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A multiscale theory of solids based on the concept of representative volume element (RVE)
and accounting for micro-scale inertia and body forces is proposed. A simple extension of
the classical Hill–Mandel Principle together with suitable kinematical constraints on the
micro-scale displacements provide the variational framework within which the theory is
devised. In this context, the micro-scale equilibrium equation and the homogenisation
relations among the relevant macro- and micro-scale quantities are rigorously derived
by means of straightforward variational arguments. In particular, it is shown that only
the fluctuations of micro-scale inertia and body forces about their RVE volume averages
may affect the micro-scale equilibrium problem and the resulting homogenised stress.
The volume average themselves are mechanically relevant only to the macro-scale.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Classical multiscale theories to predict the mechanical
behaviour of solids with a microstructure have their ori-
gins in the pioneering works of Hill (1963, 1965a,b,
1972), Hashin and Shtrikman (1963), Budiansky (1965)
and Mandel (1971), among others. Over the last two dec-
ades or so, theories relying on the averaging of stresses
and strains over a representative volume element (RVE)
have become remarkably popular in the prediction of over-
all properties of heterogeneous solids in non-linear
regimes. Their use in practical applications relies almost
exclusively on techniques of computational homogenisa-
tion (Kouznetsova et al., 2004; Michel et al., 1999; Miehe
et al., 1999; Terada and Kikuchi, 2001). These techniques
have reached such a level of maturity that multiscale the-
ories are now beginning to find their way in specialised
applications with a very promising prospect of becoming
a much needed tool to help the design of new materials
and the prediction of constitutive behaviours resulting
from the interaction of complex microstructural phenom-
ena (Paggi and Wriggers, 2012; Saavedra Flores and
Friswell, 2012).

Despite the success history of RVE-based multiscale
theories, the consideration of inertia and body forces in
general appears not to have been satisfactorily addressed
to date. In the classical work of Hill (1972) inertia and body
forces are not considered. In the more recent literature,
body forces are often removed from the theory on the basis
of questionable arguments. Inertia forces, in turn, have
rarely been considered in this context. In the few reported
attempts to incorporate inertia effects, the theory appears
to be unclear and suffers from significant inconsistencies.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2014.10.007&domain=pdf
http://dx.doi.org/10.1016/j.mechmat.2014.10.007
mailto:e.desouzaneto@swansea.ac.uk
mailto:pjblanco@lncc.br
mailto:psanchez@intec.unl.edu.ar
mailto:feij@lncc.br
http://dx.doi.org/10.1016/j.mechmat.2014.10.007
http://www.sciencedirect.com/science/journal/01676636
http://www.elsevier.com/locate/mechmat


E.A. de Souza Neto et al. / Mechanics of Materials 80 (2015) 136–144 137
At present, the increasing interest in so-called metama-
terials – microstructured materials displaying useful exotic
macroscopic behaviour – puts pressure on the develop-
ment of robust multiscale theories capable of predicting
the overall response by accounting for the interaction of
(possibly complex) phenomena at the micro-scale (Del
Vescovo and Giorgio, 2014). In this context, the consider-
ation of inertia and body forces may become crucial. The
macroscopic mechanical response of acoustic metamateri-
als, for example, is dictated by dynamic phenomena at the
micro-scale. Any attempt to model such materials by
means of RVE-based multiscale theories must properly
address the consideration of micro-scale inertia effects.

Our purpose in the present paper is to show in a clear
manner how inertia effects and body forces in general
can be rigorously accounted for in such theories. To this
end we cast the theory within a framework relying entirely
on the two fundamental principles of kinematical admissi-
bility and Multiscale Virtual Power – the latter expressed
as a variational statement of an extended version of the
Hill–Mandel Principle of Macrohomogeneity (Hill, 1972;
Mandel, 1971). These provide the essential link between
the macro- and micro-scale kinematics and virtual power,
respectively. Within this framework, once the macro- and
micro-scale kinematical variables are defined and appro-
priate kinematical constraints are postulated to link them
in a consistent manner, all equations of the resulting
multiscale theory – including RVE equilibrium and the
homogenisation relations for force- and stress-like vari-
ables – are derived (rather than postulated) exclusively
by means of straightforward variational arguments. Here
we should point out that the recent literature provides
examples where extended versions of the Hill–Mandel
Principle have been used for this purpose, but a deeper
look into the resulting models reveals significant inconsis-
tencies. Such inconsistencies stem either from insufficient
kinematical constraints being imposed to ensure a mean-
ingful link between the macro- and micro-scale kinematics
or from the variationally inconsistent manner in which
kinematical constraints have been taken into account in
the treatment of the corresponding model. We begin by
introducing the proposed framework in Section 2, against
the background provided by the well-known classical
theory (in the absence of inertia and body forces). Our
main result is presented in Section 3 where we extend
these ideas to the case of non-zero inertia and body forces.
In this context, the role of inertia and body forces naturally
emerges very clearly, allowing one to easily see how they
can be taken into account in a consistent manner. A discus-
sion of our findings follows in Section 4 and the paper
closes with some concluding remarks made in Section 5.
2. Classical theory. Review

