(H − b)/b

]Ro

, (2.15)

where Ro is the Rouse number given by Ro = Vz/κu∗, b = 0.01H and c̄b is the value
of concentration at z= b.

2.2. Dimensionless equations
The following scales are employed to define dimensionless variables: u∗ for velocity,
h for length, h/u∗ for time, c̄(v) for concentration of sediments, and ρwu2

∗ for pressure.
The dimensionless governing equations are

∂ũ
∂ t̃
+ ũ · ∇̃ũ=−∇̃p̃+ 1

Reτ
∇̃2ũ+ c̃ eg, (2.16)

∇̃ · ũ= 0, (2.17)

∂ c̃

∂ t̃
+ (ũ+ Ṽ) · ∇̃c̃= 1

ReτSc
∇̃2c̃, (2.18)

where eg = {1, 0,−1/ tan θ} and tan θ = gx/gz. Dimensionless variables are represented
by (·̃). The dimensionless numbers in (2.16)–(2.18) are the Reynolds number (Reτ ) and
the Schmidt number (Sc), which are defined as

Reτ = u∗h
ν

and Sc= ν

D
. (2.19)

The other two parameters involved in the model are the non-dimensional sediment
settling velocity |Ṽ | = Ṽ and the slope of the channel tan θ . Note that the above
mathematical model, with (2.6) as concentration boundary condition, considers
the sedimentation and resuspension fluxes to balance each other locally and
instantaneously. This indicates that sediments that settle on the bed are instantly
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Case Ṽ ũb Reb ˜̄cb ˜̄ct κ B

0 0.0 15.52 2794 1.00 1.00 0.410 5.50
1 0.01 16.13 2903 1.22 0.82 0.348 4.40
2 0.02 17.09 3076 1.55 0.58 0.272 1.82
3 0.025 18.06 3251 1.83 0.44 0.241 0.80
4 0.0255 18.15 3266 1.88 0.43 0.238 0.80
5 0.026 18.33 3300 1.93 0.42 0.237 0.80
6 0.0265 27.32 4900 4.78 0.043 — —
S1 0.025 15.62 2811 1.58 0.67 0.410 5.8
S2 0.1 15.63 2813 7.63 0.13 0.480 7.6

TABLE 1. List of simulations: Ṽ is the dimensionless settling velocity of the sediments,
ũb is the bulk velocity of the flow, Reb is the Reynolds number based on bulk velocity,
c̃b and c̃t are the dimensionless mean volume concentration of sediments at the bed
and the top boundary, and κ and B are the best fit constants for the velocity log law
(u+ = 1/κ log(z+) + B). Values of κ and B for case 6 are not shown as there is complete
turbulence suppression and the log-law velocity profile is absent.

resuspended back into the flow. This strong assumption implies that the flow is in the
bypass mode for all the cases to be simulated, even as we vary the settling velocity.
Note that in real turbidity currents, in order to strictly remain in the bypass mode, an
increase in settling velocity must be accompanied by a corresponding increase in the
driving force.

Typically the inclination of the continental slope on the ocean floor ranges from
1◦ to 10◦ (Pinet 2006), hence the slope of the channel in all the simulations is
fixed at θ = 5◦ and 1/ tan θ = 11.43. For the case of a field turbidity current of
height h = 20 m running on a slope of θ = 5◦ with a mean volume concentration
c̄(v) = 0.005 of sand particles in water (R = 1.65 and ν = 10−6 m2 s−1), the definition
in (2.12) gives u∗ = 0.38 m s−1. The corresponding V for sediment diameters 70 and
120 µm are V = 0.004 m s−1 and V = 0.01 m s−1 (Parker 2008), with corresponding
Ṽz = 1 × 10−2 and Ṽz = 2.6 × 10−2, respectively. The corresponding Reynolds number
(Reτ = 7.5× 106) is too large and cannot be studied via DNS. The present simulations
employ Reτ = 180, which results in a mature turbulent flow. Following Segre et al.
(2001) and Mucha & Brenner (2003), a rough approximation for sediment diffusivity
is D ≈ 10aV , where a is the radius of the sediment particles. Thus, for the above
example D ≈ 1.5–6.1 × 10−6 m2 s−1. It should be noted that D will depend on the
local concentration, concentration gradient and shear stress, but we suppress such
dependences in our present model. Based on the findings of Necker et al. (2005) and
Cantero et al. (2008b) that the simulation results of turbidity currents are insensitive to
the precise values of Sc as long as it is O(1), the present simulations employ Sc = 1.
Table 1 shows the list of cases studied.

The body force term in (2.16) can be redefined as

c̃ eg = (c̃av + c̃∗)
(
êx − êz

tan θ

)
, (2.20)

where c̃av is the instantaneous concentration averaged over planes parallel to the bed,
c̃∗ is the corresponding fluctuation from the average concentration field and êx and êz

are unit vectors in the x̃ and ỹ directions respectively. The terms in the above equation
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can be grouped as follows:

c̃ eg = (c̃av + c̃∗)êx − c̃av

tan θ
êz − c̃∗

tan θ
êz. (2.21)

The second term on the right in the above equation can be combined with the pressure
gradient term in the governing equation (2.16), and the rearranged pressure field is
given by

p̂= p̃ − 1
tan θ

∫ z̃

0
c̃av(η) dη. (2.22)

The present numerical simulations set the bed-normal pressure gradient to be zero at
the top and bottom boundaries, and the above definition of pressure is essential to
avoid formation of a spurious pressure boundary layer in the domain.

The bulk velocity of the flow is defined as follows:

ũb =
∫ 1

0
ũ(z̃) dz̃. (2.23)

The bulk Reynolds number can be defined as Reb = ub h/ν. The corresponding values
of bulk velocity ũb and bulk Reynolds number Reb for all the cases are listed in
table 1. For Reτ = 180 the bulk Reynolds number is of the order of 3500 and the
unstratified flow is turbulent.

The dimensionless governing equations (2.16)–(2.18) are solved using a dealiased
pseudo-spectral code (Canuto et al. 1988). Fourier expansions are employed in
the directions tangential to the bed (x–y), while a Chebyshev expansion is used
in the direction normal to the bed (z). A splitting method is used to solve the
momentum equation and the incompressibility condition. A low-storage mixed third-
order Runge–Kutta and Crank–Nicolson scheme is used for temporal discretization of
advection and diffusion terms. This scheme is carried out in three stages with pressure
correction at the end of each stage. Details on the implementation of this scheme
can be found in the work by Cortese & Balachandar (1995). The grid resolution is
(Nx,Ny,Nz)= (96, 96, 97).

3. Laminar solution
The laminar solution of the governing equations is of academic interest only. Note

that the laminar flow will not be realized since it is not possible for the finite-sized
sediments to stay in suspension without the presence of turbulent mixing and turbulent
sediment resuspension from the bed. The laminar solution is, however, useful in
establishing total suppression of turbulence.

