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Abstract
We propose to study the stability properties of an air flow wake forced
by a dielectric barrier discharge (DBD) actuator, which is a type of
electrohydrodynamic (EHD) actuator. These actuators add momentum to the
flow around a cylinder in regions close to the wall and, in our case, are
symmetrically disposed near the boundary layer separation point.

Since the forcing frequencies, typical of DBD, are much higher than the
natural shedding frequency of the flow, we will be considering the forcing
actuation as stationary.

In the first part, the flow around a circular cylinder modified by
EHD actuators will be experimentally studied by means of particle image
velocimetry (PIV). In the second part, the EHD actuators have been
numerically implemented as a boundary condition on the cylinder surface.
Using this boundary condition, the computationally obtained base flow is then
compared with the experimental one in order to relate the control parameters
from both methodologies.

After validating the obtained agreement, we study the Hopf bifurcation
that appears once the flow starts the vortex shedding through experimental
and computational approaches. For the base flow derived from experimentally
obtained snapshots, we monitor the evolution of the velocity amplitude
oscillations. As to the computationally obtained base flow, its stability is
analyzed by solving a global eigenvalue problem obtained from the linearized
Navier–Stokes equations. Finally, the critical parameters obtained from both
approaches are compared.

(Some figures may appear in colour only in the online journal)
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1. Introduction

It is common knowledge that the non-dimensional parameter determining the behavior of a
flow around a cylinder is the Reynolds number Re = Uo D/ν, where Uo is the inflow velocity,
D is the cylinder diameter and ν is the kinematic viscosity. The regime that starts when the
flow around a cylinder breaks its time continuous invariance at the bifurcation Re = 48.5
and exhibits a periodic behavior for limited Reynolds numbers (Re < 190) is identified with
the Bénard–von Kármán vortex street. In this case, the velocity field in the entire flow
domain oscillates with the same global frequency, and a sufficiently large region of absolute
instability in the near wake can be identified. Since the oscillation amplitudes depend on the
monitored position, the area that contains nonzero oscillation amplitude points, defines the
unstable region. Previous studies by Zielinska and Wesfreid (1995) and Wesfreid et al (1996)
characterized the behavior of this region by determining scale laws for its nonlinear evolution
as functions of the Reynolds number.

Global modes evolve with the modification of the base flow external parameters.
Barkley (2006) introduced a hypothesis that considers the mean flow of a cylinder wake as
the base flow for two-dimensional (2D) stability analysis. Under these conditions, the mean
flow represents a marginal stability state and defines the frequency and amplitude of the wake
oscillations. The nonlinear saturation of the oscillatory instability is caused by the Reynolds
stresses from the modified mean flow. Khor et al (2008) and Leontini et al (2010) support
these hypotheses with experimental and numerical data for Re up to 600. These ideas have
been applied to analyze forced wakes. Previous studies on the stability properties of forced
wakes by Thiria and Wesfreid (2007, 2009), confirmed that a nonlinear critical behavior takes
place under forcing. Indeed, a bifurcation scenario reappears as the forcing action stabilizes
the wake fluctuations, in their case, a rotary oscillation. Figure 1, adapted from Thiria and
Wesfreid (2007), shows how the reverse flow region quantified by its length LR varies under
forcing. The control actuation, represented by a vertical line for Reynolds numbers above the
critical value Re > Rec, varies the reverse flow region when present.

The flow features can be altered by smoothly and accurately varying the forcing
parameters to give rise to different regimes. Considering this, we study this problem in order
to characterize flow control in wakes by means of electrohydrodynamic (EHD) actuators.

