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LOWER BOUNDS FOR NORMS OF PRODUCTS

OF POLYNOMIALS VIA BOMBIERI INEQUALITY

DAMIÁN PINASCO

Abstract. In this paper we give a different interpretation of Bombieri’s norm.
This new point of view allows us to work on a problem posed by Beauzamy
about the behavior of the sequence Sn(P ) = supQn

[PQn]2, where P is a fixed
m−homogeneous polynomial and Qn runs over the unit ball of the Hilbert
space of n−homogeneous polynomials. We also study the factor problem for
homogeneous polynomials defined on CN and we obtain sharp inequalities
whenever the number of factors is no greater than N . In particular, we prove
that for the product of homogeneous polynomials on infinite dimensional com-
plex Hilbert spaces our inequality is sharp. Finally, we use these ideas to prove
that any set {zk}nk=1 of unit vectors in a complex Hilbert space for which
sup‖z‖=1 |〈z, z1〉 · · · 〈z, zn〉| is minimum must be an orthonormal system.

1. Introduction

Let P1, . . . , Pn be polynomials defined on KN , where K = R or C, and suppose
that we have a norm ‖ · ‖ defined on the space of polynomials. The problem of
finding a constant M , depending only on the degrees of P1, . . . , Pn, such that

(1.1) ‖P1‖ · · · ‖Pn‖ ≤ M‖P1 · · ·Pn‖

and other questions concerning inequalities for the norms of factors of a given poly-
nomial were studied by many authors: G. Aumann [3], B. Beauzamy, E. Bombieri,
P. Enflo and H. L. Montgomery [9], B. Beauzamy and P. Enflo [11], P. B. Borwein
[15], D. W. Boyd [17, 18, 19], A. O. Gel′fond [24], H. Kneser [26], K. Mahler [28, 29]
and I. E. Pritsker and S. Ruscheweyh [35, 36] among others.

For example, for polynomials in one complex variable endowed with the supre-
mum norm over the unit disk, D. W. Boyd [19] proved that

‖P1‖ · · · ‖Pn‖ ≤ Cm
n ‖P1 · · ·Pn‖,

where the polynomial P1 · · ·Pn has degree m and the exact value of the constant
Cn is

Cn = exp

(
n

π

∫ π/n

0

log(2 cos(t/2))dt

)
.
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This inequality, which is an improvement of earlier results of A. O. Gel′fond [24]
and K. Mahler [28], is asymptotically sharp as m → ∞.

Working with multivariate polynomials and different norms related to the coeffi-
cients of the polynomials, B. Beauzamy et al. [9] and K. Mahler [29] gave estimates
for the constant M in inequality (1.1). For instance, in [9], the authors defined a
norm on the space of m−homogeneous polynomials on KN by

[P ]2 =

⎛⎝ ∑
|α|=m

α!

m!
|aα|2

⎞⎠1/2

,

where α = (α1, . . . , αN ) ∈ NN is a multi-index, |α| = α1 + · · · + αN and P has
the monomial expansion P (z1, . . . , zN ) =

∑
|α|=m aα zα1

1 · · · zαN

N . For this norm,

which is known as Bombieri’s norm, they proved the following inequality: let P,Q
be homogeneous polynomials of degrees m,n respectively; then

[P ]2 [Q]2 ≤
√

(m+ n)!

m!n!
[PQ]2.

Associated with inequality (1.1) we have the problem of finding

I(P ) = inf{‖PQ‖ : ‖Q‖ = 1} and S(P ) = sup{‖PQ‖ : ‖Q‖ = 1}.
This problem and other questions related to different restrictions over P and Q were
studied by several authors. For example, B. Beauzamy [7], B. Beauzamy, J.-L. Frot
and C. Millour [12] and B. Reznick [39] dealt with the problem of finding

inf{[PQ]2 : [P ]2 = [Q]2 = 1} and sup{[PQ]2 : [P ]2 = [Q]2 = 1}.
There are finite dimensional variations of this problem. E. Bombieri and J. Vaaler
[14], J. D. Donaldson and Q. I. Rahman [21] and J.-P. Kahane [25] studied the
quantities

inf{‖PQ‖ : ‖Q‖ = 1, deg(Q) = n} and sup{‖PQ‖ : ‖Q‖ = 1, deg(Q) = n}
for different norms depending on the coefficients of the polynomials.

A way to compute [PQ]2 using the eigenvalues of a matrix associated to homoge-
neous polynomials P and Q was shown by B. Beauzamy [6]. Therefore, if P(mC

N )
denotes the space of m−homogeneous polynomials on CN , given P ∈ P(mCN ), the
problem of finding the numbers

In(P ) = inf
{
[PQ]2 : [Q]2 = 1, Q ∈ P(nCN )

}
and

Sn(P ) = sup
{
[PQ]2 : [Q]2 = 1, Q ∈ P(nCN )

}
was theoretically solved. The author also showed that if deg(P ) > 0, then the
sequence In(P ) → 0. However, it seems to be difficult to characterize the behavior
of Sn(P ) using those techniques. For example, if P (z) = 〈z, a〉m, then Sn(P ) = [P ]2
for all n ∈ N, but for the polynomial P (z1, z2) = z1z2, limn→∞ Sn(P ) = 1/2 <