The laminar flow is assumed to be one-dimensional, steady and uniform. This means
that ṽ = 0, w̃ = 0, ∂/∂ t̃ = 0, ∂/∂ x̃ = 0 and ∂/∂ ỹ = 0. In this case the governing
equations (2.16)–(2.18) simplify to

d2ũ

dz̃2
=−Reτ c̃ and −Ṽz

dc̃

dz̃
= 1

ReτSc

d2c̃

dz̃2
. (3.1)

Integrating (3.1) with boundary conditions (2.4)–(2.6) yields

c̃= A exp(−ṼzReτSc z̃), (3.2)
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and

ũ= A

Ṽ2
z ReτSc2

[− exp(−ṼzReτScz̃)− Reτ Ṽz Sc z̃ exp(−ṼzReτSc)+ 1
]
. (3.3)

The constant A cannot be determined using the boundary conditions. The amount of
sediments present in the flow at steady state depends on the initial condition. Thus, the
system is closed with the criterion ∫ 1

0
c̃ dz̃= 1, (3.4)

which gives

A= ṼzReτSc

1− exp(−ṼzReτSc)
. (3.5)

The limiting case of Ṽ = 0 leads to a uniform concentration profile and a parabolic
velocity profile

ũ=−Reτ
2
(z̃2 − 2z̃). (3.6)

In the other limiting case of very large settling velocity, i.e. Ṽ→∞, the sediments
settle to the bottom and the concentration profile is given by a Dirac delta function
located at z̃→ 0+. It can be shown from (3.3) that ũmax→ 0 as Ṽz→∞, and therefore
the flow ceases to exist. Figure 2 shows the laminar velocity and concentration profiles
for Ṽ = 0.0265, 1/ tan θ = 11.43, Reτ = 180 and Sc= 1.

4. Results
As mentioned before, in turbidity currents suspended sediments play a dual role of

both driving and stratifying the flow. Under extreme situations, stratification can lead
to complete turbulence suppression. At this state, the flow loses its ability to keep
sediments in suspension and it ceases to exist due to complete sedimentation. Previous
research has highlighted the existence of a critical settling velocity beyond which
complete turbulence suppression occurs (Cantero et al. 2009a,b), but the underlying
mechanisms remain to be explored.

Table 1 lists all the different simulations analysed in this work to address the
mechanism of turbulence damping in turbidity currents. Six different cases of stratified
flows are considered. Cases 1–6 correspond to simulations where the settling velocity
of sediments is increased from Ṽ = 1×10−2 to Ṽ = 2.65×10−2. Case 0, with Ṽ = 0, is
the reference case, since its solution corresponds to unstratified turbulent channel flow
driven by a uniform body force. As shown in figure 2(a), the concentration profile for
case 0 is uniform. The corresponding velocity profile is shown in figure 2(b), and in
figure 3 in wall units as u+ = ū/u∗ versus z+ = zu∗/ν, where very good agreement
is observed with the law of the wall (u+ = z+) for z+ < 5 and with the log law
(u+ = 1/0.41 log(z+) + 5.5) for z+ > 30. Table 1 also reports cases S1 and S2, which
correspond to flows where the stratification effect of suspended sediments is turned off
by suppressing relevant terms in the momentum equation.

The results presented in this work represent long-term asymptotic stationary states
(statistically steady states) of the flow. Two different initial conditions were considered
in this study to address the sensitivity of the stationary state to the initial conditions:
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FIGURE 2. (Colour online) (a) Mean concentration profiles. (b) Mean velocity profiles. The
laminar solution is computed for Ṽ = 0.0265, 1/ tan θ = 11.43, Reτ = 180 and Sc = 1 (same
set of parameters for case 6). The inset in (a) compares mean concentration profiles for cases
1 and 5 with their Rouse profiles. Refer to (2.15) for the expression for Rouse profiles. It
should be noted that κ in the expression of Rouse profiles is not the von Kármán constant but
the modified constant based on best fit to the velocity log law. Refer to table 1 for values of κ .

Case 0
Case 1
Case 5
Case 6

Log law
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10
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100 10110–1 102

FIGURE 3. (Colour online) Mean velocity profiles in wall units. The two log laws shown
correspond to best fit values presented in table 1 for cases 0 and 5.

(i) unstratified turbulent channel flow with uniform concentration of sediments (the
stationary state of case 0); and (ii) an instantaneous velocity and concentration
fields of a nearby turbulent case taken during its stationary state (for example, an
instantaneous flow field of the stationary state of case 2 is used as initial condition for
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case 3). Several of the cases in table 1 were simulated with these two initial conditions.
It was observed that the approach to the stationary state from the initial condition
is oscillatory. Quantities such as near-bed horizontally averaged concentration of
sediments evolve from the initial condition to the final stationary value displaying
overshoots and undershoots. The farther the initial condition is from the stationary
value, the larger these overshoots and undershoots are. Furthermore, it is observed
that the oscillatory behaviour of the solution has an impact on the final state only
for the cases where the sediment settling velocity is just below the critical value for
complete turbulence suppression (only case 5 in the present investigation). In this
sense, the final asymptotic state can be taken to be insensitive to the precise initial
condition employed. The results presented here for case 5, which falls in this small
sensitive range, were obtained by minimizing the initial overshoot of the solution. The
oscillatory behaviour of the solution at early times will not be discussed here.

4.1. Mean values and turbulent fluxes in stratified flows

The mean concentration profiles of selected cases given in table 1 are shown in
figure 2(a). As the settling velocity of sediments increases, the resulting concentration
profile no longer remains uniform and increasingly deviates from the reference
profile of case 0. The resulting non-uniform mean concentration of sediments is
skewed towards the bed, which affects the flow in two ways. First, the streamwise
driving force, represented by the first term on the right-hand side of (2.21), is also
correspondingly skewed towards the bed. Second, the stable stratification induced by
concentration gradients tends to dampen turbulence, and this effect is captured by the
last two terms on the right-hand side of (2.21). As will be discussed below, the effect
of a skewed driving force is not as strong, and the stratification effect is the dominant
mechanism responsible for complete turbulence suppression.

Figure 2(a) shows a clear change of regime from cases 5 to 6. While case 5
shows a well-mixed concentration profile, the concentration profile for case 6 is nearly
zero in the top part of the channel and presents large values in the near-bed region.
Corresponding mean velocity profiles are shown in figure 2(b), and they also show a
clear change of regime from cases 5 to 6. While the velocity profile for case 5 shows
a small deviation from the turbulent velocity profile of case 0, the velocity profile for
case 6 shows less mixing and resembles a laminar profile. In the inset of figure 2(a)
mean concentration profiles of cases 1 and 5 are compared with their corresponding
Rouse profiles. Rouse profile (2.15) is an approximation for the concentration profile
achieved by characterizing the turbulent mixing term in (2.9) by eddy diffusivity.
Rouse profiles of cases 1 and 5 are evaluated using the modified von Kármán constant
κ which is given in table 1. This quantifies the effect of stratification on the turbulent
mixing in the channel. From the figure it is clear that Rouse profiles over-predict the
turbulent mixing in stratified flows, leading to fuller concentration profiles. Figure 3
presents the velocity profiles in wall units on log-linear scales. Also included in this
figure is the logarithmic law of the wall u+ = 1/κ log(z+) + B for cases 0 and 5 with
adjusted constants. The best fit values of κ and B for all cases are listed in table 1.
The velocity profiles for cases 0–5 show a definite turbulent nature with a definite
logarithmic region for z+ > 30. The deviation from the fully turbulent logarithmic law
(case 0) is only in terms of the constant values. This change in the constants can be
attributed to the damping of turbulence because of stratification (Cantero et al. 2009a).
Case 6, on the other hand, does not display a logarithmic region. Figure 2(a,b) also
shows the laminar solution computed for the same set of parameters used for case 6.
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FIGURE 4. (Colour online) Variation in top mean velocity ¯̃ut, mean concentration of
sediments at the bed ¯̃cb and r.m.s. fluctuations of concentration of sediments at the bed
c̃rms,b with settling velocity. There is a clear change of flow regime about the critical settling
velocity which lies between the corresponding values for cases 5 and 6.