Flow control EHD actuators have received special attention over the last few years, as
reviewed by Moreau (2007). Among all types of low-energy plasma actuators, one can notice
a group of actuators that produces surface discharges. With these devices, the goal is usually
to use the electric wind produced by the plasma in order to modify the properties of the
boundary layer close to the wall. A particular type of discharge is the surface dielectric barrier
discharge (DBD), which was perfected for the first time in air at atmospheric pressure by
Masuda and Washizu (1979) for ionic charging of particles. Roth et al (1998) used it for
airflow applications at the end of the 1990s, characterizing the injected momentum for a flat
plate and airfoil flows. Artana et al (2003) performed an analysis of the modifications of the
recirculation length produced by plasma actuators placed on the cylinder surface following
a model proposed by Roshko (1993) for large Reynolds numbers (Re ∼ 103–104). Later,
Thomas et al (2006) applied the DBD in bluff body flow control. With their results, the authors
showed drastic reductions in flow separation and the associated Bénard–von Karman vortex
shedding. Flows around a cylinder forced with DBD have also recently been studied with the
intention of controlling lift forces (Sosa et al 2011). Some hypotheses on the dynamics of
DBD forcing arose from a computational study validated with PIV experiments in Gonzalez
et al (2009). In the last work, a finite-element stability analysis (González et al 2007) was
performed on a bluff body, where vortex shedding was suppressed by a moving surface
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Figure 1. The reverse flow region LR behind the cylinder evolves nonlinearly with the Reynolds
number when the mean flow is modified. The maximum amplitude of the oscillations am occurs
at x = xm and evolves in a similar manner as in Thiria and Wesfreid (2009). A new bifurcation
scenario appears under forcing conditions.

boundary condition. Along these lines, the work of Gronskis (2009), Gronskis et al (2009),
and other authors (Peers et al 2009) analyzed numerical models of DBD forced flows around
cylinders at low Reynolds numbers (Re < 200).

Our aim in this work is to optimize the DBD control device by analyzing the stability
properties of the flow. For this reason, we study the possibility of suppressing vortex shedding
when controlling the flow with a DBD actuator. The work has been carried out from
both the experimental and the computational point of view. In this context, we pursue the
characterization of the DBD control actuator to gain a complete understanding that will
eventually lead to more efficient energy consumption.

The work is organized as follows: in section 2, we describe the experimental setup
producing the DBD discharge along with the method used for measuring the velocity fields
of the flow, in section 3 we detail the characteristics of the problem, boundary conditions
and base flow properties, in section 4 the numerical methodology to perform a linear global
analysis is described, in section 5 the results obtained by both approaches are shown and
compared, and finally, the conclusions and perspectives for future work are presented.

2. The experimental setup

The experimental setup consists of a flow around a circular cylinder at a moderate Reynolds
number, Re ∼ 200. The velocity field measurements were carried out with a cylinder placed
in a closed loop wind tunnel, which has a test section of 50 × 50 cm2, and an air velocity of
Uo ' 0.17 m s−1. The cylinder has an external diameter. D = 20 mm and a length of 500 mm,
giving an aspect ratio of 25 and ensuring that there are no blockage effects.

Quantitative measurements were carried out using 2D particle image velocimetry (PIV)
on a vertical plane placed at mid-span of the cylinder. Image acquisition and PIV calculations
were performed using a LaVision system, composed of an ImagerPro 1600 × 1200 CCD
camera with a 14-bit dynamic range capable of recording double-frame pairs of images at
8 Hz and a two-rod Nd:YAG (15 mJ) pulsed laser synchronized by a customized PC using
LaVision DaVis 7.1 software. The laser sheet width was about 1 mm in the test section. The
entire 300 mm × 200 mm imaging region (about 12 × 8D) gives a spatial resolution of 0.06D
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Figure 2. Detailed schematic diagram of the EHD actuator, electric circuit and input signal with
the electrodes flush-mounted.

as shown in figure 3. All image acquisitions were done using the double-frame mode with the
time lapse between the two frames (dt) set to 700 ms.

From the PIV measurements, we extract the velocity fields from sets of 500 snapshots.
The mean velocity fields um(x) and velocity fluctuations u′(x) are determined as

um(x) =
1

N

N∑
i=1

u(x, ti ), (1)

u′(x) =
1

N

[
N∑

i=1

(u(x, ti ) − um)2

](1/2)

. (2)

This allows us to characterize the incoming free stream flow (Uo) from the velocity
fluctuation values that are about 5% of Uo.

EHD actuators are devices that produce a weakly ionized gas and add momentum to the
air flow through collisions of charged particles with the neutral species. Among these devices,
a DBD actuator consists of three periodically excited electrodes, two are exposed to the air
(represented in blue in figure 2), while the other (represented in red in figure 2) is encapsulated
by a dielectric material. The electrical frequencies and voltage required to produce the DBD
are typically in the range of kHz and kV.