Consider a solid continuum that occupies a region X of
the three-dimensional Euclidean space in its reference con-
figuration. A wide family of so-called multiscale constitu-
tive theories are derived based on the idea that any point
x of X is associated with a representative volume element
(RVE), occupying a reference domain Xl of characteristic
length ‘l much smaller than the characteristic length ‘ of
X. The domains X and Xl are referred to as the macro-
and micro-scale, respectively.

Classical multiscale theories (de Souza Neto and Feijóo,
2006, 2008, 2010; Perić et al., 2011) that predict the
macro-scale mechanical behaviour from the constitutive
properties of the corresponding micro-scale can be entirely
derived from two fundamental principles: (i) kinematical
admissibility; and (ii) Multiscale Virtual Power, that govern
the transition between the two scales. Although by no
means absolutely necessary, the derivation of all equations
of the theory as a consequence of these two principles
alone provides, in our view, a robust framework to treat
the problem. In particular, it allows extensions of the clas-
sical theory (such as the one that is the subject matter of
the present paper) to be devised in very clear steps on solid
theoretical grounds. We remark that this approach has
been recently employed with success by Sánchez et al.
(2013) in the derivation of a multiscale theory accounting
for material failure associated with micro-scale strain
localisation phenomena. We begin by illustrating in the
following the use of this idea in the case of the classical
theory, where inertia and body forces are assumed absent.

2.1. Kinematical homogenisation and kinematical
admissibility

Let y 2 Xl denote the coordinates of an arbitrary point
of the RVE associated with a point x 2 X. Without loss of
generality we shall assume the origin of the micro-scale
coordinate system to be located at the centroid of Xl, i.e.Z

Xl

y dXl ¼ 0: ð1Þ

A fundamental assumption in the present class of theories
is that the micro-scale displacement field ul over Xl can
be expanded as

ulðyÞ ¼ uðxÞ þ ruðxÞ y þ ~ulðyÞ
¼ uðxÞ þ ½FðxÞ � I� y þ ~ulðyÞ; ð2Þ

where uðxÞ is the displacement of the corresponding point
x of the macro-scale, rð�Þ denotes the gradient of ð�Þ with
respect to the macro-scale coordinates,

F ¼ Iþru ð3Þ

is the macro-scale deformation gradient and

~ul � ul � u� ðF� IÞy ð4Þ

is defined as the displacement fluctuation field of the RVE. In
view of (2) and (3) the micro-scale deformation gradient
field,

Fl ¼ Iþrlul; ð5Þ

with rl denoting the gradient with respect to the micro-
scale coordinates, is equivalently expressed as

FlðyÞ ¼ IþruðxÞ þ rl~ulðyÞ ¼ FðxÞ þ rl~ulðyÞ: ð6Þ

That is, the micro-scale deformation gradient field is a
sum of the macro-scale deformation gradient, inserted
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uniformly throughout the whole domain Xl, and a micro-
scale displacement fluctuation gradient rl~ul.

2.1.1. Kinematical admissibility
In addition to the above, the following kinematical

homogenisation (averaging) relations, linking the micro-
scale displacement and deformation gradient fields to
their corresponding macro-scale point values at x, are
postulated:

u ¼ 1
jXlj

Z
Xl

ul dXl ð7Þ

and

F ¼ 1
jXlj

Z
Xl

Fl dXl; ð8Þ

where jXlj denotes the measure of Xl. The above postu-
lates are equivalent to a statement of kinematical admissi-
bility of micro-scale displacement fields. Indeed, (7) is
itself a kinematical constraint imposed on ul. Due to the
split (4) and (1), it is equivalent toZ

Xl

~ul dXl ¼ 0: ð9Þ

The averaging relation (8), in turn, due to (6), is equivalent
to the following constraint on rl~ul:Z

Xl

rl~ul dXl ¼ 0; ð10Þ

or, after a straightforward integration by parts,Z
Cl

~ul � ndCl ¼ 0; ð11Þ

where Cl denotes the boundary of the RVE and n is the
outward unit normal to Cl. That is, only displacement fluc-
tuation fields that satisfy the kinematical constraints (9)
and (11) can be regarded as kinematically admissible, i.e.
compatible with the kinematical averaging postulates (8)
and (7). Hence, we can define a functional space of kine-
matically admissible displacement fluctuations, denoted
Kin�~ul