Almost perfect agreement is observed between case 6 and the corresponding laminar
solution.

The nature of the change of flow regime can be further explored in figure 4, where
the mean velocity at the top boundary (ũt) and the mean concentration at the bed
(c̃b) are plotted as a function of settling velocity of sediments. Below the critical
value, increase in the settling velocity of sediments results in modest increase in the
net flow rate, as indicated by the increase of the mean velocity at the top stress-
free boundary. Around the critical settling velocity there is an abrupt increase in ũt

signalling the change of flow regime. A similar behaviour can also be observed in the
mean concentration of sediments at the bed, which increases slowly for below-critical
values of settling velocity. Across the critical value, an abrupt increase in the bottom
concentration can be observed.

The balance between the settling flux of sediments (Ṽzc̃) and the turbulent flux of
sediments (w̃′c̃′) can be obtained from (2.9) as

Ṽz
¯̃c= c̃′w̃′ − 1

Re Sc

d ¯̃c
dz̃
. (4.1)

Increase in the settling velocity increases the settling flux of sediments. In order to
keep the sediments well mixed in the flow (d ¯̃c/dz̃ ≈ 0), there must be a proportional
increase in the turbulent flux of sediments. In other words, in a well-mixed channel
the ratio of turbulent flux to settling flux of sediments approaches 1. The relative
importance of turbulent flux of sediments can be seen in figure 5(a), which shows
the variation of the ratio of turbulent flux to settling flux in the bed-normal direction.
From figure 5(a) it is evident that the increase in turbulent flux is not proportional
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FIGURE 5. (Colour online) (a) Profiles of the ratio of sediment turbulent flux to settling flux.
(b) Profiles of Reynolds stress. Results from Kim, Moin & Moser (1987) are also plotted to
validate case 0.

to settling flux for all the cases shown. This ratio shows a decreasing trend with
increasing settling velocity of sediments, but the decrease is not very sensitive for
cases 1–5. Also, the decrease is not uniform throughout the channel: it is more
pronounced near the top boundary than near the bed. This asymmetry is due to
reduction of turbulent transport from near the bed, where turbulence production occurs,
to the upper part of the channel. For case 6 the turbulent flux of sediments is zero.
This trend shows the effect of stratification but it cannot explain the sudden transition
seen at the critical settling velocity.

Figure 5(b) shows profiles of the Reynolds stress ũ′w̃′. For cases 1–5 the small
reduction in Reynolds stress with increase in settling velocity of sediments suggests
that the effect of stratification is weak. However, with further increase in settling
velocity of sediments above the critical value, a dramatic shut-off is seen in the
Reynolds stress. The corresponding DNS results of Kim et al. (1987) for pure channel
flow are also shown in figure 5(b). The perfect agreement with the results for case 0
serves as validation of the simulation procedure and the resolution employed in this
work.

Turbulent intensity or root mean square (r.m.s.) velocity fluctuations (ũrms =
√

ũ′2)
are shown in figure 6. The variation of all r.m.s. velocity fluctuations is very
small for cases 1–5. For case 6, w̃rms and ṽrms are zero, while the streamwise
velocity fluctuations ṽrms are finite but small. Thus, for case 6 the stratification
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FIGURE 6. (Colour online) Profiles of r.m.s. velocity fluctuations: (a) ũrms; (b) w̃rms; (c) ṽrms.
Corresponding profiles from Kim et al. (1987) are also presented as validation for case 0.

effects are successful in completely suppressing the wall-normal and spanwise velocity
fluctuations and thereby all wall-normal and spanwise momentum and mass transport.
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However, some sheet-like streamwise velocity fluctuations persist, contributing to ũrms.
Again, the corresponding DNS results of Kim et al. (1987) for unstratified channel
flow are also shown in figure 6, which are in perfect agreement with the results for
case 0.

These results lead to the viewpoint that there exists a critical value for settling
velocity of sediments, and even a small increase beyond this value will cause a sudden
change in the flow regime. It will be shown in the following sections that the flow
for cases 1(Ṽs = 0.01)–5 (Ṽs = 0.026) remains turbulent, while case 6 (Ṽs = 0.0265)
undergoes complete turbulence suppression.

4.2. Isolated effects of non-uniform streamwise forcing
One of the effects of settling sediments is to focus the driving force close to the
bed. In order to understand the isolated effect of the non-uniform driving force on
flow turbulence, some simulations were performed where the stratification effect on
the flow is turned off. This is achieved by neglecting the body force term (the
last two terms in (2.21)) in the bed-normal (z-direction) momentum equation. These
simulations are listed in table 1 as cases S1 and S2. The settling velocity of sediments
in case S1 is exactly the same as case 3 and therefore their results can be compared
to understand the effect of stratification on turbulent flows. As will be shown in
this section, the abrupt suppression of turbulence in the flow does not occur without
the influence of stratification. In order to clearly demonstrate this feature, case S2
considers sediments with large settling velocity of nearly four times the critical settling
velocity for complete turbulence suppression identified in the previous section.

In figure 7(a,b) the mean concentration and mean velocity profiles for the cases S1
and S2 are compared with those of cases 0 and 3. Case 0 corresponds to a uniform
driving force and serves as the reference case. As can be expected, with increasing
settling velocity the mean concentration profiles also skew toward the bed for cases S1
and S2. The skewness of these profiles is, however, smaller than that of the profiles in
figure 2(a). Since the total volume-averaged concentration of sediments is constrained
to be a constant, the total streamwise driving force remains the same in all cases,
but the strong bed-normal variation in the streamwise driving force for case S2 is
reflected in its concentration profile. Concentration profiles of cases S1 and S2 are also
compared with their corresponding Rouse profiles (2.15) in the inset of figure 7(a).
The Rouse profiles show higher gradients as compared to the corresponding profiles
obtained from the DNS. This suggests that Rouse profiles under-predict the amount of
turbulent mixing in these cases.

The isolated effect of the skewed driving force on the mean turbulent velocity
profile is shown in figure 7(b). In all the cases listed in table 1 the dimensionless
velocity gradient at the bottom boundary is Reτ by the definition of u∗ (see (2.12)).
As seen in figure 7(b) for cases S1 and S2, the effect of skewed forcing is to
make the velocity profile fuller by reducing the velocity gradient away from the bed.
The corresponding bulk velocity for cases S1 and S2 slightly increases with settling
velocity (see table 1). On the other hand, the mean streamwise velocity at the top
(location of the maximum value) slightly decreases. Nevertheless, the isolated effect
of skewed driving force on the mean velocity profiles is negligible when compared to
the effect of stratification seen for case 3 in figure 7(b) and for all cases shown in
figure 2(b).