In our case, the EHD actuator was mounted on both surfaces of a polymethyl methacrylate
cylinder tube. As shown in figure 2, the device is composed of an internally embedded
electrode, separated from the external electrodes by the 3 mm thick cylinder wall acting as
the dielectric barrier. Figure 2 illustrates how the exposed electrodes are positioned on the
surface of the cylinder with their plasma generating edges located at 114◦ with respect to the
incoming flow’s direction. It was shown via experimental (Thomas et al 2006) and numerical
(Gronskis 2009) studies that the optimum suppression of vortex shedding occurs close to this
position of actuation, which coincides approximately with the boundary layer separation line
corresponding to the non-actuated flow.
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(a) (b)

Figure 3. Instantaneous PIV velocity fields under different forcing situations. The region of
interest contains 140 × 86 vectors represented in a coarser grid for better visualization. Contour
levels correspond to the velocity modulus. (a) No forcing. (b) Flow under DBD actuation.

Figure 4. The dimensions, coordinate system and boundary conditions of the computational setup.

The electric circuit, composed of a signal generator, an audio amplifier and an ignition
coil, gives a discharge of VEHD = 10 kV and a frequency of fEHD = 5.6 kHz. In our experiments
these parameters remain fixed. To be able to introduce controlled and moderate actuations,
the signal amplitude is modulated by bursting the signal as shown in figure 2. From this,
a second frequency arises, fBurst = 100 Hz, and the electrical energy delivered by the device is
characterized by a duty cycle (DC = T1/TBurst). Special care was taken to ensure a stationary
input since fBurst � fflow, fflow being the vortex shedding frequency. For our experiments,
the Strouhal number St = f D/Uo ∼ 0.2, resulting in frequencies fflow ∼ 1.5 Hz. In short, the
flow control parameter in the experimental study is the DC input that modulates the ‘ionic
wind’ amplitude momentum while the forcing can be considered as stationary.

3. Problem definition

The geometry has been non-dimensionalized using the cylinder diameter D as the reference
length. The computational geometry is defined by a rectangle with dimensions L = 20 and
H = 49. The center of the cylinder is placed in the middle of the box, eight units behind the
inflow boundary, see figure 4.

The plasma actuation takes place in a thin layer compared to the cylinder diameter. This
enables us to subdivide the problem into two main regions. An inner region where the forcing
occurs and an outer region (where the numerical simulations will be performed) in which
electric forces can be disregarded. Therefore, a kinematic compatibility condition can be
imposed at the boundary separating both regions. We assume in our case that normal velocity
is null and that no discontinuity in tangential velocities exists. We further assume that the law
quantifying the tangential velocity distribution is governed by the parameters that determine
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Figure 5. Representation of the velocity magnitude imposed as boundary condition on the cylinder
wall when actuation is used (W = 0.1 and x0 = 0.35). See equations (3)–(4).

the discharge in the inner region. In this work, no modeling of the inner region based on
plasma physics is proposed and the law relating the critical parameters is derived directly
from experiments. The boundary condition for the velocity field V(0C) is approximated by
the simplified log-normal function (Bermudez et al 2010):

V(0C) = Ae f (x) + 1 − e f (x)

τ (3)

and

f (x) = −
2x − x0

W
, (4)

where x is the horizontal coordinate and varies from 0 to D/2, and τ is a tangential unit vector
defined as clockwise at the top part of the cylinder and anticlockwise for the bottom part. The
boundary velocity V(0C) depends on three parameters: A, W and x0. A is related to the pulse
amplitude, W is related to the pulse width and x0 is related to the position of the maximum
velocity, see figure 5. In the present study, W = 0.1 and x0 = 0.35 were fixed according to
experimental measurements (Bermudez et al 2010) and the influence of the pulse amplitude
A was explored as a control parameter.

Thus, for the outer region problem, the boundary can be divided into three parts: 0D,
composed of the left (inflow), upper and lower boundaries where velocity V (0D) = (1, 0) is
prescribed; 0N, composed of the right (outflow) boundary where natural boundary conditions
are used (see equation (8)), and for the cylinder boundary 0C, we prescribe a slip velocity
imposed by the plasma actuator (numerically representing the thin actuated layer), see
equations (3)–(4).

