

(Asociación de Biología de Tucumán)

Abstracts from the XXXV ANNUAL SCIENTIFIC MEETING

October 25 – 26, 2018 Tafí del Valle, Tucumán, Argentina

The abstracts have been revised and evaluated by the Scientific Committee of the Tucumán Biology Association

TUCUMAN BIOLOGY ASSOCIATION

President María Teresa Ajmat

Vicepresident Liliana I. Zelarayán

Secretary José E. Zapata Martínez

Prosecretary Mario Fortuna

Treasurer Cecilia Gramajo Buhler

Protreasurer Federico Bonilla

Board members:

Patricia Albornoz Lucrecia Iruzubieta Villagra Analía Salvatore María Eugenia Pérez

> **Past President** Martha Buhler.

A12

CHARCOAL ANATOMY OF SPECIES FROM THE ARGENTINE PUNA

<u>Aguirre MG^{1,2}, Rodríguez MR²</u>

¹ISES-CONICET. San Lorenzo 429.Tucumán. ²Facultad de Ciencias Naturales e IML (UNT). Miguel Lillo 205. Tucumán. E-mail: mgabaguirre@hotmail.com

The Antofagasta de la Sierra (Catamarca) locality lies in the southern sector of the Argentine Puna; its landscape presents wavy plains, mountains and many volcanoes. The climate is cold, dry and frequent winds blows from the Southwest. Fitogeographycally speaking, it belongs to the Provincia Puneña where the genus *Fabiana*, *Parastrephia*, *Acantholippia*, *Senecio*, *Baccharis* and *Junellia* are.

The locality has many archaeological investigations and charcoal remains are often found. In the study of charcoal remains it is essential to have contemporary reference material in order to obtain accurate taxonomic identifications. This reference material should undergo the same processes than the archaeological remains in order to reproduce the same conditions in both samples. In this context, the aim of this work was to start a charcoal collection that will be useful for the identification of archaeological charcoal remains obtained in the locality. The stem of the following species were carbonized: *Acantholippia deserticola, Adesmia erinaceae, A. horrida, A. minor, Artemisia copa, Atriplex imbricata, Baccharis incarum, Chuquiraga atacamensis, Ephedra breana, Fabiana bryoides, F. punensis, Jumellia seriphiodes, Mulinum crassifolium, Parastrephia lucida, P. quadrangularis, Senecio santelisis, S. viridis, Neosparton ephedroides and Neuontobotrys tarapacana.* The charcoal obtained was studie under binocular loupe and the three typical wood sections were photograph with SEM. Thebinoc anatomy of each species was describe. The results show the permanence of diagnostic features of each species even under the effect of temperature as well as anatomical modifications due to it.

A13

PERFOMANCE OF LAYING HENS AND FATTY ACIDS COMPOSITION OF THEIR EGGS AFTER FEEDING WITH RAPESEED 00 (CANOLA®) EXPELLER

<u>Peterson GB</u>¹, Longo JF², Calonge R², Vega M³, Albo GN³ ¹INIBIOLP (Inst. de Invest. Bioq. La Plata)-CIC (Com.de Invest.Científ. de la Prov.de Bs. As). ²Esc.Sec.Agraria N°1 L.V.Mansilla-Bavio. ³Cát.de Prod.animal I, Fac.de Cs. Agrarias y Forestales-UNLP. E-mail: gpeterso@med.unlp.edu.ar

Eggs are an excellent human food source of high quality proteins and can be a source of omega 3 fatty acids that are important for health and development. A non-transgenic variety of rapeseed (*Brassica nappus*) that does not contain significant amounts of antinutritional substances and is rich in omega 3 fatty acids is called Canola® or rapeseed 00. The objective of this study was to evaluate the effect of substituting soybean extrusions, common in rations, by Canola expeller on the perfomance of classic Lohmann laying hens and analyze the impact of the substitution on the fatty acid composition of the egg. We worked with 100 laying hens, which were 30 weeks old at the beginning of the trial. They were divided into 2 groups, one group received standard food and the other received the one in which 8% Canola expeller was used. The food was supplied *ad libitum*. The test was carried out for 3 months. The fatty acid composition of the lipids of the eggs and the food was analyzed by gas chromatography. The food with canola contained 60% more alpha linolenic acid (18:3 omega 3), than the standard food. The content of omega 3 fatty acids in the eggs increased significantly. Egg production and conversion increased significantly. The weight of the eggs decreased significantly, although the values were found within those that appear in the manual of the line. The canola expeller seems to be useful for layer hen's food and generate an enriched product from the point of view of the human nutrition.