As mentioned previously, in order to keep the sediments well mixed in the channel
the ratio of turbulent flux to settling flux of sediments must approach one. Figure 8(a)
shows the ratio of turbulent flux to settling flux of sediments for cases S1, S2 and 3.
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FIGURE 7. (Colour online) (a) Mean concentration profiles. (b) Mean velocity profiles.
Cases S1 and S2 do not consider stratification effects. The inset in (a) shows the Rouse
profiles for cases S1 and S2. Refer to (2.15) for the expression of Rouse profiles. Again κ
in the expression of Rouse profiles is not the von Kármán constant but the modified constant
based on best fit to the velocity log law. Refer to table 1 for values of κ .

It can be observed in this figure that the ratio is larger for cases S1 and S2 than for
case 3, and very close to one. Specifically, for case S2 the ratio practically reaches
unity close to the centre of the channel. The ratio decreases and reaches zero at
the boundaries by definition of turbulent fluxes. Similar behaviour can be seen in
figure 8(b), where the streamwise r.m.s. velocity fluctuations are shown. The damping
effect is negligible for case S1. A decrease of ∼10 % can be observed in the peak
value for case S2. This effect, however, can also be considered to be minor when
compared to case 6 in figure 6(a). Similar behaviours are observed for spanwise and
bed-normal r.m.s. velocity fluctuations and are not shown here.

These results show clearly that turbulent mixing is fully active for cases S1 and S2,
thus reinforcing the idea that the isolated effect of skewed driving force on turbulence
damping is negligible as compared to the effect of stratification. The focusing of the
driving force close to the bed induces a modest reduction in the turbulent intensities,
but the turbulent nature and mixing capability of the flow prevail. With significantly
larger settling velocities than that of case S2, as the driving force moves very close to
the bed, where the viscous effects dominate, total suppression of turbulence could still
be achieved even in the absence of stratification effects.
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FIGURE 8. (Colour online) (a) Ratio of sediment turbulent flux to settling flux. (b) Profiles of
streamwise r.m.s. velocity fluctuations. Cases S1 and S2 do not consider stratification effects.

4.3. Turbulent kinetic energy balance
The dimensionless turbulent kinetic energy (TKE) equation for the present statistically
stationary and horizontally homogeneous flow can be expressed as

P̃ − ε̃ + d
dz̃

[
1
Reτ

dk̃

dz̃
− w̃′

(
p̃′ + 1

2
ũ′iũ′i

)]
=−F̃x + F̃z

tan θ
, (4.2)

where the TKE k̃, the TKE production P̃ , the TKE dissipation ε̃, and the turbulent
flux of sediments F̃i are expressed as

k̃ = 1
2

ũ′iũ′i, P̃ =−ũ′iũ′j
∂ ũi

∂ x̃j
, ε̃ = 1

Reτ

∂ ũ′i
∂ x̃j

∂ ũ′i
∂ x̃j
, F̃i = ũ′ic̃′. (4.3)

Figure 9(a,b) shows profiles of TKE production and dissipation for selected cases in
table 1. Production has a pronounced peak close to the bed. For case 0 the peak is at
z̃ = 0.067, which corresponds to z+ ∼ 12, and its dimensionless value is ∼40, which
correspond well to reported results for unstratified channel flow (Kim et al. 1987). The
influence of non-zero settling velocity on the location of production peak is small: the
peak tends to slightly shift away from the bed. Also, the peak value of production
is seen to decrease with increase in settling velocity of sediments. There is ∼13 %
reduction in production peak from cases 0 to 5. Two regions of opposite trends can be
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FIGURE 9. (Colour online) (a) Turbulent kinetic energy shear production. (b) Turbulent
kinetic energy dissipation.

observed in figure 9(a). In the region between the bed and z̃∼ 0.1 there is damping of
TKE production with increase in settling velocity of sediments. Beyond this location
(z̃ > 0.1) rise in the TKE production is observed with increase in settling velocity of
sediments. The influence of stratification caused by suspended sediments on the TKE
dissipation is not as pronounced as for production.

Figure 9(a,b) shows the results for case 6, which corresponds to currents driven by
sediments with supercritical settling velocity. Both TKE production and dissipation are
identically zero throughout the channel. Also plotted in these figures are the results
for case S2 corresponding to the larger settling velocity with stratification effects
turned off. Consistent with the other turbulent quantities, some reduction in both TKE
production and dissipation is observed, but the flow still remains vigorously turbulent.

The contribution of the suspended sediments to the TKE budget (right-hand side
terms in (4.2)) is plotted in figure 10(a). Suspended sediments act as a sink and
damp TKE. This amount of TKE is expended in keeping the sediments suspended.
Figure 10(a) shows that TKE damping, induced due to sediments, peaks near the bed
at about the location where the TKE production peaks, but the peak is broader as the
decay of TKE damping away from the peak into the channel is slower than the TKE
production. This behaviour can be clearly seen in figure 10(b), where the ratio of TKE
damping to TKE production is shown. The ratio is only a few per cent in the region
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FIGURE 10. (Colour online) (a) Sediment-induced damping terms in the turbulent kinetic
energy budget. (b) Ratio of sediment-induced damping to production of turbulent kinetic
energy (TKE).

where both the production and damping peak, but larger away from the peak where
production becomes very small.

The global balance of TKE in the flow can be obtained by integrating (4.2) in the
bed-normal direction,

P̃− ε̃ + 1
Reτ


[

dk̃

dz̃

]1

0

+ ζ

tan θ

= β + Ṽz

tan θ
, (4.4)

where we have used the fact that F̃z = w̃′c̃′ = Ṽz
¯̃c + 1/(ReτSc) d ¯̃c/dz̃ (refer to (4.1)),

and

P̃=
∫ 1

0
P̃ dz̃, ε̃ =

∫ 1

0
ε̃ dz̃, β =−

∫ 1

0
ũ′c̃′ dz̃, ζ =

¯̃cb − ¯̃ct

Sc
. (4.5)

Here ¯̃ct and ¯̃cb are the mean concentration on the top boundary and bed, respectively.
The first two terms on the left-hand side of (4.4) are the bulk TKE production and
the bulk TKE dissipation. The two terms on the right-hand side of (4.4) are the bulk
sediment-induced damping of TKE and represent the total amount of TKE spent to
keep the sediments suspended and well mixed in the bed-normal direction. The term
β arises from the term F̃x in (4.2). The second damping term is the manifestation of
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Case k̃ P̃ ε̃ β Ṽz/ tan θ ζ/(Reτ tan θ) β tan θ/Ṽz (Ṽz/ tan θ+β)/P̃
1 1.71 6.34 6.04 0.0358 0.114 0.0254 0.31 0.024
2 1.62 6.54 6.27 0.0772 0.228 0.0619 0.34 0.046
3 1.58 6.57 6.23 0.1040 0.285 0.0877 0.36 0.059
4 1.64 6.54 6.20 0.1100 0.291 0.0918 0.38 0.061
5 1.71 6.59 6.23 0.1170 0.296 0.0958 0.40 0.063

TABLE 2. Turbulent kinetic energy budget of cases listed in table 1.

the (F̃z/ tan θ) term in (4.2). The last term on the left-hand side of (4.4) comprises
two effects: bulk diffusion of TKE and bulk hydrodynamic diffusion of sediments. For
large Reynolds numbers this term becomes negligible as compared to the other terms
in the budget.