1/
√
2 = [P ]2. The same problem was studied independently by B. Reznick [39]. In

Section 3 we will prove that lim supn→∞ Sn(P ) = ‖P‖P .
Let us recall that the space of continuous m−homogeneous polynomials on a

Banach space E, denoted by P(mE), is a Banach space under the uniform norm
‖P‖P = sup‖z‖E=1 |P (z)|. Considering this norm, inequality (1.1) was studied for
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polynomials defined on infinite dimensional Banach spaces. For instance, R. Ryan
and B. Turett [38] gave bounds for the special case where the polynomials {Pi}ni=1

are continuous linear functionals on E. Moreover, C. Beńıtez, Y. Sarantopoulos
and A. Tonge [13] proved that if Pi has degree ki for 1 ≤ i ≤ n, then inequality
(1.1) holds with constant

M =
(k1 + · · ·+ kn)

(k1+···+kn)

kk1
1 · · · kkn

n

for any complex Banach space. The authors also showed an example on �1 for
which the equality prevails. However, for many spaces it is possible to improve this
bound. In [16], C. Boyd and R. Ryan proved that, on complex Hilbert spaces,

M =
(k1 + · · ·+ kn)!

k1! · · · kn!

is more accurate.
We will be concerned with the study of inequality (1.1) for homogeneous poly-

nomials defined on a (finite or infinite dimensional) complex Hilbert space H. In
Section 4 we will prove that

(1.2) ‖P1‖P · · · ‖Pn‖P ≤
√

(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P1 · · ·Pn‖P ,

where Pi ∈ P(kiH) for 1 ≤ i ≤ n. We also prove that this is a sharp inequal-
ity whenever the number of factors is no greater than dim(H). We derive sharp
inequalities for products of continuous symmetric multilinear forms on complex
Hilbert spaces and using complexification techniques (see [32]) we present inequal-
ities for real Hilbert spaces.

Inequality (1.1) has been widely studied when P1, . . . , Pn are bounded linear
functionals on Hilbert spaces. In [13], the authors made the following conjecture:
given n unit vectors {xk}nk=1 in Rn, then

(1.3) sup
‖x‖Rn=1

|〈x, x1〉 · · · 〈x, xn〉| ≥ n−n/2,

and equality holds if and only if {xk}nk=1 is an orthonormal system. This conjecture
was also discussed by A. E. Litvak, V. D. Milman, and G. Schechtman [27]. A
positive answer for n = 1, 2, 3, 4 and 5 was given by A. Pappas and S. G. Révész
[33]. However, the remaining cases are still open problems. See for example V. A.
Anagnostopoulos and S. G. Révész [1], P. E. Frenkel [22], J. C. Garćıa-Vázquez and
R. Villa [23], M. Matolcsi [30, 31] and S. G. Révész and Y. Sarantopoulos [37] for
different approaches and related problems.

In the complex setting, K. Ball [4] proved a stronger result than inequality (1.3),
which is known as “the complex plank problem for Hilbert spaces”. A few years
before K. Ball’s result, J. Arias-de-Reyna [2] proved an inequality which is the
complex analogue of (1.3). In his paper, the author showed that n−n/2 is the best
possible constant, because for any orthonormal system {zk}nk=1 it follows that

sup
‖z‖Cn=1

|〈z, z1〉 · · · 〈z, zn〉| = n−n/2.
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Unfortunately, his proof did not allow him to show if this orthogonal condition on
the set {zk}nk=1 is necessary to achieve the minimum value. In the last section,
using inequality (1.2), we will be able to prove that a set {zk}nk=1 of unit vectors in
a complex Hilbert space H for which sup‖z‖H=1 |〈z, z1〉 · · · 〈z, zn〉| is minimum must
be an orthonormal system.

2. Polynomials and Bombieri’s norm

Let us fix some standard notation. From now on, α will be a multi-index, and we
will denote |α| = α1 + · · ·+αN and α! = α1! · · ·αN !. For z ∈ C

N , zα will stand for
zα1
1 · · · zαN

N . As usual, the space ofm−homogeneous polynomials defined on CN will
be denoted by P(mCN ). Given P ∈ P(mCN ), we will write P (z) =

∑
|α|=m aαz

α.

We will be concerned with the study of two different norms for P : the uniform
norm ‖P‖P = sup‖z‖=1 |P (z)| and Bombieri’s norm, defined in [9] as

[P ]2 =

⎛⎝ ∑
|α|=m

α!

m!
|aα|2

⎞⎠1/2

.

Canonically associated with Bombieri’s norm there exists an inner product (see
[10], [39]). If P,Q ∈ P(mC

N ), P (z) =
∑

|α|=m aαz
α and Q(z) =

∑
|α|=m bαz

α,

then this inner product is

[P,Q](m) =
∑

|α|=m

α!

m!
aαbα.

The following theorem, proved by Beauzamy et al. [9], is crucial for our purposes.

Theorem 2.1 (Bombieri’s inequality [9, Theorem 1.2]). Let P,Q be homogeneous
polynomials of degrees m,n respectively. Then

[PQ]2 ≥
√

m!n!

(m+ n)!
[P ]2[Q]2.