, as

Kin�~ul
� v 2 ½H1ðXlÞ�

3
:

Z
Xl

vdXl ¼ 0;

Z
Cl

v�ndCl ¼ 0

( )
:

ð12Þ

Note that constraint (9), which follows from (7), implies
that translational rigid displacement fluctuations are
excluded from Kin�~ul

. Rotational rigid displacement fluctu-
ations, in turn, are excluded from Kin�~ul

due to constraint
(11) that follows from the deformation gradient averaging
postulate (8). The corresponding space of virtual kinemati-
cally admissible fluctuation fields, denoted Var�~ul

, coincides
with Kin�~ul

itself,

Var�~ul
� v ¼ v1 � v2 : v1;v2 2 Kin�~ul

n o
¼ Kin�~ul

: ð13Þ

From (12) and (2) we have that, for a given macro-scale
point displacement and deformation gradient, u and F,
the functional set of kinematically admissible micro-scale
displacement fields reads

Kin�ul
� v ¼ uþ ½F� I�y þ ~v : ~v 2 Kin�~ul

n o
: ð14Þ

The corresponding space of virtual kinematically admissi-
ble micro-scale displacements, in turn, is given by

Var�ul
� v ¼ v1 � v2 : v1;v2 2 Kin�ul

n o
¼ Kin�~ul

¼ Var�~ul
:

ð15Þ
2.1.2. Further kinematical constraints
It is worth remarking that the RVE kinematical con-

straints embedded in the definition of the functional space
Kin�~ul

(or Var�ul
) above are the minimal kinematical con-

straints compatible with the present family of multi-scale
theories of solid behaviour. That is, any relaxation of these
kinematical constraints would allow for micro-scale dis-
placement fields that fail to satisfy the fundamental kine-
matical averaging relations (8) or (7) and the resulting
model would violate essential postulates of the theory.
The enforcement of further, more stringent, kinematical
constraints, on the other hand, is perfectly acceptable
(and very sensible in many situations), provided the result-
ing space of kinematically admissible fluctuations is a sub-
space of its minimally constrained counterpart defined in
(12). In fact, well-known multi-scale models of solid can
be cast within the present framework with the simple
introduction of further kinematical constraints as follows:

� Voigt–Taylor, uniform strain model or rule of mixtures. It
assumes a uniform deformation gradient, equal to F,
over the entire RVE domain. This is equivalent to saying
that the displacement fluctuations vanish over Xl.
Hence, within the present framework the Voigt–Taylor
model is retrieved by setting the actual space Kin~ul , of
kinematically admissible displacement fluctuations,
simply as
Kin~ul ¼ f0g: ð16Þ

Linear boundary displacements or uniform boundary
strain model. This widely used model assumes the dis-
placement fluctuations to vanish on Cl so that the dis-
placement field on the boundary of the RVE reads

ulðyÞ ¼ uþ ½F� I�y 8y 2 Cl: ð17Þ

The corresponding space of kinematically admissible
displacement fluctuations is

Kin~ul ¼ fv 2 Kin�~ul
: vjCl

¼ 0g: ð18Þ

Periodic boundary fluctuations model. This is the classical
assumption adopted in the analysis of periodic media.
The RVE in this case is a unit cell whose periodic repeti-
tion generates the macro-scale continuum. The RVE here
must satisfy certain geometrical constraints so as to be
compatible with the assumption of periodicity of the
medium. Under such conditions, parallel RVE boundary
sides (in two dimensions) or surfaces (in three dimen-
sions) are identified in pairs. Within each side or
surface a one-to-one correspondance can be identified
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between its points and points of the corresponding
pairing side or surface. With ðyþ; y�Þ denoting an arbi-
trary pair of boundary points related by this one-to-one
correspondance, the periodicity constraint requires
that displacement fluctuations at yþ and y� be identi-
cal. The space of kinematically admissible fluctuations
in this case then reads

Kin~ul ¼ fv 2 Kin�~ul
: vðyþÞ

¼ vðy�Þ 8 pairs ðyþ; y�Þg: ð19Þ

Finally, we point out that without any kinematical con-
straints other than the minimal requirements of the
theory, i.e. by choosing
Kin~ul ¼ Kin�~ul
; ð20Þ

it can be shown (de Souza Neto and Feijóo, 2010) that the
resulting model predicts uniform traction on the boundary
of the RVE. In this case, with P denoting the First Piola–Kir-
chhoff stress tensor at the macro-scale point x;Pl the cor-
responding micro-scale counterpart field, we have