The terms involved in the global balance of TKE are shown in table 2. As seen from
the table, there are two terms which contribute to TKE production. These terms are the
TKE production P̃, and the bulk hydrodynamic sediment–sediment and sediment–bed
interactions (ζ/(Reτ tan θ)). Although the introduction of (ζ/(Reτ tan θ)) into the bulk
TKE equation is through a damping term F̃z, from its contribution to the balance it
can be thought of as a mechanism that supports TKE. At large Reynolds numbers,
however, this term becomes negligible. Table 2 shows that the sediment-induced
damping terms amount to only 2–6 % of the TKE production. Observe that for
case 5 the sediment-induced damping of TKE is 6.3 %, while for case 6, with a
settling velocity only 2 % larger than case 5, the sediment-induced damping of TKE is
complete.

The term β is ∼30–40 % of (Ṽz/ tan θ) over the range of settling velocities
considered. Assuming that the scaling of β with (Ṽz/ tan θ) remains valid over a wide
range of Reynolds numbers of practical interest, then the overall suspended-sediment-
induced TKE damping can be expressed as some factor of (Ṽz/ tan θ). Thus, the entire
damping process can be represented by the parametric combination of slope of the
channel (θ ) and settling velocity of the sediments (Ṽz), and the combination takes the
form Ṽz/ tan θ . Recently, Cantero, Shringarpure & Balachandar (2012b) have suggested
that there exists a universal criterion for total turbulence suppression. The authors
have identified that the extent of turbulence damping can be quantified based on the
parametric grouping of settling velocity of sediments (Vz) and slope of the channel
(θ ), which combine to give Ṽz/ tan θ . Therefore, at any given Reτ there exists a critical
value of Ṽz/ tan θ beyond which complete turbulence suppression occurs. This also
means that for sediments of a certain settling velocity there exists a critical value
for channel slope below which complete turbulence suppression occurs. Cantero et al.
(2012a) and Talling et al. (2007) have shown that a change in the slope of the channel
can result in complete suppression of turbulence, leading to massive sedimentation.

It is very intriguing that complete turbulence suppression could be abruptly
produced by the small values of sediment-induced TKE damping shown in table 2.
What causes the collapse of turbulence and how the damping terms initiate the process
of complete turbulence suppression are the core questions.

4.4. Energy spectra
In order to explore the dependence of suspended sediments and their dominant
stratification effect on flow scales, the x and y energy spectra of the streamwise,
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FIGURE 11. (Colour online) Energy spectra at z+ ∼ 12 (buffer layer), z+ ∼ 40 (logarithmic
layer) and z+ ∼ 150 (away from the bed): (a–c) x-direction spectra, (d–f ) y-direction spectra.

spanwise and bed-normal components of velocity are considered. Comparing the
energy spectra of cases 0 and 5 (reference case and largest settling velocity before
complete turbulence suppression, respectively) gives an idea of the level to which the
different scales of turbulence are influenced by the suspended sediments. Figure 11
presents the energy spectra of all the components of velocity at three different
distances away from the bed: z+ ∼ 12 (buffer layer), z+ ∼ 40 (logarithmic layer)
and z+ ∼ 150 (away from the bed). Figures 11(a)–11(c) correspond to x-spectra and
figures 11(d)–11(f ) correspond to y-spectra. It is worth noticing that all the spectra
show several decades of energy decay, indicating adequate spatial resolution of the
entire range of turbulent scales.

Close to the bed (buffer and logarithmic layers) the x-spectra of streamwise
velocity (Euu(kx)) for cases 0 and 5 virtually overlap, suggesting very little influence
of suspended sediments. In contrast, the x-spectra of spanwise and bed-normal
components of velocity (Evv(kx) and Eww(kx)) are damped over all wavenumbers in
these regions. The level of damping is somewhat larger for kx < 7. The y-spectra
show subtle differences with respect to the x-spectra in the buffer and logarithmic
layers. For low wavenumbers (ky < 10), Evv(ky) and Eww(ky) display similar influence
from suspended sediments while a slight damping is seen for Ẽuu(ky). For high
wavenumbers (ky > 10), negligible damping is observed for all three energy spectra.

Away from the bed (z+ > 150), the influence of suspended sediments on the
energy spectra is more substantial. The x-spectra and y-spectra of all three velocity
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components show significant reduction in the energy content for case 5. The general
trend observed in the regions close to the bed prevails. That is, the effect of suspended
sediments is more pronounced for the spanwise and bed-normal velocity components
than for the streamwise component and the decay is more pronounced at lower
wavenumbers than at higher wavenumbers.

The following deductions can be made from the energy spectra. First and foremost,
stratification affects the large and moderate scale eddy structures of the flow more
than the small (Kolmogorov) scale eddies. Also, the energy content of the spanwise
and bed-normal velocity fluctuations is damped much more than the streamwise
component, suggesting that stratification has a stronger effect on streamwise oriented
vortical structures. Since turbulence production predominantly occurs in the region
of the buffer layer, it can be argued that while stratification has a direct influence
on turbulence production at the large and intermediate scale motions in the near-bed
region, it also has a strong effect on turbulence transport to the upper regions of
the flow, which results in substantial reduction in the spectra of all three velocity
components in the region away from the bed. The process of complete turbulence
suppression starts with damping of the large and intermediate scale eddies in the
near-bed region, where the source of sustaining turbulence lies. By damping such
eddies, the turbulence generation mechanisms are overpowered and eventually lead
to the observed abrupt turbulence suppression. Section 4.7 will focus on turbulent
flow structures to support this hypothesis and show that the mechanism responsible
for complete turbulence suppression is the damping of near-bed streamwise oriented
eddies.

4.5. Reynolds stress balance
The puzzling aspect of the observed complete turbulence suppression is its abrupt
onset with increasing settling velocity of sediments. In fact, as was shown in table 2,
just prior to onset of complete turbulence suppression, the sediment-induced damping
of TKE accounts for only a few per cent of TKE production. Since Reynolds stress
ũ′w̃′ plays a crucial role in TKE production, this section further probes into how
Reynolds stress balance and distribution are influenced by increasing the settling
velocity of sediments.

For the present problem, the stationary state of the Reynolds stress balance in
dimensionless form can be expressed as

P̃rey − Φ̃13 + ∂ ũ′w̃′w̃′

∂ z̃
+ Π̃13 − 1

Reτ

∂2ũ′w̃′

∂ z̃2
=− F̃x

tan θ
+ F̃z, (4.6)

where

P̃rey = w̃′w̃′
∂ ¯̃u
∂ z̃
, Φ̃13 =−2

∂ ũ′1
∂ x̃j

∂ ũ′3
∂ x̃j

, Π̃13 =
{

w̃′
∂ p̃′

∂ x̃
+ ũ′

∂ p̃′

∂ z̃

}
. (4.7)

The first term on the left-hand side is production, the second term is dissipation, and
the last three terms are the turbulent, pressure and viscous transport. The terms on the
right-hand side are the sediment-induced damping of Reynolds stress. These damping
terms arise out of the fluctuations in concentration and velocity fields.