Corollary 2.2. Let Pi ∈ P(kiCN ) for 1 ≤ i ≤ n. Then

[P1 · · ·Pn]2 ≥
√

k1! · · · kn!
(k1 + . . .+ kn)!

[P1]2 · · · [Pn]2.

Proof. The proof is immediate by induction on n, since

[P1 · · ·PnPn+1]2 ≥
√

(k1 + · · ·+ kn)! kn+1!

(k1 + . . .+ kn+1)!
[P1 · · ·Pn]2 [Pn+1]2

≥
√

k1! · · · kn! kn+1!

(k1 + . . .+ kn+1)!
[P1]2 · · · [Pn]2 [Pn+1]2. �

Bombieri’s inequality was also proved using differential identities based on the
following property (see [10, Lemma 9] or [39]): let P and Q be homogeneous poly-
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nomials of degrees m− 1 and m respectively. Then

(2.1) [z1P,Q](m) =
1

m

[
P,

∂Q

∂z1

]
(m−1)

.

B. Reznick [39] gave an alternative interpretation of [P ]2. He worked with forms
of degree m in N variables and differential operators associated with them. Namely,

P (x1, . . . , xN ) =
∑N

i1,...,im
ai1,...,imxi1 · · ·xim

��
P (D) =

∑N
i1,...,im

ai1,...,im
∂

∂xi1
· · · ∂

∂xim
.

The author defined ‖P‖(R) = (deg(P )!)1/2[P ]2 and proved that ‖P‖(R) = P (D)P .
He also proved that ‖PQ‖(R) ≥ ‖P‖(R) ‖Q‖(R) (which is equivalent to Bombieri’s
inequality), where equality holds if and only if P and Q are unitarily disjoint. The
problem of finding pairs of polynomials (P,Q) for which [PQ]2 is maximum or
minimum was studied in [7], [8], [12] and [39].

2.1. A different point of view for Bombieri’s norm. This section is devoted
to presenting alternative definitions of [P ]2 and ‖P‖(R). From this, we will obtain
a different proof of the differential identity (2.1) using a simple lemma from [34].

Given a measure space (X,μ), we will write Lp(μ) to denote the space of mea-
surable functions f : X → C such that

∫
X
|f |p dμ < ∞. From now on, ΓN denotes

the Gaussian measure defined on the Borel subsets of CN by

ΓN (Δ) =

∫
Δ

e−‖z‖2 dz

πN
,

where dz stands for the Lebesgue measure on CN .

Lemma 2.3 ([34, Lemma 2.1]). Let ΓN be the Gaussian measure defined above.
Then ∫

CN

zαzβ dΓN (z) = δαβα!.

In the sequel, L2
m(ΓN ) stands for the closure of span{zα}|α|=m in L2(ΓN ). The

previous lemma shows that if m �= m′, then L2
m(ΓN ) ⊥ L2

m′(ΓN ).

Proposition 2.4. Given m ∈ N, let ı :
(
P(mC

N ), [ · ]2
)
→ L2

m(ΓN ) be defined by

ı(P ) = P . Then ‖ı(P )‖L2(ΓN ) =
√
m! [P ]2.

Proof. Note that |P (z)| ≤ max‖ω‖=1 |P (ω)| ‖z‖m = ‖P‖P ‖z‖m. Thus we have∫
CN

|P (z)|2e−‖z‖2 dz

πN
< ∞.

Consequently, the map is well defined. Since
{
zα/

√
α!
}
|α|=m

is an orthonormal ba-

sis for the Hilbert space L2
m(ΓN ) and

{√
m! zα/

√
α!
}
|α|=m

is an orthonormal basis
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for the Hilbert space (P(mCN ), [ · ]2), we conclude that ‖ı(P )‖L2(ΓN ) =
√
m! [P ]2

for all P ∈ P(mC
N ). �

Remark 2.5. Recall from [39] that ‖P‖(R) = (deg(P )!)1/2[P ]2. Thus, given any

polynomial P ∈ P(mCN ), we have ‖P‖(R) = ‖P‖L2(ΓN ). We can restate Bombieri’s

inequality in terms of the L2(ΓN ) norm: given Pi ∈ P(kiCN ) for 1 ≤ i ≤ n, then it
follows that

‖P1 · · ·Pn‖L2(ΓN ) ≥ ‖P1‖L2(ΓN ) · · · ‖Pn‖L2(ΓN ).

Now, we are able to give a different proof of (2.1). The nature of this new point
of view is more analytical than the previous ones.

Lemma 2.2 in [34] gives an integral representation formula for entire functions
which are in Lp(ΓN ) for some p > 1. We only need the following particular case:

Lemma 2.6. Let P ∈ P(mC
N ). Then for every z ∈ C

N ,

P (z) =

∫
CN

e〈z,ω〉P (ω) dΓN (ω).

We can use this integral formula to compute the directional derivatives of an
m−homogeneous polynomial.

Proposition 2.7. Let P ∈ P(mC
N ) and v ∈ C

N . Then we have

∂P

∂v
(z) =

∫
CN

e〈z,ω〉 〈v, ω〉P (ω) dΓN(ω).