PlðyÞ nðyÞ ¼ P nðyÞ 8y 2 Cl: ð21Þ
2.2. Principle of Multiscale Virtual Power

The Hill–Mandel Principle of Macro-homogeneity (Hill,
1963, 1972; Mandel, 1971) establishes the energetic con-
sistency between the two scales. In its original form (Hill,
1972), it states that the volume average of the power of
an equilibrium stress field over an RVE subjected to either
linear boundary displacements or uniform boundary trac-
tions equals the macro-scale stress power. Here, we
rephrase the Hill–Mandel Principle as a variational state-
ment – named the Principle of Multiscale Virtual Power –
by requiring the stress virtual power to coincide with the
volume average of its micro-scale counterpart. That is,
we require that

P : dF ¼ 1
jXlj

Z
Xl

Pl : dFl dXl ð22Þ

for all virtual macro-scale deformation gradients and
micro-scale deformation gradient fields, dF and dFl, kine-
matically admissible in the sense of (8). By taking (6) into
account, the Hill–Mandel Principle can be expressed by the
following variational equation:

P : dF¼ 1
jXlj

Z
Xl

Pl : ðdFþrld~ulÞdXl; 8dF; 8d~ul 2 Var~ul :

ð23Þ

2.2.1. Stress homogenisation and micro-scale equilibrium
The variational statement of the Hill–Mandel Principle

plays a fundamental role in the definition of the transition
between the micro- and macro-scales. As direct conse-
quences of (23) we have:

� The stress homogenisation relation,

1 In Hill’s original work (Hill, 1972), equilibrium and homogenisation of

stress are a priori assumptions which, combined, have the classical Hill–
Mandel Principle as a consequence.
P ¼ 1
jXlj

Z
Xl

Pl dXl; ð24Þ
obtained from (23) by choosing d~ul ¼ 0 and allowing
arbitrary variations dF, and;
� The micro-scale equilibrium equation,
Z

Xl

Pl : rld~ul dXl ¼ 0; 8d~ul 2 Var~ul ; ð25Þ

obtained by setting dF ¼ 0 and allowing any kinemati-
cally admissible virtual displacement fluctuations in
(23).

In the conventional approach to homogenisation problems
under the assumptions of periodic displacement fluctua-
tions or minimal kinematical constraint, translational rigid
body displacement fluctuations are prevented by fixing an
arbitrary point of the RVE. Here, translational rigid modes
are dealt with by imposing (9) (embedded in the definition
of Var~ul ). We remark, however, that both approaches are
mechanically equivalent in the absence of body forces.

Remark 2.1. In contrast with the usual way in which
multi-scale theories are presented, within the present
framework the stress homogenisation expression (24) and
the micro-scale equilibrium equation (25) are not a priori
assumptions.1 Rather, they are derived here as direct
consequences of the variational statement (22) of the Hill–
Mandel Principle – the Principle of Multiscale Virtual Power.
Remark 2.2. In the above derivation, following the usual
assumption in the treatment of the classical theory (see
for instance Hill, 1972), inertia and body forces have been
assumed zero. It should be noted, however, that any inertia
or body force field orthogonal to the space Var~ul is consis-
tent with the variational equilibrium equation (25) (de
Souza Neto and Feijóo, 2006; Perić et al., 2011). As we shall
see, the extended theory presented in Section 3 provides
the natural framework to fully address the consideration
of inertia and body forces.
2.3. Summary. Macro-scale constitutive response

The complete classical multiscale theory can be sum-
marised by the deformation gradient averaging and stress
homogenisation relations, given respectively by (8) and
(24), and the micro-scale equilibrium equation (25). With
these at hand, together with the choice of an appropriate
space Kin~ul ¼ Var~ul , the macro-scale constitutive response
at a point x of the macroscopic continuum with a given
associated RVE, is obtained as follows:

� Given the history of deformation gradient tFðxÞ at point
x up to time t, find a corresponding history t ~ul of kine-
matically admissible micro-scale displacement fluctua-
tion fields ~ul 2 Kin~ul , such that the RVE equilibrium
equation is satisfied:
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Z
Xl

Plðy;sFlÞ :rldvdXl¼0 8dv 2Var~ul ; 8s2 ½0;t�;

ð26Þ

where the histories of Fl and ~ul are related by:

sFlðyÞ ¼ sFðxÞ þ rl
s~ulðyÞ ð27Þ

and Plðy; �Þ is a given constitutive response functional
that maps histories of deformation gradient into the
First Piola Kirchhoff stress tensor at point y of the RVE:

Plðy; sÞ ¼ Plðy; sFlÞ: ð28Þ

� With the solution of the above RVE equilibrium prob-
lem at hand, obtain for all s 2 ½0; t� the macro-scale
First Piola–Kirchhoff stress tensor according to the
averaging relation (24).