Figure 12 shows the Reynolds stress production and sediment-induced damping for
selected cases from table 1. Reynolds stress production is not strongly influenced
by settling velocity of sediments. The production peak remains nearly the same.
Interestingly enough, Reynolds stress production slightly increases away from the peak
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FIGURE 12. (Colour online) (a) Reynolds stress production. (b) Sediment-induced damping
of Reynolds stress.

with increasing settling velocity of sediments. This can be explained by observing
that production depends on both the r.m.s. bed-normal velocity fluctuations w̃rms and
the mean velocity gradient ∂ ũ/∂ z̃. While w̃rms decreases with increasing sediment
settling velocity, the corresponding mean velocity gradient increases to compensate. In
contrast, the sediment-induced damping of Reynolds stress shows significant increase
with increasing settling velocity of sediments.

The global balance of Reynolds stress in the channel is obtained by integrating the
Reynolds stress equation (4.6) in the bed-normal direction,

χ −
∫ 1

0

(
Φ̃13 − Π̃13

)
dz̃+ 1

Reτ

−
[

dũ′w̃′

dz̃

]1

0

+ ζ
= β

tan θ
+ Ṽz, (4.8)

where

χ =
∫ 1

0
P̃rey dz̃.

Here again, (4.1) has been used to rewrite F̃z or c̃′w̃′ as Ṽz
¯̃c + 1/(ReτSc) ∂ ¯̃c/∂z. The

terms involved in the bulk Reynolds stress balance are tabulated in table 3. Clearly,
the most important sediment-induced damping term is β/ tan θ . Observe that Ṽz is
∼2 % of β/ tan θ for all cases considered. As in the TKE balance, ζ is a production
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Case χ Ṽz β/ tan θ ζ/Reτ Ṽz tan θ/β (Ṽz+β/ tan θ)/χ

1 4.24 0.01 0.412 0.00222 0.024 0.099
2 4.53 0.02 0.880 0.00543 0.022 0.20
3 4.57 0.025 1.186 0.00767 0.021 0.265
4 4.61 0.0255 1.254 0.00803 0.020 0.28
5 4.68 0.026 1.330 0.00840 0.020 0.29

TABLE 3. Reynolds stress budget of cases listed in table 1.

term. Therefore, the sediment-induced damping of Reynolds stress is represented
by β/ tan θ + Ṽz. Unlike in the TKE balance, here the sediment-induced damping
of Reynolds stress for case 5 is ∼30 % of production. The fractional damping of
Reynolds stress by sediments is much stronger than the damping of TKE. Thus, the
pathway to turbulence suppression is perhaps through modulation of Reynolds stress
producing turbulent events.

4.6. Reynolds stress events
Recent research efforts (Bernard, Thomas & Handler 1993; Brooke & Hanratty 1993;
Zhou, Adrian & Balachandar 1996; Zhou et al. 1999) have begun to shed light on
how turbulence sustains itself even in a perfectly smooth-walled channel. One of the
proposed mechanisms relies on the auto-generation of vortical structures and their
arrangement as streamwise aligned packets (Zhou et al. 1996, 1999). Hairpin and other
quasi-streamwise vortices in a turbulent wall layer generate secondary, tertiary and
additional vortical structures over time only when their amplitude is above a certain
threshold. The implication is that if the strength of the vortical structures falls below
a certain threshold they lose their ability to generate the next generation of vortical
structures and thus fail to sustain turbulence.

This line of argument is pursued in this section to explore the effect of suspended
sediments on the typical Reynolds stress producing events. For the different cases
considered, at different locations from the bed, a quadrant analysis of the streamwise
and bed-normal velocity fluctuations is performed to obtain a statistical picture of
the Reynolds stress distribution. The probability P(ξ) = Pr{ũ′w̃′ = ξ} that the local
instantaneous Reynolds stress takes a value ξ is computed from the ũ′ − w̃′ scatter
plot. Traditionally the ũ′ − w̃′ scatter plot is divided into four quadrants, of which the
second and fourth quadrants (Q2 and Q4) contribute to negative Reynolds stress and
have been recognized to be the most significant. A Q2 event corresponds to ũ′ < 0 and
w̃′ > 0, while a Q4 event corresponds to ũ′ > 0 and w̃′ < 0. A Q4 event will bring
the higher-momentum fluid from the bulk flow close to the bed, while a Q2 event will
cause low-momentum fluid present close to the bed to be ejected into the bulk flow.
Vertical mixing due to Q2 events leads to resuspension of settling sediments. Also,
Q2 events correspond to quasi-streamwise and hairpin vortices in the flow which are
responsible for sustaining turbulence. Therefore negative Reynolds stress contributions
from Q2 and Q4 events are separated when computing the probability.

Figure 13 shows |ξP(ξ)| versus the Reynolds stress value (ξ ) for the second
quadrant events at z̃+ = 18 for cases 0 and 5. Results for other bed-normal locations
and for other cases are similar and therefore not shown. The Reynolds stress at
which |ξP(ξ)| reaches a peak value is denoted by ξm, which can be interpreted as
the turbulent event that makes the largest contribution to the time and horizontally
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FIGURE 13. (Colour online) (a) Weighted probability density function of Q2 events. (b)
Probability density function of Q2 events. The bed-normal location is z+ ∼ 18. ξm is the
maximizing Reynolds stress Q2 event and its value for cases 0 and 5 is shown in (a). The
inset in (a) highlights the change in the maximizing Reynolds stress Q2 event from cases 0 to
5. The insets in (b) show the region around the most probable Q2 event (ξp), which does not
change from cases 0 to 5, and the bottom part of the curves.

averaged mean Reynolds stress. For case 0, contribution to the mean Reynolds stress
is maximized for ξm = −1.26 and the corresponding value of the turbulent event
(fluctuating velocity) is ũ′m = (−2.42, 0.0, 0.521). The conditionally averaged flow field
(conditional eddy) corresponding to this Reynolds stress event is a hairpin vortex (see
Adrian 1994). So the question of turbulence sustainment can be posed in terms of
the ability of this Reynolds stress maximizing hairpin vortex to produce and populate
the subsequent generations of vortical structures (Adrian 2007). In the clear fluid
case (case 0) the turbulent vortical structures are self-sustaining and the turbulence
generation continues uninterrupted.

For case 5 the peak contribution to Reynolds stress occurs at a lower value of
ξm =−0.68 and the corresponding turbulent velocity event is ũ′m = (−2.10, 0.0, 0.323).
As is seen in figure 5(b), the mean Reynolds stress for z̃+ = 18 (peak location)
decreases by only ∼17 % from cases 0 to 5. However, the strength of the Reynolds
stress maximizing event ξm has decreased to ∼46 %. More importantly, this decrease
in Reynolds stress comes about by a 38 % reduction in the bed-normal velocity
fluctuations.