Proof. Using Lemma 2.6 and the dominated convergence theorem,

∂P

∂v
(z) = lim

h→0

∫
CN

eh〈v,ω〉 − 1

h
e〈z,ω〉 P (ω) dΓN (ω)

=

∫
CN

e〈z,ω〉 〈v, ω〉P (ω) dΓN(ω). �

Note that, in general, 〈v, ω〉P (ω) /∈ L2
m−1(ΓN ) because it is not a holomorphic

function. Since
{
L2
k(ΓN )

}
k∈N

are closed subspaces of L2(ΓN ), we have a sequence

of orthogonal projections πk : L2(ΓN ) → L2
k(ΓN ). By Proposition 2.4, we know

that ı :
(
P(mC

N ), [ · ]2
)
→ L2

m(ΓN ) is an isomorphism for all m ∈ N, and since

∂P

∂v
(z) =

∫
CN

e〈z,ω〉 ∂P

∂v
(ω) dΓN (ω),

we can deduce that πm−1 (〈v, · 〉P ) =
∂P

∂v
.
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Proposition 2.8 ([10, Lemma 9]). If P ∈ P(mCN ) and Q ∈ P(m−1CN ), then

[〈 · , v〉Q,P ](m) =
1

m

[
Q,

∂P

∂v

]
(m−1)

.

Proof.

1

m

[
Q,

∂P

∂v

]
(m−1)

=
1

m

1

(m− 1)!

〈
Q,

∂P

∂v

〉
L2

m−1(ΓN )

=
1

m!
〈Q, πm−1 (〈v, · 〉P )〉L2

m−1(ΓN )

=
1

m!
〈Q, 〈v, · 〉P 〉L2(ΓN )

=
1

m!

∫
CN

Q(ω) 〈v, ω〉P (ω) dΓN (ω)

=
1

m!

∫
CN

〈ω, v〉Q(ω)P (ω) dΓN (ω)

= [〈 · , v〉Q,P ](m) . �

In the following sections we present some applications of this interpretation of
Bombieri’s norm.

3. A limit problem for Sn(P )

In this section we use the relation between Bombieri’s norm and ‖ · ‖L2(ΓN ),
proved in Proposition 2.4, to work on a problem originally posed by B. Beauzamy
in [6].

Letting P ∈ P(mCN ), we will study the behavior of the sequence of real numbers
Sn(P ), defined by

Sn(P ) = sup
{
[PQ]2 : [Q]2 = 1, Q ∈ P(nCN )

}
.

Our point of view of Bombieri’s norm allows us to compute ‖ · ‖L2(ΓN ) instead
of [ · ]2. The main advantage of this is that we will be able to use classical tools
from integration theory.

In the sequel, σN denotes the normalized Lebesgue measure on ∂B1(C
N ), the

unit sphere of CN . To shorten notation, we let ∂B1 and Lp
∂B1

stand for ∂B1(C
N )

and Lp(∂B1(C
N ), σN ) respectively.

Remark 3.1. Since for homogeneous polynomials we have a link between [ · ]2 and
‖ · ‖L2(ΓN ), we want to find a way to relate Bombieri’s norm of a polynomial (or its
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powers) and the different values of its Lr
∂B1

norms. With this we aim to use that

lim
r→∞

‖P‖Lr
∂B1

= ‖P‖L∞
∂B1

= sup
z∈∂B1

|P (z)| = ‖P‖P .

In the rest of this section we need to compute the following integral for different
values of k ∈ N: ∫ ∞

0

t2k e−t2 2t dt =

∫ ∞

0

tk e−t dt = k!.

Lemma 3.2. Suppose that P ∈ P(mCN ) and r ∈ N. Then

[P r]22 =

(
N − 1 +mr

N − 1

)
‖P‖2rL2r

∂B1

.

Proof. According to Proposition 2.4, since P r ∈ P(rmC
N ) we have

[P r]22 =
1

(rm)!

∫
CN

|P r(w)|2dΓN (w).

Introducing polar coordinates, we find

[P r]22 =
|∂B1|
(rm)!

∫ ∞

0

∫
∂B1

ρ2N−1ρ2mre−ρ2 |P (θ)|2r dρ dσN (θ)

πN

=
2

(N − 1)! (rm)!

∫ ∞

0

∫
∂B1

ρ2N−1ρ2mre−ρ2 |P (θ)|2r dρ dσN (θ)

=

(
1

(N − 1)! (rm)!

∫ ∞

0

ρ2(N−1+mr)e−ρ2

2ρ dρ

) (∫
∂B1

|P (θ)|2rdσN (θ)

)

=
(N − 1 +mr)!

(N − 1)! (rm)!
‖P‖2rL2r

∂B1

=

(
N − 1 +mr

N − 1

)
‖P‖2rL2r

∂B1

,

which is the desired conclusion. �

Our main result in this section is the following.

Theorem 3.3. Let P ∈ P(mC
N ). Then lim sup

n→∞
Sn(P ) = ‖P‖P .
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Proof. By Proposition 2.4, given Q ∈ P(nCN ) we have

[
P

Q

[Q]2

]2
2

=
[PQ]22
[Q]22

=
n!

(m+ n)!

∫
CN

|P (w)Q(w)|2 dΓN (w)∫
CN

|Q(w)|2 dΓN (w)

=
n!