3. Consideration of inertia and body forces

We shall now consider the situation where inertia and
body forces may be present. Then, let fb

l denote the refer-
ence micro-scale body force field. That is, the body force
per unit volume of the reference configuration of the
RVE. In addition, let ql be the micro-scale reference mass
density field.

Rather than assuming a particular format for the
homogenisation of the inertia and body forces, or for the
corresponding RVE equilibrium equation, we shall proceed
here to derive them from an extended version of the Hill–
Mandel Principle, which enforces energy consistency
between the two scales in the present case. Note that this
approach is entirely in line with the methodology adopted
above in the formulation of the classical theory (in the
absence of inertia and body forces) where both the homog-
enisation of the stress and the RVE equilibrium were derived
from the variational statement of the Hill–Mandel Principle.

3.1. Extended Hill–Mandel Principle

In order to account for inertia and body forces in the
micro-to-macro transition, we postulate an extended ver-
sion of the Hill–Mandel Principle by simply stating the
Principle of Multiscale Virtual Power in terms of total virtual
powers at both macro- and micro-scales (Blanco et al.,
2014). The extended principle requires that the total
macro-scale virtual power coincides with the volume aver-
age of its micro-scale counterpart. That is, it requires the
variational equation

P : dF� f � du ¼ 1
jXlj

Z
Xl

ðPl : dFl � fb
l � dul þ ql €ul � dulÞdXl

ð29Þ

to hold for all tensors dF and vectors du and all virtual
micro-scale deformation gradient and displacement fields,
dFl and dul, kinematically admissible in the sense of (8)
and (7). In (29), €ul is the micro-scale acceleration field. It
should be noted that in stating the macro-scale total vir-
tual power, a macro-scale force vector f has been intro-
duced as the dual of the macro-scale displacement vector,
with no reference to its specific nature (i.e. whether it
results specifically from prescribed micro-scale body forces
or inertia forces). Its actual meaning – to be made clear by
the homogenisation formulae linking the macro-scale force
vector f to the micro-scale fields it originates from – will be
determined as a consequence of (29) by means of simple,
but rigorous, variational arguments.

By decomposing dFl and dul following (2) and (6), the
Principle of Multiscale Virtual Power can be re-written in
the equivalent form:

P : dF� f � du ¼ 1
jXlj

Z
Xl

½Pl : ðdFþrld~ulÞ

� ðfb
l � ql€ulÞ � ðduþ dFy þ d~ulÞ�dXl

8dF; du; 8d~ul 2 Var~ul : ð30Þ

3.2. Stress, inertia and body force homogenisation and RVE
equilibrium

Following the procedure of Section 2, by setting
du ¼ 0; d~ul ¼ 0, and allowing arbitrary variations dF in
(30), we obtain the expression for the stress homogenisation
in the presence of micro-scale inertia and body forces:

P ¼ 1
jXlj

Z
Xl

½Pl � ðfb
l � ql€ulÞ � y�dXl: ð31Þ

Further, with dF ¼ 0 and du ¼ 0, (30) yields the corre-
sponding RVE equilibrium equation:Z

Xl

½Pl :rld~ul�ðfb
l�ql€ulÞ � d~ul�dXl ¼ 0; 8d~ul 2 Var~ul :

ð32Þ
Finally, with dF ¼ 0 and d~ul ¼ 0, (30) results in the homog-
enisation expression for the macro-scale force f:

f ¼ 1
jXlj

Z
Xl

ðfb
l � ql€ulÞdXl: ð33Þ

Obviously, one can conveniently split f as

f ¼ fb � fq
; ð34Þ

with

fb
:¼ 1
jXlj

Z
Xl

fb
l dXl ð35Þ

identified as the homogenised body force and

fq
:¼ 1
jXlj

Z
Xl

fq
l dXl; fq

l :¼ ql€ul; ð36Þ

as the homogenised inertia force. That is, as one might have
intuitively expected, the macro-scale body force fb turns
out to be the volume average of its micro-scale counterpart
over the RVE, and the same applies to the macro-scale iner-
tia force fq. Here, these homogenisation formulae have
been naturally derived as consequence of the Euler–
Lagrange equation of the Principle of Multiscale Virtual
Power.

3.3. Inertia and body force fluctuation fields

To gain some further insight into the role of inertia and
body forces in the micro-scale it is convenient to define the
micro-scale body force fluctuation field,
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~fb
l :¼ fb

l �
1
jXlj

Z
Xl

fb
l dXl ¼ fb

l � fb ð37Þ

and the micro-scale inertia force fluctuation field,

~fq
l :¼ fq

l �
1
jXlj

Z
Xl

fq
l dXl ¼ fq

l � fq
: ð38Þ

That is, the fields ~fb
l and ~fq

l measure the fluctuation of fb
l

and fq
l about their respective volume averages, fb and fq.