26 M. Shringarpure, M. I. Cantero and S. Balachandar

Instead of |ξP(ξ)| one can also look at the Reynolds stress in the second quadrant
that maximizes P(ξ). Such an event can be denoted by ξp and interpreted as the
most likely Reynolds stress event (as opposed to one that maximizes the contribution
to the mean Reynolds stress). The most likely Reynolds stress event computed in
this manner for case 0 is given by ξp = −0.167, ũ′p = (−0.505, 0.00, 0.331). The
corresponding values for case 5 are ξp = −0.167, ũ′p = (−0.728, 0.00, 0.229). The
most likely Reynolds stress event does not change with settling velocity, but the
turbulent velocity vector changes. From cases 0 to 5 there is 44 % increase in
streamwise velocity fluctuations, and a decrease of 33 % in the bed-normal velocity
fluctuations. Thus, increase in settling velocity of sediments results in reorientation of
the most likely Q2 Reynolds stress event vector while keeping the intensity of the
event constant.

Zhou et al. (1999) considered conditionally averaged vortical structures in
unstratified channel flow obtained for different levels of turbulent Reynolds stress
events given by α2ξm. As the constant α varied from 0.25 to 3.0, the intensity of
the initial vortical structure increased. They observed that only for α greater than
2.0 was the conditional vortical structure able to auto-generate future generations of
hairpin and quasi-longitudinal vortex structures. Initial vortical structures of strength α
less than 2.0 were unable to auto-generate new vortical structures. From figure 13(b)
the probability of Reynolds stress events of strength at least four times ξm can be
computed as P(ξ < −5.04). For case 0 this probability is 4 % at z+ ≈ 18 and it is
sufficient to spawn the next generation of vortical structures and maintain turbulence
in the flow. For case 5 the probability P(ξ < −5.04) has decreased to 2 %. Note that
although ξm for case 5 is lower than ξm for case 0, here the threshold Reynolds stress
for regeneration is maintained at 5.04.

It is important to mention that the auto-generation criterion given by Zhou et al.
(1999) was for unstratified single-phase channel flow and hence cannot be directly
extended to stratified multiphase flows. As discussed above, the effect of increased
settling velocity of sediments is not only to decrease ξm, but also to reorient the
event vector ũ′m to be increasingly parallel to the bed. As the event vector flattens
it is probable that even higher initial vortex strength will be required to spawn the
next generation of structures. Thus the value of α is likely to be different and much
greater than 2 for auto-generation in the case of flows with suspended sediments. The
results of Zhou et al. (1999) illustrate the dependence of the threshold amplitude (for
regeneration of vortical structures) on the character of the event and thereby on the
initial vortex structure. It can therefore be conjectured that when the settling velocity
of sediments is increased above the threshold, the change in the spatial structure
of the vortical structures combined with the reduction in their strength precludes
sustained regeneration of turbulent vortical structures, and ultimately the flow loses
all turbulence. Time-resolved movies (to be discussed in § 4.7), which show turbulent
vortical structures existing in case 5 and how these structures evolve in case 6, support
this viewpoint.

4.7. Near-bed coherent structures and concentration fluctuations

With increasing Ṽ the settling flux of sediments increases. For the stationary state
the settling flux must be balanced by the combination of upward diffusive flux and
turbulent flux (mixing) of sediments. In a turbulent flow the diffusive flux dominates
only in the region close to the bed. Thus, away from this region, an increase in settling
flux demands a concomitant increase in the turbulent flux w̃′c̃′. From figure 6(b) it
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is evident that the level of vertical velocity fluctuations in fact decrease with Ṽ , and
thus an increase in the turbulent flux of sediments requires a strong increase in the
fluctuations of sediment concentration and its correlation with the velocity fluctuations.

Figure 4 shows the variation in both the mean concentration ( ¯̃cb) and r.m.s.
concentration fluctuations (c̃rms,b) at the bed with increasing settling velocity of
sediments. As expected, the mean concentration at the bed gradually increases with
increase in settling velocity; however, the r.m.s. concentration fluctuations explosively
increase as the critical settling velocity is approached. The r.m.s. value increases by
a factor of 5 as the settling velocity of sediments increases from 0.01 to 0.026. For
case 1 (Ṽ = 0.01) the r.m.s. value is ∼3 % of the mean concentration, and it increases
to 12.5 % for case 5 (Ṽ = 0.026). The explosive growth in concentration fluctuations
indicates local segregation of sediments into regions of much higher concentration than
the mean and other regions of much lower concentration than the mean. Furthermore,
in order to maintain the stationary state by increasing the turbulent upward flux of
sediments, the regions of high concentration must be correlated with regions of upward
(positive) bed-normal velocity fluctuation. The existence of such regions of large
sediment concentrations would require the flow to locally expend a large amount of
energy in order to achieve the required upward bed-normal transport. This can lead to
an abrupt shutdown of the auto-generation mechanism of hairpin vortex structures in
the flow, which causes a complete collapse of the flow turbulence.

Figures 14 and 15 show plots of streamwise velocity (ũ′), bed-normal velocity (w̃′)
and concentration (c̃′) fluctuations for cases 1 and 5 in the x̃–ỹ (streamwise–spanwise)
plane at z+ ∼ 12. This location z+ ∼ 12 is around the region where maximum
turbulent kinetic energy production and maximum Reynolds stress are seen. The plots
of concentration and streamwise velocity fluctuations show long streamwise aligned
streaky structures in both cases. It can be observed that ũ′ and c̃′ distributions are
negatively correlated. In other words, the sediment concentration is higher (lower)
along the low-speed (high-speed) streaks. The bed-normal velocity fluctuations are also
well correlated with the streamwise velocity and concentration fluctuations. But since
w̃′ does not show a long streaky structure, the correlation is not as obvious.

From cases 1 to 5 there is a slight reduction in the minimum and maximum
values of ũ′ and w̃′, while there is substantial increase in the minimum and maximum
values of c̃′. Comparison of the two cases reveals certain interesting features. In the
contour plots of case 1, the low- and high-speed steaks and the region of large
bed-normal velocity fluctuations, which are indicative of local quasi-streamwise and
hairpin vortical structures, are more densely populated and are distributed more or less
uniformly over the horizontal plane. With increase in settling velocity the density of
low- and high-speed streaks is reduced, and as a result the uniformity of their spatial
distribution appears to be lost. In the concentration contours, in case 1 the regions of
positive large values are long and thin and spread over the entire plane, while in case
5 these regions are long, thick and more intense, and they are now spatially localized.
This suggests a reduction in the density of turbulent vortical structures.