(n+m)!

∫ ∞

0

∫
∂B1

ρ2N−1ρ2(n+m)e−ρ2 |P (θ)Q(θ)|2 dρ dσN (θ)∫ ∞

0

∫
∂B1

ρ2N−1ρ2ne−ρ2 |Q(θ)|2 dρ dσN (θ)

=
n! (N − 1 +m+ n)!

(m+ n)! (N − 1 + n)!

∫
∂B1

|P (θ)|2 |Q(θ)|2 dσN (θ)∫
∂B1

|Q(θ)|2 dσN (θ)

≤ n! (N − 1 +m+ n)!

(m+ n)! (N − 1 + n)!

sup
ζ∈∂B1

|P (ζ)|2
∫
∂B1

|Q(θ)|2 dσN (θ)∫
∂B1

|Q(θ)|2 dσN (θ)

=
n! (N − 1 +m+ n)!

(m+ n)! (N − 1 + n)!
‖P‖2P ,

which is equivalent to[
P

Q

[Q]2

]
2

≤
√

n! (N − 1 +m+ n)!

(m+ n)! (N − 1 + n)!
‖P‖P .

Note that

n! (N − 1 +m+ n)!

(m+ n)! (N − 1 + n)!
=

∏m
j=1(N − 1 + n+ j)∏m

j=1(n+ j)
=

nm + o(nm)

nm + o(nm)
,

where o(nm), as usual, means that
o(nm)

nm
−→
n→∞

0. From this, we conclude that

n! (N − 1 +m+ n)!

(m+ n)! (N − 1 + n)!
−→
n→∞

1.

Thus for any ε > 0, there exists nε ∈ N such that for any n ∈ N, n > nε, and any
Q ∈ P(nCN ), we have [

P
Q

[Q]2

]
2

≤ (1 + ε)‖P‖P .

Hence lim sup
n→∞

Sn(P ) ≤ ‖P‖P .
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In order to prove the converse inequality consider the sequence of polynomials
{P r}r∈N. According to Lemma 3.2, we have

[
P

P r

[P r]2

]2
2

=
[P r+1]22
[P r]22

=

(
N − 1 +m(r + 1)

N − 1

)
‖P‖2(r+1)

L
2(r+1)
∂B1(

N − 1 +mr

N − 1

)
‖P‖2rL2r

∂B1

.

First, note that(
N − 1 +m(r + 1)

N − 1

)
(
N − 1 +mr

N − 1

) =

∏m
j=1(N − 1 +mr + j)∏m

j=1(mr + j)
=

(mr)m + o(rm)

(mr)m + o(rm)
−→
r→∞

1.

Also, since for any probability space (X,μ) and any measurable function f : X → C

it follows that ‖f‖Lp(μ) ≤ ‖f‖Lq(μ) whenever p ≤ q,

‖P‖2(r+1)

L
2(r+1)
∂B1

‖P‖2r
L2r

∂B1

= ‖P‖2
L

2(r+1)
∂B1

⎛⎝‖P‖
L

2(r+1)
∂B1

‖P‖L2r
∂B1

⎞⎠2r

≥ ‖P‖2
L

2(r+1)
∂B1

−→
r→∞

‖P‖2L∞
∂B1

.

Therefore,

lim sup
r→∞

[
P

P r

[P r]2

]2
2

≥ ‖P‖2L∞
∂B1

= ‖P‖2P ,

and we conclude that lim sup
n→∞

Sn ≥ ‖P‖P . �

4. Lower bounds for products of polynomials on Hilbert spaces

We begin this section by recalling that a continuous m−homogeneous polynomial
from a Banach space E to the scalar field K is a mapping P : E → K for which
there exists a (unique) continuous symmetric m−linear form P̌ : Em → K such
that P (z) = P̌ (z, . . . , z) for all z ∈ E. The space of continuous symmetric m-
linear forms L : Em → K, denoted by Ls(mE), is a Banach space under the
norm ‖L‖Ls = sup‖zj‖E=1 |L(z1, . . . , zm)|. Moreover, the mapping P → P̌ is an

isomorphism between the Banach spaces (P(mE), ‖ · ‖P) and (Ls(mE), ‖ · ‖Ls).
For a thorough treatment we refer the reader to [20].

Now we will turn our attention to studying inequality (1.1) for polynomials de-
fined on Hilbert spaces. Here and subsequently, H stands for an infinite dimensional
complex Hilbert space and {ei}∞i=1 denotes a fixed orthonormal basis for H.

Given Pi ∈ P(kiH) for 1 ≤ i ≤ n, we are interested in finding the optimum
constant M , depending only on k1, . . . , kn, for which the inequality

‖P1‖P · · · ‖Pn‖P ≤ M‖P1 · · ·Pn‖P
holds.

The following theorem presents an inequality for norms of products of polyno-
mials on CN . The value of the proposed constant is sharp for n ≤ N .

Theorem 4.1. Let Pi ∈ P(kiCN ) for i = 1, . . . , n. Then

‖P1‖P · · · ‖Pn‖P ≤
√

(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P1 · · ·Pn‖P .
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Proof. According to Lemma 3.2, we have

[(P1 · · ·Pn)
r]22 =

(
N − 1 + r

∑n
i=1 ki

N − 1

)
‖P1 · · ·Pn‖2rL2r

∂B1

.