With the introduction of the above split of fb
l and fq

l into
(31) we obtain

P ¼ 1
jXlj

Z
Xl

½Pl � ð~fb
l � ~fq

lÞ � y�dXl � ðfb � fqÞ �
Z

Xl

y dXl

( )
;

ð39Þ

which, in view of (1), results in the following expression for
the stress homogenisation:

P ¼ 1
jXlj

Z
Xl

½Pl � ð~fb
l � ~fq

lÞ � y�dXl: ð40Þ

Analogously, with the use of (37) and (38) in (32), we
obtainZ

Xl

½Pl : rld~ul � ð~fb
l � ~fq

lÞ � d~ul�dXl

� ðfb � fqÞ �
Z

Xl

d~ul dXl ¼ 0; 8d~ul 2 Var~ul : ð41Þ

By noting that Var~ul 	 Var�~ul
¼ Kin�~ul

, the constraints of
definition (12) imply that the second integral on the left
hand side of (41) vanishes – the volume averages fb and
fq are orthogonal to Var~ul – and the equilibrium of the
RVE can be equivalently expressed by the variational
equationZ

Xl

½Pl : rld~ul � ð~fb
l � ~fq

lÞ � d~ul�dXl ¼ 0; 8d~ul 2 Var~ul ;

ð42Þ

where only the fluctuating components ~fq
l and ~fb

l of the
micro-scale inertia and body force take part.2

Finally, for the sake of completeness, by using in (40)
the general tensor relationZ

Xl

SdXl ¼
Z

Cl

Sn� y dCl þ
Z

Xl

divlS� y dXl; ð43Þ
2 Although not specifically relevant to the treatment of micro-scale
inertia and body forces, it is worth noting that a completely analogous
argument, taking into account the kinematical constraint (10) embedded in
the definition of Var~ul , leads to a similar conclusion regarding the role of
the micro-scale stress field in the RVE equilibrium equation. That is, only
the micro-scale stress fluctuation field,

~Pl :¼ Pl � P;

may produce non-zero virtual power. Hence, (42) is equivalent toZ
Xl

½~Pl : rld~ul � ð~fb
l � ~fq

lÞ � d~ul�dXl ¼ 0; 8d~ul 2 Var~ul ;

where only fluctuations of micro-scale forces and stresses are of

relevance.
valid for any sufficiently smooth tensor field S, together
with the strong form of (42), we obtain the alternative
expression for the homogenised stress which uses only
boundary information:

P ¼ 1
jXlj

Z
Cl

Pln� y dCl; ð44Þ

or, simply,

P ¼ 1
jXlj

Z
Cl

tl � y dCl; ð45Þ

where tl ¼ Pln is the Piola stress vector on Cl. Note that tl
is a purely reactiveboundary traction, i.e, tl ? Var~ul . Obvi-
ously, this expression remains valid in the absence of body
forces.

3.4. Summary. Macro-scale response with micro-scale inertia
and body forces

In the presence of inertia and micro-scale body forces
or, more precisely, non-zero inertia and body force fluctua-
tions at the micro-scale, the macro-scale stress response at
a point x of the macro-continuum is obtained as follows:

� Given the history tFðxÞ of deformation gradient at point
x up to time t, the history t~fb

l of the reference micro-
scale body force fluctuation field and the initial condi-
tions ~ulðt0Þ, and _~ulðt0Þ, for the displacement and veloc-
ity fluctuation fields at the initial time t0, we solve the
RVE equilibrium problem: find a corresponding history
t ~ul of kinematically admissible displacement fluctua-
tion fields ~ul 2 Kin~ul such that
Z

Xl

Plðy;s FlÞ : rldv dXl �
Z

Xl

½~fb
lðsÞ � ~fq

lðsÞ� � dv dXl

¼ 0 8dv 2 Var~ul ; 8s 2 ½0; t�: ð46Þ

� With the solution of the RVE equilibrium problem at
hand, obtain for all s 2 ½0; t� the macro-scale First
Piola–Kirchhoff stress tensor according to the stress
homogenisation relation (40) or (45). The homogenised
macro-scale inertia and body forces, in turn, are
obtained according to (36) and (35), respectively.

4. Discussion

In the absence of inertia and body forces, the classical
procedure summarised in Section 2.3 determines the
macro-scale First Piola–Kirchhoff stress tensor at a point
of the macro-continuum as a function solely of the history
of the macro-scale deformation gradient at that point. That
is, the procedure implicitly defines a local constitutive
response functional P for the macro-scale stress such that

PðtÞ ¼ PðtFÞ: ð47Þ

In this case, the macro-scale stress response resulting from
the multiscale modelling is purely constitutive in that it
depends only on the history of the macro-scale deforma-
tion gradient.