3.1. Base flow calculation

The modifications introduced by the plasma actuator are experimentally measured by the
mean flow field variations. These measurements are comprised of 500 snapshots which
contain at least 30 shedding periods. Once analyzed through the procedure described later,
we observe in figure 6 that the near wake region behind the cylinder enlarges with increasing
DC. The streamlines tighten further downstream if a higher EHD actuation is applied,
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(a) (b)

(c) (d)

Figure 6. The mean flow velocity vector field and contours of the velocity norm for different
values of the DC control parameter.
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Figure 7. Amplitude of the velocity oscillations u′
x along the horizontal line y = ym for different

values of the DBD forcing parameter (DC).

resulting in the mean flow appearing more like the stationary solution, characterized by a
long recirculation zone as shown in figure 1.

The raw data obtained are then computed by a procedure consisting of three main steps.
Firstly, we calculate the mean flow with a time average over the total number of experimental
snapshots obtained. Secondly, we determine the velocity fluctuations intensity u′(x) from
equation (2). The oscillation amplitude am, depicted in figure 1, corresponds to a maximum
of u′(x) located at xm = (xm, ym). Thirdly, we show in figure 7 the curves resulting from
the evaluation of u′(x) on the horizontal line y = ym. For the non-forced case (DC = 0), we
obtain the typical curve associated with a global mode (Wesfreid et al 1996). Since the global
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Figure 8. The ratio between the oscillating amplitude am and its corresponding horizontal position
xm versus the DC parameter. (a) Determination of the critical value for DC. (b) Given the threshold
DCc, we can extract a scaling law from the evolution of am/xm.

mode shape changes under forcing, we then plotted the curves that conveniently resume
the flow behavior for various values of the DC parameter. We observe that DC increments
led to decrements of the am and displaced xm downstream. This scenario is typical of flow
stabilization (Thiria and Wesfreid 2009). Above a certain threshold (DC = 28), the global
mode is suppressed and the curve changes qualitatively: fluctuations only remain in the
cylinder neighborhood. This instability stays confined to a region very close to the wall,
typical of convective regimes (Thiria and Wesfreid 2009).

In order to study the global mode evolution, we can further reduce the information by
plotting the ratio am/xm as shown in figure 8(a). The points from DC = 10 up to DC = 22 can
be fitted linearly, allowing us to estimate a critical value DCc ' 27.5. Hence, we can construct
a scaling law for (DC–DCc) presented in figure 8(b).

4. Numerical study

The equations governing incompressible flows are written in primitive-variable formulation
as follows:

Du
Dt

= −∇ p +
1

Re
∇

2u in �, (5)

∇ · u = 0 in �, (6)

u = V on 0D ∪ 0C, (7)

− pn +
1

Re
∇u · n = 0 on 0N. (8)

Here, u is the velocity field, p is the pressure field, t is the time and ∇ is the nabla operator.
The computational domain � is limited by the boundaries 0D, 0C and 0N, where 0D and 0C

are the parts of the boundary where the Dirichlet boundary conditions, represented by V, are
imposed. The values of V are described in section 3. Finally, 0N is the part of the boundary
where the ‘natural’ boundary conditions (8) are imposed, with n being the vector normal to
the boundary 0N. The material derivative operator is defined as usual, D

Dt =
∂
∂t + u j

∂
∂x j

, and
repeated indices imply summation.
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4.1. The steady laminar basic flows

The 2D equations of motion are solved in the laminar regime at appropriate Re values in order
to compute steady basic flows (u, p̄) whose stability will subsequently be investigated. The
equations read

ū · ∇ū = −∇ p̄ +
1

Re
∇

2ū in �, (9)

∇ · ū = 0 in �, (10)

ū = V on 0D, (11)

− p̄n +
1

Re
∇ū · n = 0 on 0N. (12)

The values of the boundary field V are described in section 3. In the solved problem
that follows, the basic flow velocity vector is (ū1, ū2, 0), i.e. its component along the spatial
direction x3 is taken to be zero ū3 = 0, and all components are taken to be independent
of this spatial direction, ∂ ūi

∂x3
= 0. Consequently, the linearized equations of motion defining

the BiGlobal stability problem to be solved may be expressed by real operators, as will be
discussed shortly. The basic flow is obtained by time integration of the system (9)–(10) by a
semi-Lagrangian second-order finite element solver ADFC (Rodriguez and González 1999),
starting from rest and driven by the boundary conditions.