Also, for 1 ≤ i ≤ n,

[P r
i ]

2
2 =

(
N − 1 + rki

N − 1

)
‖Pi‖2rL2r

∂B1

.

Applying Bombieri’s inequality, we obtain

[P r
1 ]2 · · · [P r

n ]2 ≤

√
(r
∑n

i=1 ki)!

(rk1)! · · · (rkn)!
[(P1 · · ·Pn)

r]2,

or equivalently

n∏
i=1

‖Pi‖L2r
∂B1

= 2r

√ ∏n
i=1[P

r
i ]

2
2∏n

i=1

(
N−1+rki

N−1

)

≤ 2r

√
(r
∑n

i=1 ki)! [(P1 · · ·Pn)
r]22∏n

i=1(rki)!
(
N−1+rki

N−1

)

= 2r

√√√√ (r
∑n

i=1 ki)!
(N−1+r

∑n
i=1 ki

N−1

)∏n
i=1(rki)!

(
N−1+rki

N−1

) ‖P1 · · ·Pn‖L2r
∂B1

=
2r

√
((N − 1)!)n−1 (N − 1 + r

∑n
i=1 ki)!∏n

i=1(N − 1 + rki)!
‖P1 · · ·Pn‖L2r

∂B1
.

(4.1)

It is well known that given a sequence of positive real numbers {ar}r∈N, if

lim
r→∞

ar+1

ar
= L, then lim

r→∞
r
√
ar = L. For s =

∑n
i=1 ki, let us choose

ar =

√
((N − 1)!)

n−1
(N − 1 + rs)!∏n

i=1(N − 1 + rki)!
.

For this sequence we may compute

ar+1

ar
=

√
(N − 1 + (r + 1)s)!

∏n
i=1(N − 1 + rki)!

(N − 1 + rs)!
∏n

i=1(N − 1 + (r + 1)ki)!

=

√√√√ ∏s
j=1(N − 1 + rs+ j)∏n

i=1

(∏ki

j=1(N − 1 + rki + j)
)

=

√
(rs)s + o(rs)

(
∏n

i=1(rki)
ki) + o(rs)

=

√√√√ rsss + o(rs)

rs
(∏n

i=1 k
ki
i

)
+ o(rs)

.
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From this we deduce that

lim
r→∞

ar+1

ar
=

√
(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

.

Hence

lim
r→∞

r
√
ar = lim

r→∞
2r

√
((N − 1)!)n−1 (N − 1 + r

∑n
i=1 ki)!∏n

i=1(N − 1 + rki)!

=

√
(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

.

Because of Remark 3.1, letting r → ∞ in inequality (4.1) we can assert that

‖P1‖P · · · ‖Pn‖P ≤
√

(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P1 · · ·Pn‖P . �

Remark 4.2. The bound proved above is independent of the number of variables. If
n ≤ N , then the inequality is sharp. Given any set of natural numbers {k1, . . . , kn},
if we define the polynomials Pi(z) = zki

i for 1 ≤ i ≤ n, then

‖P1‖P · · · ‖Pn‖P =

√
(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P1 · · ·Pn‖P .

Clearly, ‖Pi‖P = 1 for all 1 ≤ i ≤ n. On the other hand,

sup
‖z‖=1

|zk1
1 · · · zkn

n | = max

{
xk1
1 · · ·xkn

n : {xi}ni=1 ⊂ R≥0 ∧
n∑

i=1

x2
i = 1

}
.

Applying Lagrange multipliers, the maximum of this function is attained at a point
x whose coordinates are xi =

√
ki/(k1 + · · ·+ kn) for 1 ≤ i ≤ n and xi = 0 for

n < i ≤ N . Therefore

‖P1 · · ·Pn‖P =

√
kk1
1 · · · kkn

n

(k1 + · · ·+ kn)(k1+···+kn)
.

In order to extend this result to the infinite dimensional setting we need the
following lemma.

Lemma 4.3. Let Q ∈ P(mH) and let {ei}∞i=1 be an orthonormal basis for H. If
we define the sequence of polynomials

Q̃l : C
l → C,

Q̃l(z1, . . . , zl) = Q

(
l∑

i=1

ziei

)
,

then ‖Q̃l‖P −→
l→∞

‖Q‖P .
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Proof. It is clear that ‖Q̃l‖P ≤ ‖Q‖P for all l ∈ N. Let us prove the converse
inequality. Given any ε > 0, choose a unit vector z ∈ H such that |Q(z)| > ‖Q‖P−ε
and let zi = 〈z, ei〉 for i ≥ 1. Since

∑∞
i=1 |zi|2 = ‖z‖2 = 1, we have

‖Q̃l‖P ≥
∣∣∣Q̃l(z1, . . . , zl)

∣∣∣ = ∣∣∣∣∣Q
(

l∑
i=1

〈z, ei〉 ei

)∣∣∣∣∣ .
By continuity, since liml→∞

∑l
i=1〈z, ei〉 ei = z,

lim
l→∞

∣∣∣∣∣Q
(

l∑
i=1

〈z, ei〉 ei

)∣∣∣∣∣ = |Q(z)| > ‖Q‖P − ε.