However, if inertia or body forces are taken into account
the above no longer holds true in general. Indeed, note that
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the stress determination procedure of Section 3.4 in fact
defines the macro-scale First Piola–Kirchhoff stress as a
function of the history of the macro-scale deformation gra-
dient and the history of the micro-scale inertia and body
force fluctuation fields. As for the history of micro-scale
inertia forces, we should note that the histories tF and
tu implicitly contain the data €u and €F required by
the dynamic RVE equilibrium problem whose solution
gives the microscale acceleration field €ul. As the micro-
scale inertia forces are determined from €ul through
(36)2 we have that the stress response functional, in
this case denoted Sa, is such that for a given set
a � f~ulðt0Þ; _~ulðt0Þg of initial conditions for the micro-scale
displacement and velocity fluctuation fields we have

PðtÞ ¼ SaðtF; tu; t~fb
lÞ: ð48Þ

The functional S in this case cannot in general be classed as
a constitutivefunctional in the classical sense because, in
addition to the standard dependence upon the deformation
gradient history, the stress here depends also on external
prescribed loading – more precisely, on the micro-scale
body force fluctuation fields – and on the history of the
macro-scale displacement. The dependence of the stress
response on the histories of displacements or external
agents is non-conventional and does not fit within the clas-
sical and widely accepted framework of simple materials
(Noll, 1958, 1972).

Of course, the stress dependence upon inertia or body
forces will be of practical relevance only in situations
where their fluctuationsare of sufficient intensity to have
a significant effect on the solution of the RVE equilibrium
problem (46) and on the stress homogenisation (40) or
(45). It is worth remarking here however that, even in such
cases, the macro-scale First Piola–Kirchhoff stress (as
obtained in (45)) remains identifiable in terms of RVE
boundary data alone – a property pointed out by Hill
(1972) as fundamental in the definition of macro-scale
variables.

The consideration of body forces in the multiscale mod-
elling of solids has been recently addressed in Mandadapu
et al. (2012), Lidström (2011) and Ricker et al. (2009). In
the context of a homogenisation procedure based on the
Irving–Kirkwood statistical mechanical theory (Irving and
Kirkwood, 1950), Mandadapu et al. (2012) arrived at an
expression for the homogenised body force which reduces
to that of (35) for a suitable choice of weighting function in
their theory. Interestingly, following a variational approach
similar to the one reported here, where macro- and micro-
scale body forces are correctly accounted for, Ricker et al.
(2009) concluded that the extended Hill–Mandel approach
is consistent only with self-equilibrated micro-scale body
forces (and consequently zero macro-scale body force).
Their analysis was conducted under the assumption of
periodic RVE boundary conditions. Their conclusion is at
odds with the findings of the present paper and can be
explained as follows. In Ricker et al. (2009), no kinematical
constraint has been imposed on the micro-scale displace-
ment field to link it to the macro-scale displacement. That
is, without a constraint of the type (7), the kinematically
admissible displacements within the RVE domain are
independent of the macro-displacement. As a conse-
quence, the corresponding space of virtual RVE displace-
ments contains rigid translations and the extended
Hill–Mandel Principle can only hold if the volume average
of the micro-scale body forces vanishes. Hence, the
conclusion of Ricker et al. (2009) is variationally consistent
with the kinematics they adopted. However, since body
forces are work-conjugate to displacements, the inclusion
of the virtual power of (macro- and micro-scale) body
forces into the Hill–Mandel Principle must be accompanied
by an appropriate kinematical constraint that, just as (6)
and (10) link the macro- and micro-scale displacement
gradients, links the macro- and micro-scale displacements
in a physically meaningful way. This issue is fully resolved
with the simple incorporation of the fundamental con-
straint (7). Within the present framework, where the entire
theory derives from the fundamental concept of kinemati-
cal admissibility and the Principle of Multiscale Virtual
Power, once the constraint (7) is in place, the homogenisa-
tion formulae and RVE equilibrium equation that correctly
account for possible non-zero inertia and body forces fol-
low naturally from straightforward variational arguments.
Note that, due to the nature of constraint (7), only the
fluctuating (zero volume average) components of
the micro-scale inertia and body force fields contribute to
the micro-scale virtual power and are relevant to the RVE
equilibrium equation. Their uniform (volume average)
component is orthogonal to the space Var~ul (see Remark
2.2) and therefore ‘‘invisible’’ to the RVE equilibrium prob-
lem. That is, the uniform components fq and fb of the
micro-scale inertia and body forces, defined in (36) and
(35), are balanced by a purely reactiveforce field generated
by the kinematical constraint (7). We remark that the
present findings – fluctuation and volume average force
components only ‘‘visible’’ at the micro- and macro-scale
respectively – are consistent with those reported by
Sanchez-Palencia (1980) in the context of asymptotic
expansion treatment of rapidly varying body force fields
in linear elasticity of periodic media.