A14

THE VEGETAL DEFENSE INDUCING ACTIVITY OF HET DEPENDS ON ITS REDOX STATE

<u>Martos GG</u>, Tomas-Grau RH, Díaz Ricci JC

INSIBIO (CONICET-UNT), e Instituto de Química Biológica, Facultad de Bioquímica, Química y Farmacia, UNT. San Miguel de Tucumán, Argentina.E-mail: ggmartos@gmail.com

It was previously reported that the ellagitannin HeT, obtained from strawberry leaves, has antibacterial properties and is also an inducer of the plant defense response. It was also shown that the antibacterial activity is due to a strong interaction with the plasma membrane that affects the flow of electrons and causes the oxidation of the HeT molecule. In this work we investigated whether, as with bacteria, HeT is oxidized by the interaction with plant cell, and if the redox state of HeT influences its activity as an inducer of plant defense. First, tests were carried out by UV-Vis spectroscopy where it was demonstrated that the interaction of HeT with isolated strawberry cells causes the oxidation of HeT. Subsequently, biochemical, molecular and phytopathological tests were carried out with HeT in the

AUTHOR INDEX

A

			4.01 4.41
Abdala ME	A68	Benavente A	A21 -A41
Abeijón-Mukdsi MC	A122	Benítez LM	A20
Abregú AV	A113	Benzal MG	A80 - A81
Abrigato MB	A54	Black P	A53 - A54 - A56
Adera MN	A81- A95	Black-Décima PA	A55
Agosto M	A118	Blanco MJ	A120
Agüero Aguilera A	A71	Bombasaro JA	A114
Agüero TH	A113	Bonetto M	A22
Aguilera G	A102	Bonilla F	A128 - A133
		Borsetti HM	A5
Aguirre MG	A12	Bortnyk P	A21
Aguzzi A	A78	Brandán Fernández ZJ	A105
Aiello I	A4	Brizuela A	A105 A37
Ajmat MT	A10 - A34 - A95		
Albo GN	A13	Brodkiewicz IY	A46 - A49 - A96
Albornoz PL	A30 – A76	Brodkiewicz Y	A45
Alderete M	A16	Budeguer C	A126 - A127
Ale Levin S	A18 – A57 – A58	Buedo S	A35 - A112
	A60	Bulacia MM	A109
Alegre Porto CM	A75	Burgos CA	A36 - A37
Áleman MN	A113	Busellato LI	A97 - A98
Alemandri V	A89 – A90	Buthruille dos Santos NM	A38
Alfonso J	A115		
Alvarez Asensio N	A72 - A73 -A133	С	
Alvarez C	A124	C	
Alvarez M		Cabrera JC	170
Álvarez RE	A107		A70
	A31	Caillou S	A17
Alzamendi A	A4	Calonge R	A13
Andrada AR	A30 - A31	Calvo F	A22
Andrada E	A122	Campa M	A119
Andrada Mansilla B	A126 - A127	Canteros FH	A69
Angos A	A51	Cardozo AG	A65
Antelo CM	A105	Careno SP	A53
Anzulovich A	A115	Carino S	A129
Araoz M	A43	Carrizo E del V	A121
Arce MB	A61	Casiraghi LP	A4
Arcos NA	A117	Castillo MA	A83 - A84 - A85
Argüello Caro EB	A89 -A90	Castro E	A92
Arjona M	A50	Castro F	A35
Asensio C	A21	Castro JF	A33
Audisio MC	A86	Castro Lema M	A59
Auil AF	A70	Cerviño S	A122
Ávila MN			
	A70	Céspedes FN	A121
Ayarde H	A11	Chacoff N	A62
Aybar Odstrcil IM	A129	Chagra Dib EP	A122
Aybar V	A59	Chaila S	A29
Ayup MM	A7	Chalup A	A8
		Chalup AE	A108 - A109
В		Chamut S	A56
		Chiesa JJ	A4
Balderrama CME	A46	Chocobar Ponce S	A111
Barbieri N	A21 - A41	Choque F	A61
Baricco M	A18 - A57 - A58 - A60	Cisint S	A26
Barrera ML	A48 - A64	Claps GL	A57 - A106
Barros J		Colina M	A67
	A59	Córdoba L	A77
Basualdo MM	A78	Coronel RS	A51
Bazán MC	A113	Costas D	A17
Bellezze J	A118 -A119		
Bellido C	A98	Crespo CA	A25 – A61 - A101
Beltrán RE	A9 - A68	Criado A	A16
		Cruz RM	A87

Cruz RM

A87