4.2. Linearized problem around the base flow solution

The basic flow is perturbed by a small-amplitude velocity ũ and kinematic pressure p̃
perturbations, as follows:

u = ū + εũ + c.c., p = p̄ + ε p̃ + c.c., (13)

where ε � 1 and c.c. denotes conjugates of the complex quantities (ũ, p̃). Substituting into
equations (5) and (6), subtracting the basic flow equations (9) and (10) and linearizing, we
obtain the equations for the perturbation quantities

D̄ũ
Dt

+ ũ∇ū = −∇ p̃ +
1

Re
∇

2ũ, (14)

∇ · ũ = 0, (15)

with D̄
Dt =

∂
∂t + ū j

∂
∂x j

. The boundary conditions used for this system are

ũ = 0 on 0D ∪ 0C, (16)

− p̃n +
1

Re

∂ũ
∂n

= 0 on 0N. (17)

4.3. Eigenvalue problem formulation and solution methodology.

The separability of temporal and spatial derivatives in (14)–(15) allows the introduction into
these equations of an explicit harmonic temporal dependence of the disturbance quantities,
according to the ansatz

ũ = û(x, y)eiβze−ωt , (18)

p̃ = p̂(x, y)eiβze−ωt , (19)

9
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where a temporal formulation has been adopted, considering β as a real wavenumber
parameter, while ω is the complex eigenvalue sought. Substitution into (14) and (15) yields
the following:{

ū j
∂

∂x j
+

∂ ū1

∂x
+ iβū3 −

1

Re

(
∂2

∂x2
j

− β2

)}
û1 + û2

∂ ū1

∂y
+

∂ p̂

∂x
= ωû1, (20)

{
ū j

∂

∂x j
+

∂ ū2

∂y
+ iβū3 −

1

Re

(
∂2

∂x2
j

− β2

)}
û2 + û1

∂ ū2

∂x
+

∂ p̂

∂y
= ωû2, (21)

{
ū j

∂

∂x j
+ iβū3 −

1

Re

(
∂2

∂x2
j

− β2

)}
û3 + û1

∂ ū3

∂x
+ û2

∂ ū3

∂y
+ iβ p̂ = ωû3, (22)

∂ û1

∂x
+

∂ û2

∂y
+ iβû3 = 0. (23)

In the case of a basic flow velocity vector with components (ū1, ū2, 0) present only on
the plane normal to the wavenumber vector, it is possible to deduce a real eigenvalue problem,
by redefining the out-of-plane velocity component (Theofilis 2003)

ǔ3 := iû3.

This converts the system (20)–(23) into one with real coefficients. Defining

αi i =

{
ū j

∂

∂x j
+

∂ ūi

∂xi
−

1

Re

(
∂2

∂x2
j

− β2

)}
, j = 1, 2 (24)

(no Einstein summation implied for index i), the left-hand side of the system can be
represented by the real non-symmetric operator A as

A=



α11
∂ ū1

∂y
0

∂

∂x

∂ ū2

∂x
α22 0

∂

∂y

0 0 α33 −β

∂

∂x

∂

∂y
β 0


. (25)

A standard finite element variational formulation was used for the system (20)–(23)
based on Taylor–Hood elements. The real operator A is consequently transformed into its
corresponding discrete form, which is represented by a (3N + N L) × (3N + N L) matrix,
where N is the number of velocity nodes and N L is the number of pressure nodes. The
right-hand side of the system (20)–(23) is represented by the real symmetric operator B
introduced by

B=


M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 0

 , (26)

10
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where M represents an N × N mass matrix. The system (20)–(23) is thus transformed into
the real generalized eigenvalue problem for the determination of ω,

A


û1

û2

ǔ3

p̂

= ωB


û1

û2

ǔ3

p̂

 . (27)

The real generalized eigenvalue problem (27) has either real or complex solutions,
corresponding to stationary (ωi = 0) or traveling (ωi 6= 0) modes. The β parameter allows
us to analyze the possibility of investigating 3D instabilities (β > 0). When the β parameter is
equal to zero, the operatorsA andB are both real and the generalized eigenvalue problem (27)
has either real or complex conjugate pairs of solutions. Real arithmetics suffices for the
calculation and storage of (and subsequent operations with) the non-zero elements of the
matrices A andB.