Figures 16–18 show iso-surfaces of swirling strength for cases 0, 5 and 6. Swirling
strength is defined as the imaginary part of the complex eigenvalues of the local
velocity gradient tensor and has been shown to be very effective in extracting vortical
regions in turbulent flows (Zhou et al. 1999; Chakraborty, Balachandar & Adrian
2005). These figures present the vortical structures of the turbulent flow at a selected
time instant. In cases 0 and 5, the flow remains turbulent, and thus the turbulent
structures seen in figures 16 and 17 are representative of what is seen at other times as
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FIGURE 14. (a) Streamwise velocity fluctuations. (b) Bed-normal velocity fluctuations. (c)
Fluctuations in the concentration of sediments. Results for case 1 at z+ ∼ 12 from the bed.

well. Case 0 shows a dense distribution of hairpin-like and inclined quasi-streamwise
vortices in the flow. With increasing settling velocity, the stratification of the flow
increases and the structures become sparse, creating pockets in the flow completely
devoid of vortical structures. Case 5 corresponds to the closest turbulent case to the
critical settling velocity. In figure 17 a substantial decrease in the density of the
structures is seen but the flow remains turbulent. This implies that some of the existing
structures in the flow are intense enough to spawn the next generation of structures to
sustain turbulence. Case 6 corresponds to a settling velocity slightly greater than that
in case 5 (∼2 %) and above criticality. At this settling velocity complete turbulence
suppression is observed. Figure 18 shows the turbulent structures in case 6 at an
instant when the flow is still in the process of turbulence suppression. Note that case
6 was started with a turbulent initial condition taken from case 5 and thus started
with vortical structures similar to those shown in figure 17. However, due to the
increased settling velocity the auto-generation process was disrupted, and a short time
later, as shown in figure 18, the flow has lost most of its turbulent structures. When
continued, even the vortical structures seen in figure 18 were not able to spawn the
next generation of vortical structures and the flow lost all its turbulent fluctuations (see
the λci movie for case 6 in the online material available at journals.cambridge.org/flm).
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FIGURE 16. (Colour online) Iso-surfaces of λci for case 0. The iso-surfaces are λci = 22.

4.8. Mechanistic view of turbulence suppression
From the turbulence statistics and the picture of instantaneous turbulent structures
presented in the previous sections, the following simple scenario is proposed, which
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leads to seemingly sudden and abrupt loss of turbulence. For the case of clear fluid
auto-generation and turbulence sustainment the mechanisms are well understood. In
this limit of zero settling velocity, the sediments are perfectly well mixed at all times
with zero concentration fluctuations. As discussed in Zhou et al. (1999) the turbulent
wall layer is populated with streamwise aligned hairpin vortex packets, and as these
packets travel downstream, between their quasi-streamwise legs they cooperatively
pump the near-bed low-momentum fluid into the flow. The consequence of this
cooperative action of the hairpin packets is the low-speed streaks, which are much
longer than the individual hairpin vortices. These streaks provide the environment for
subsequent formation of the next generation of hairpin packets.

Consider suddenly introducing a settling velocity for the sediments (this is similar
to starting a simulation of non-zero Ṽ with case 0 as the initial velocity field). Now
sediments are resuspended only in regions of sufficient upward (positive) bed-normal
velocity fluctuations, while they settle down in regions of downward fluid motion.
This creates increased concentration fluctuations. In particular, the cooperative upward
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pumping of fluid by the streamwise aligned hairpin vortex packets provides the perfect
environment for the upward transport of sediments. It is in these regions where
increased sediment concentrations are expected. Thus, as the hairpin packets travel
downstream, similar to the long streaks of low-speed fluid, they leave behind well-
correlated long streaks of high sediment concentration. Thus, subsequent generations
of hairpin vortices are being formed in regions of steadily increasing sediment
concentration.

As seen in the quadrant analysis of the velocity fluctuations, the increased
concentration of sediment at the low-speed streaks alters the character of the newly
formed vortical structures. Furthermore, the additional buoyancy effect posed by the
sediments can be expected to increase the threshold amplitude for the formation of the
next generation of vortical structures. Thus, increasing settling velocity of sediments
leads to a decrease in the density of vortical structures, whose effect can also be seen
in the reduction of the key turbulence statistics. It can then be conjectured that once
a threshold settling velocity is exceeded, the local accumulation of sediments at the
low-speed streaks do not permit further generation of vortical structures. Without the
auto-generation process active, the turbulence over time fully decays.

5. Conclusions

Dilute turbidity currents driven by monodisperse suspension of sediments in bypass
mode are modelled as an inclined channel flow driven by suspended sediments. The
suspended sediments under the influence of gravity drive the flow in the channel and
simultaneously settle towards the bed. The interaction of sediments and turbulence
lead to (i) skewing of the streamwise driving force towards the bed, and (ii)
stable stratification that damps bed-normal momentum and mass transport. Several
simulations of this model were carried out to understand the two effects and their
role in turbulence suppression. Simulations S1 and S2 consider flows where the
stratification effect in the bed-normal momentum equation is turned off. From these
results it is shown that stratification is the dominant effect that brings about total
turbulence suppression. Skewing the driving force towards the bed causes turbulence
damping but this effect is modest and, even for very large settling velocity, without the
stratification effect in the bed-normal momentum equation the flow remains turbulent.

Stratification is the manifestation of the balance between turbulent mixing and
the settling of the sediments. At the critical settling velocity, flow turbulence is
no longer able to keep the sediments in suspension, and the flow in the channel
tends towards the laminar solution. For the present simulations, with Reτ = 180 and
θ = 5◦, the mean velocity and mean concentration profiles clearly show that there
is sudden transition in the nature of the flow from case 5 (Ṽ = 0.026) to case 6
(Ṽ = 0.0265), and thus the critical settling velocity for total turbulence suppression
is in the range (0.026, 0.0265). The flow can then be divided into two regimes, i.e.
turbulence-stratified flows and turbulence-suppressed flows, and the latter is realized
for settling velocities larger than the critical settling velocity. This sudden transition
is fascinating, and the abrupt change is seen in several turbulence statistics. This
process is similar to the onset of instability, but the difference is its highly nonlinear
behaviour. Analysis of the turbulent kinetic energy equation, Reynolds stress transport
equation and one-dimensional spanwise and streamwise energy spectra suggest that
total turbulence suppression may be brought about by damping of Reynolds stress
producing turbulent vortical structures close to the bed.
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The term 1/ tan θ in the governing equation can be identified as the Richardson
number Riτ , which is the ratio of potential energy due to buoyancy effect to kinetic
energy of the flow. In the present problem the stratification effect due to sediments
is quantified by Rc̄(v)gzH, while the kinetic energy of the current can be expressed as
u2
∗ = Rc̄(v)gxH. Thus, their ratio yields Riτ = gz/gx = 1/ tan θ . In an externally driven

flow only the buoyancy effect depends on mean sediment concentration, and thus
Ri will be a proxy for c̄(v). However, in the present case the flow is driven by the
suspended sediments, and as a result c̄(v) appears in both the numerator and the
denominator, and Richardson number Riτ is simply related to the bed slope. The entire
damping process can be represented by the parametric combination of slope of the
channel (θ ) and settling velocity of the sediments (Ṽz) and the combination takes the
form Ṽz/ tan θ (Riτ Ṽz) (Cantero et al. 2012b).

In the work of Zhou et al. (1999), it was established that turbulence in an
unstratified channel flow sustains itself by auto-generation of vortical structures. They
showed that only hairpin vortical structures whose strength is greater than a threshold
value are capable of spawning the next generation of structures. The present work
proposes an explanation for the abrupt extinction of turbulence in the problem studied
using statistical analysis of the Q2 Reynolds stress events for different cases and using
the auto-generation criterion given by Zhou et al. (1999). From the probability density
of these Q2 events it is shown that with increasing settling velocity the intensity
of Q2 events decrease and the event vector flattens. These two effects cause spatial
modulations in the turbulent hairpin vortices: their intensity reduces and their spatial
distribution becomes sparse. As the settling velocity increases beyond the critical
value, the threshold vortical strength becomes larger and the existing flow structures
are incapable of auto-generating. The flow thus evolves to complete suppression of
turbulence.
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