Hence, there exists l0 ∈ N such that

‖Q‖P − ε

2
< ‖Q̃l‖P ≤ ‖Q‖P

for all l ≥ l0. �

We are now ready to prove a sharp lower bound for the norm of the product of
continuous homogeneous polynomials defined on a complex Hilbert space H.

Theorem 4.4. Let Pi ∈ P(kiH) for 1 ≤ i ≤ n. Then

‖P1‖P · · · ‖Pn‖P ≤
√

(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P1 · · ·Pn‖P ,

and this inequality is sharp.

Proof. As we did in Lemma 4.3, for l ∈ N and 1 ≤ i ≤ n, let us define

P̃l,i : C
l → C,

P̃l,i (z1, . . . , zl) = Pi

⎛⎝ l∑
j=1

zjej

⎞⎠ .

From Theorem 4.1 we know that

‖P̃l,1‖P · · · ‖P̃l,n‖P ≤
√

(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P̃l,1 · · · P̃l,n‖P .

We may now let l → ∞, and the result follows by Lemma 4.3.
The ideas used in Remark 4.2 allow us to see that given {ki}ni=1 ⊂ N, if we define

the polynomials Pi(z) = 〈z, ei〉ki for 1 ≤ i ≤ n, then

‖P1‖P · · · ‖Pn‖P =

√
(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P1 · · ·Pn‖P .

Thus this bound is sharp. �

It is worth pointing out that working on Hilbert spaces the isomorphism P → P̌
is an isometry between P(mH) and Ls(mH) (see for instance [5] and [20]). We may
use this fact to derive an inequality for continuous symmetric m-linear mappings
from Hm to C.
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Given Φj ∈ Ls(kjH) for 1 ≤ j ≤ n, set k =
∑n

j=1 kj . Let us define the

symmetrized product (Φ1 · · ·Φn)s(z1, . . . , zk) of {Φj}nj=1 by

1

k!

∑
τ∈Gk

Φ1(zτ(1), . . . , zτ(k1))Φ2(zτ(k1+1), . . . , zτ(k1+k2)) · · ·Φn(zτ(k−kn+1), . . . , zτ(k)),

where Gk denotes the permutation group of k elements.

Corollary 4.5. Let Φj ∈ Ls(kjH) for 1 ≤ j ≤ n. Then

‖Φ1‖Ls · · · ‖Φn‖Ls ≤
√

(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖(Φ1 · · ·Φn)s‖Ls ,

and this inequality is sharp.

The first step in obtaining these sharp inequalities on complex Hilbert spaces
was taken in Proposition 2.4. We do not have a similar argument for the real
case. However, if K is a real Hilbert space, we can give estimates for the norm
of products of polynomials or symmetric multilinear mappings using the natural
complexification of K (see for instance [40, pp. 313–314] and [32] for more details).

Corollary 4.6. Let Pj ∈ P(kjK) for 1 ≤ j ≤ n. Then

‖P1‖P · · · ‖Pn‖P ≤ 2[(k1+···+kn)−2]/2

√
(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P1 · · ·Pn‖P .

Proof. Let H = K ⊕ iK be the natural complexification of K. Given Pj ∈ P(kjK)
for 1 ≤ j ≤ n, let Qj ∈ P(kjH) be the unique complex extension of Pj . It is known
that (see [32, Prop. 19])

‖Pj‖P ≤ ‖Qj‖P = sup
‖x+iy‖H=1

|Qj(x+ iy)| ≤ 2(kj−2)/2 ‖Pj‖P .

Therefore

‖P1‖P · · · ‖Pn‖P ≤ ‖Q1‖P · · · ‖Qn‖P ≤
√

(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖Q1 · · ·Qn‖P

≤ 2[(k1+···+kn)−2]/2

√
(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖P1 · · ·Pn‖P .

�

Remark 4.7. Let φj : Rn → R be linear functionals for 1 ≤ j ≤ n ≤ 5. In [33],
A. Pappas and S. G. Révész proved that

‖φ1‖P · · · ‖φn‖P ≤ nn/2 ‖φ1 · · ·φn‖P .
Consequently, it is clear that we cannot expect a sharp inequality in Corollary 4.6.

Finally, we give a real version of Corollary 4.5.

Corollary 4.8. Let Φj ∈ Ls(kjK) for 1 ≤ j ≤ n. Then

‖Φ1‖Ls · · · ‖Φn‖Ls ≤ 2[(k1+···+kn)−2]/2

√
(k1 + · · ·+ kn)(k1+···+kn)

kk1
1 · · · kkn

n

‖(Φ1 · · ·Φn)s‖Ls .
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5. Products of bounded linear forms on complex Hilbert spaces

Given a Banach space E, let E′ denote its dual space. In [13], the authors defined
the nth linear polarization constant of E by

cn(E) = inf{M > 0 : ‖φ1‖E′ · · · ‖φn‖E′ ≤ M ‖φ1 · · ·φn‖P , for all φ1, . . . , φn ∈ E′}

and the linear polarization constant of E by c(E) = lim sup c
1/n
n (E). Also, in [37],

it was proved that given n ∈ N, then infinite dimensional Hilbert spaces have the
smallest nth polarization constant.