From a linear stability analysis point of view, the most important eigenvalues are those
closest to the axis ωr = 0, where ωr < 0 implies an unstable mode and ωr > 0 implies a stable
mode. Specifically, the well-established iterative Arnoldi algorithm has been used for their
determination; see González et al (2007) for details.

All computations were performed serially on a 3.0 GHz Intel P-IV PC. A typical leading
dimension of the matrix A used in the analyses is DIM(A) ≡ 3N + N L = O(7 × 104), while
only the non-zero elements of this matrix, O(9 × 106), and those of its LU decomposition are
stored.

5. Results

5.1. Base flow results

The first task is to compare the computational results obtained using the forcing parameter
A with the experimental results obtained when varying the DC parameter. The computational
base flow calculations were performed running the ADFC code until the stationary condition
was obtained, see González et al (2007) for details. In those cases where the stationary
condition was not satisfied, thus becoming periodic, the base flow was obtained by calculating
the time average along the period, see Sipp and Lebedev (2007). In figure 9, the horizontal
components of the computationally calculated velocity are shown for (A, Re) = (0.5, 60) and
(A, Re) = (1, 80). In both cases, the stationary base flows are represented once no variations
are appreciated for the evolution of the flow variables u and p. If we look at the cylinder
perimeter, the maximum actuation area can also be appreciated.

In figure 10, different wake cuts are shown for different pairs of control parameters
A = 1, 1.5, 2 and DC = 6, 12, 30 at Re = 235. For each cut, the computational and average
experimental velocities have been compared. In the computational case, the subcritical
situation (A, Re) = (2, 235) is stationary and the other two (A, Re) = (1, 235) and (A, Re) =

(1.5, 235) were averaged in time to obtain the velocity distribution. As can be appreciated
from figure 10, the agreement obtained from the experimental and the computed values is
quite reasonable, especially taking into account the simplicity of the boundary control model
used for mimicking the effect of the plasma actuator.

For the sake of completeness, the mean velocity profiles are not the only compared data
and the frequency variation of the vortex shedding was also compared in the case described
in figure 10, see table 1. Similarly to what happened with the mean velocity profiles, it can
be observed that the experimental and computational Strouhal numbers, Stexp and Stcom, have
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Figure 9. The horizontal component of the stationary base flow velocity field ū1 for (A, Re) =

(0.5, 60) (top) and (A, Re) = (1, 80) (bottom) computed by ADFC.

similar values, validating the computational boundary condition as an appropriate numeric
model for the plasma actuator.

In figures 7 and 11, the intensity of the experimental and computational velocity
fluctuations has been calculated for different values of the respective control parameters A and
DC with the Reynolds number fixed at Re = 235 and y = ym. In figure 11, we can appreciate
that when the parameter A is increased the fluctuations decrease and the area of maximum
fluctuation moves downstream of the cylinder. We can also observe how beyond a certain
critical value of the control parameter A > 1.9, the intensity of the velocity fluctuations falls
to zero, see figure 11.
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Figure 10. Comparison of the horizontal average velocity profiles at Re = 235 for the
experimental (dots) and computational (lines) approaches. Three different values of the control
parameter are studied: A = 1 (top), A = 1.5 (middle) and A = 2 (bottom). Five wake cuts are
shown in each case corresponding to x/D = 1, 2, 3, 4, 5.
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Table 1. Measured and computed Strouhal numbers corresponding to the shedding frequencies
for the compared cases, Re = 235 and A = 1, 1.5, 2. The uncertainty of the experimental Strouhal
numbers is ±0.02.

Re A DC Stexp Stcom

235 1 5 0.19 0.194
235 1.5 13 0.13 0.113
235 2 28 0.01 stable
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Figure 11. Computational results of the rms of the velocity profiles along the horizontal line
y = ym for Re = 235. Each curve represents a different value of the control parameter A varying
from 0.6 to 2.