These observations shed light on an issue which, in our
view, appears to be quite unclear in the recent literature
(see Pham et al., 2013). The apparent confusion surround-
ing this issue seems to stem partly from the non-conven-
tional nature of the kinematical constraint (7) – a volume
integral constraint – imposed upon the microscale dis-
placement field. However, once the theory is properly cast
in variational form, the consequences of this constraint (in
particular, the reactive nature of the uniform component of
the microscale inertia and body forces) can be rigorously
dealt with in exactly the same way as the conventional
kinematical constraints of solid mechanics by simply
observing the orthogonality between the functional spaces
of reactive forces and kinematically admissible virtual dis-
placements. As an interesting practical consequence of
these variational considerations we have the following.
Note that under the assumptions of minimal kinematical
constraint or periodic boundary fluctuations the domain
integral constraint (7) serves only to prevent rigid transla-
tions. Hence, in these cases an RVE equilibrium problem
mechanically equivalent to (46) can be defined by relaxing
the constraint (7) of Var~ul and loading the RVE only with
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the fluctuating components ~fq
l and ~fb

l of the inertia and
body forces. Obviously, in such cases another kinematical
constraint (e.g. the typical boundary point displacement
constraints (Perić et al., 2011) used in RVE computations
in the absence of inertia and body forces) must be imposed
to prevent rigid translations in the mechanically equiva-
lent problem. This approach is likely to be simpler in prac-
tical computations as it does not require the domain
integral constraint to be considered at all. However, if the
full inertia or body forces are applied to the RVE (i.e.
fluctuating plus volume average components) then the
constraint (7) must be imposed in the solution of the RVE
equilibrium problem. Also noteworthy is the fact that,
under the assumption of linear RVE boundary displace-
ments, rigid translations are fully prevented by the bound-
ary constraints alone and (7) is a further kinematical
constraint. Hence, unlike the periodic boundary fluctua-
tions and the minimally constrained models, in this case
there is in general no mechanically equivalent RVE equilib-
rium problem that does not require the domain integral
constraint (7) to be imposed explicitly.
5. Conclusion

An RVE-based multiscale theory of solids accounting for
the effects of micro-scale inertia and body forces has been
proposed and discussed in detail. The theory was cast
within a framework relying entirely on the two fundamen-
tal principles of kinematical admissibilityand Multiscale Vir-
tual Power. These principles are regarded as fundamental
in that they provide the essential link between the macro-
and micro-scale kinematics and virtual power, respec-
tively. In this context, it has been shown that a simple
extension of the Hill–Mandel Principle that accounts for
the total virtual power, together with a suitable set of kine-
matical constraints upon the RVE displacements, provide
an appropriate framework to address the effects of inertia
and body forces on the micro-to-macro transition. Within
this framework, the RVE equilibrium equation and the
homogenisation relations among the relevant macro- and
micro-scale quantities are naturally derived by means of
straightforward variational arguments. The following find-
ings are of particular relevance:

� As one would intuitively expect, the macro-scale inertia
and body force are obtained simply as the volume aver-
age of the micro-scale inertia and body force fields over
the RVE domain, respectively;
� The contribution of the micro-scale inertia and body

force fields to the homogenised stress is such that the
macro-scale stress tensor remains, as in the classical
theory of Hill (1972), representable exclusively in terms
of RVE boundary tractions;
� Only fluctuations of the micro-scale inertia and body

force fields about their homogenised (volume average)
values are of relevance to the RVE equilibrium equation.
Uniform micro-scale inertia and body force fields are
‘‘invisible’’ to the RVE equilibrium problem (as they pro-
duce no virtual power in the micro-scale) and, there-
fore, do not contribute to the homogenised stress.
To the authors’ knowledge, these findings are novel in this
context and clarify the issue of inertia and body forces
within this class of multiscale theories – an issue which
appears to not to have been satisfactorily addressed in
the literature. We finish by noting that a generalisation
of the framework adopted here – where the entire theory
can be derived from the principles of kinematical admissi-
bility and Multiscale Virtual Power alone – is currently
under development (Blanco et al., 2014; Blanco et al.,
accepted for publication) and will be the subject of a forth-
coming publication. The generalised framework extends
the concepts discussed here to tackle non-classical multi-
scale problems involving, for example, kinematical discon-
tinuities, higher order kinematics or distinct kinematics at
micro- and macro-scales.
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