If K is a real Hilbert space it was conjectured in [13] that cn(K) = nn/2. As we
mentioned earlier, a positive answer was given in [33] for n ≤ 5, but the remaining
cases are still open problems. For complex Hilbert spaces this conjecture is true.
The following theorem is due to J. Arias-de-Reyna.

Theorem 5.1 ([2, Theorem 4]). Let {zk}nk=1 be unit vectors in a complex Hilbert

space H. There is a unit vector z ∈ H such that |〈z, z1〉 · · · 〈z, zn〉| ≥ n−n/2.

In the proof, the author showed that n−n/2 is the best possible constant because
for any orthonormal system {zk}nk=1,

sup
‖z‖=1

|〈z, z1〉 · · · 〈z, zn〉| = n−n/2.

However, he did not prove that the equality holds only for orthonormal systems.
Note that for linear functionals on a complex Hilbert space the inequality ob-

tained in Theorem 4.4 is the same one that was proved by J. Arias-de-Reyna. Since
our inequality allows us to handle nonlinear factors, we can use it to prove that the
orthonormality of the set {zk}nk=1 is a necessary condition to achieve this minimum
value. In the following lemma we will prove this assertion for the special case when
n = 2. This particular result will be needed for the general case.

Lemma 5.2. Let z1, z2 be unit vectors in a complex Hilbert space. If

sup
‖z‖=1

|〈z, z1〉 〈z, z2〉| =
1

2
,

then 〈z1, z2〉 = 0.

Proof. First, note that |〈z, z1〉 〈z, z2〉| = |〈z, z1〉 〈z,−z2〉|. Hence we can assume,
without loss of generality, that �〈z1, z2〉 ≥ 0.

In order to have a lower estimate for the supremum we want to compute∣∣∣∣〈 z1 + z2
‖z1 + z2‖

, z1

〉 〈
z1 + z2
‖z1 + z2‖

, z2

〉∣∣∣∣ = |(1 + 〈z2, z1〉) (1 + 〈z1, z2〉)|
〈z1 + z2, z1 + z2〉

=
|1 + 〈z1, z2〉|2

2 + 2�〈z1, z2〉
.
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Thus we obtain

sup
‖z‖=1

|〈z, z1〉 〈z, z2〉| ≥
∣∣∣∣〈 z1 + z2

‖z1 + z2‖
, z1

〉 〈
z1 + z2
‖z1 + z2‖

, z2

〉∣∣∣∣
=

[1 + �〈z1, z2〉]2 + [�〈z1, z2〉]2
2 + 2�〈z1, z2〉

=
1

2

(
1 + �〈z1, z2〉+

[�〈z1, z2〉]2
1 + �〈z1, z2〉

)
,

which is strictly greater than 1/2 unless 〈z1, z2〉 = 0. �

Finally, we can prove the general case.

Theorem 5.3. Let {zk}nk=1 be unit vectors in a complex Hilbert space H. If

sup
‖z‖=1

|〈z, z1〉 · · · 〈z, zn〉| = n−n/2,

then {zk}nk=1 is an orthonormal system.

Proof. Let Pk(z) = 〈z, zk〉 for 1 ≤ k ≤ n, and P = P1 · · ·Pn. We will show that
〈zn−1, zn〉 = 0, but the same idea will give us 〈zi, zj〉 = 0 for any 1 ≤ i < j ≤ n.
We have

1 = ‖P1‖P · · · ‖Pn‖P =
√
nn ‖P‖P

≥
√
nn

√
22

nn
‖P1‖P · · · ‖Pn−2‖P ‖Pn−1Pn‖P

= 2 ‖Pn−1Pn‖P ≥ 2

√
1

22
‖Pn−1‖P ‖Pn‖P = 1.

In particular, ‖Pn−1Pn‖P = 1/2 and so, from Lemma 5.2, we conclude that
〈zn−1, zn〉 = 0. �
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1. V. A. Anagnostopoulos and S. G. Révész, Polarization constants for products of linear func-
tionals over R2 and C2 and Chebyshev constants of the unit sphere. Publ. Math. Debrecen 68
(1-2) (2006), pp. 63–75. MR2213542 (2006m:46054)

2. J. Arias-de-Reyna, Gaussian variables, polynomials and permanents. Linear Algebra Appl.
285 (1998), pp. 107–114. MR1653495 (2000a:15008)

3. G. Aumann, Satz über das Verhalten von Polynomen auf Kontinuen. Sitz. Preuss. Akad.
Wiss. Phys.-Math. Kl. (1933), 926–931.

4. K. M. Ball, The complex plank problem. Bull. London Math. Soc. 33 (4) (2001), pp. 433–442.
MR1832555 (2002b:46023)
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23. J. C. Garćıa-Vázquez and R. Villa, Lower bounds for multilinear forms defined on Hilbert

spaces. Mathematika 46 (2) (1999), pp. 315–322. MR1832622 (2002c:46045)
24. A. O. Gel′fond, Transcendental and algebraic numbers. (Translation by L. F. Boron of the

1952 Russian edition), Dover, New York, 1960. MR0111736 (22:2598)
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