There are different reasons for which the experimental (figure 7) and the computational
(figure 11) results do not coincide for x < 1. First, the electrodynamic actuation can exhibit
a normal component in the immediate vicinity of the exposed edge of the electrode that
is not included in the computational model. A second important difference between the
numerical simulation and the real EHD actuation is that the implemented boundary condition
is completely stationary, while the EHD mechanism corresponds to a high-frequency forcing.
Although the wake flow seems to be quite insensitive to high-frequency forcing, the boundary
layer could be excited by perturbations having the same frequencies as the modulation used
for the actuation. Nonetheless, it is expected that these perturbations stay very localized and
their effects remain negligible in the wake area, making the results similar to those produced
by the numerical computation. Finally, although the numerical model is in 2D, moderate 3D
effects associated with slight non-uniformities of the discharge along the spanwise direction
can appear in experiments for the considered Reynolds numbers. These perturbations are very
localized and their effects are not observed in the wake area, making the results similar to
those produced by the numerical computation.

The efficiency of the control parameter can be evaluated by calculating the rms of the
experimental values, see figure 7. The maximum oscillation decreases and moves towards
higher x values when the DC parameter is increased. This general tendency is maintained until
the highest value of the control parameter DC = 28 is reached for which the structure of the
flow changes drastically. We can assume that experimentally, a zero rms flow is not possible
due to the intrinsic instability of the perturbed inflow. Therefore, an equivalent criterion to
that used in the numerical procedure (sign change of ωr ) for the current experiments is an
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Figure 12. Correlation between the experimental and computational control parameters A
and DC.
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Figure 13. The maximum intensity of velocity fluctuations for the experimental and numerical
approaches versus the forcing parameter DC.

abrupt change in the velocity fluctuations field. Hence, for the experimental configuration, we
assume that this critical stability threshold is attained when the global mode curves (figure 7)
present a drastic change.

Using the comparison results obtained previously, the corresponding values of A and
DC are plotted in figure 12. A fourth-order polynomial fitting has been used in order to
mathematically correlate both parameters. This picture illustrates one of the most important
results of this work where the two control parameters, computational and experimental, are
finally related.

Once the control parameters have been related, we can plot the rms evolution for both
approaches. In figure 13, the variation of the rms across the entire domain for both approaches
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has been plotted using the DC parameter as the reference. As can be observed, the linear fit
for both approaches when the rms tends to zero results in a similar critical DC value. The
discrepancies between the PIV measurements and the numerical computations in figure 13 are
most likely caused by the background turbulence effects. It should be taken into account that
the numerical boundary condition assumes certain hypotheses that simplify the most complex
aspects of the EHD actuation such as the tangential direction or the space and time distribution
of the actuating force. These simplifications may further magnify the differences between both
the results.

5.2. Vortex suppression and Hopf bifurcation

As a validation case for the computational stability code, the critical Reynolds number with no
acting control was calculated. As was obtained in the paper by Barkley and Henderson (1996),
a similar critical Reynolds number Re = 47 was obtained here, in excellent agreement with
previous studies.

For other flows where the control parameter A is not zero, the value of this parameter has
been increased from A = 0.1 to A = 2. For each combination of the parameters Re and A,
the β parameter was varied in the interval β = [0, 10] and no 3D instability (β > 0, ωr < 0)

was observed. This means that the critical condition is given by a purely 2D disturbance
and the flow is less unstable for 3D disturbances. Consequently, in this context, the stability
of stationary flows is always produced by the 2D vortex shedding phenomenon, which
is analyzed fixing β = 0. The stability analysis is able to calculate the damping rate and
the frequency of a large number of the most unstable modes. In figure 14, the frequency
of the least stable mode and the damping rate of that mode have been represented. The
base flows used in those subcritical cases were obtained running the ADFC code until the
stationary condition was met, while in the supercritical cases, the base flow was obtained
by calculating the time average along the period, see Sipp and Lebedev (2007). Two
conclusions can be deduced from these figures. Firstly, the frequency of the least stable mode
increases when the control parameter is increased, and secondly, the damping rate shows a
linear dependence with respect to the Reynolds number when the control parameter is kept
constant.

The main result of our investigation is illustrated in figure 15, where the neutral stability
curve in the (Re, A) plane has been plotted and the stability regions are distinguishable. The
main conclusion inferred from figure 15 is that the plasma control mechanism delays the onset
vortex shedding. The effect of the actuator is significant, and small increments of the control
parameter A lead to large changes in the critical Reynolds number, with a very sharp increase
for A > 1.5. In figures 16 and 17, the horizontal and vertical components of the velocity
perturbation are shown for (Re, A) = (65, 0.5) and (Re, A) = (85, 1).

It is worth mentioning that another big advantage of the linear stability analysis performed
here is that the transition from 2D to 3D flow can easily be studied by changing the value of the
β = 2π/L z parameter. In all flows close to the critical conditions, the β parameter was varied
in the interval β = [0, 10D] and no 3D instability was found. This result means that, unlike
other similar works on flow control (e.g. Legendre et al 2009) where the two-dimensionality
of the flow is taken as an assumption, a possible 3D transition is taken into account in our
analysis.

The structure of the controlled recirculating flow region and its streamline distribution
can be appreciated in figure 18 for the parameter values (Re, A) = (49, 0.1). The dependence
of the characteristic length LR, width SR and maximum backward velocity urec

max of the
recirculating flow region with respect to different critical parameters is studied in table 2.
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Figure 14. The frequency (top) and damping/growth rate (bottom) of the least stable mode versus
the Reynolds number for different values of the control parameter A.

We can deduce from the data in table 2 that the characteristic length of the wake decreases
when the critical Reynolds number is increased. Similarly, the width of the wake also
narrows when the control parameter A is increased. The critical control situations obtained by
simultaneously increasing the Reynolds number and the control parameter A, see figure 15,
make the size of the vortex pair (figure 18) behind the cylinder smaller. This actuation has a
relevant impact on the maximum horizontal velocity urec

max of the wake, which also decreases
when the situation requires higher control parameter values.

6. Conclusions

In this work, we performed experimental and direct numerical simulations to study the
influence of a plasma actuator on the dynamics of a 2D wake behind a circular cylinder. The
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Figure 15. Critical stability curve for the two main parameters: the control parameter A and
Reynolds number.

Figure 16. The horizontal (left) and vertical (right) components of the velocity perturbation û1
and û2 obtained for A = 0.5 and Re = 65.

Figure 17. The horizontal (left) and vertical (right) components of the velocity perturbation û1
and û2 obtained for A = 1 and Re = 85.

plasma actuation takes place in a thin layer compared to the cylinder diameter. This enables us
to subdivide the problem into two regions, a thin inner region where the forcing occurs and an
outer region where electric forces can be disregarded. The mathematical law that quantifies the
tangential velocity distribution was determined from the experimentally optimized position of

18



Fluid Dyn. Res. 44 (2012) 055501 J D’Adamo et al

Figure 18. Streamline distribution for a stable case at Re = 49 and A = 0.1.

Table 2. The characteristic length LR, width SR and maximum backward velocity of the cylinder
wake for critical values of the A and Rec parameters.

A Rec LR SR urec
max

0.1 49.0 2.50 1.02 −0.1176
0.2 51.5 2.44 0.99 −0.1114
0.3 54.1 2.31 0.95 −0.1026
0.5 60.3 2.24 0.86 −0.0961
1 83.1 2.09 0.68 −0.0673

1.5 131.4 2.00 0.58 −0.0463
2 274.8 1.89 0.34 −0.0281

a pair of electrodes. The presence of the plasma control delays the vortex shedding in the
wake, makes the recirculation zone longer, alters the vorticity distribution on the cylinder and
increases the shedding frequency. The critical values of the control parameters for which the
vortex shedding was obtained have been studied as a function of the Reynolds number with
a linear stability analysis of the Navier–Stokes equations. The derived generalized eigenvalue
problem was solved by an iterative Arnoldi method, thus obtaining the amplitude field,
damping rates and frequencies of the dominant modes of the spectrum.

This 3D linear stability approach is also able to predict if the 2D configuration considered
as the base flow may develop a 3D instability for any cylinder length. We conclude that in our
Reynolds number range no unstable 3D transition of the base flow takes place. It was observed
that the actuation at high enough Reynolds values keeps the flow two-dimensional even when
the flow without actuation would naturally exhibit a 3D character for these Reynolds numbers.

The neutral stability curve that separates the stable region, where no vortex shedding
occurs, from the unstable periodic region has been calculated, and with the performed
experiments, good agreement was obtained.
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