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Abstract

First, let ug be the unique solution of an elliptic variational inequality with source
term g. We establish, in the general case, the error estimate between u3(µ) = µug1

+
(1 − µ)ug2

and u4(µ) = uµg1+(1−µ)g2 for µ ∈ [0, 1]. Secondly, we consider a family of
distributed optimal control problems governed by elliptic variational inequalities over
the internal energy g for each positive heat transfer coefficient h given on a part of
the boundary of the domain. For a given cost functional and using some monotony
property between u3(µ) and u4(µ) given in F. Mignot, J. Funct. Anal., 22 (1976), 130-
185, we prove the strong convergence of the optimal controls and states associated to
this family of distributed optimal control problems governed by elliptic variational
inequalities to a limit Dirichlet distributed optimal control problem, governed also by
an elliptic variational inequality, when the parameter h goes to infinity. We obtain
this convergence without using the adjoint state problem (or the Mignot’s conical
differentiability) which is a great advantage with respect to the proof given in C.M.
Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control
problems governed by elliptic variational equalities.
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1 Introduction

Let V a Hilbert space, V ′ its topological dual, K be a closed, convex and non empty set
in V , g in V ′ and a bilinear form a : V × V → R, which is symmetric, continuous and
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coercive form that is there exists a constant m > 0 such that m‖v‖2 ≤ a(v, v) for all v in
V . It is well known [34, 26, 23] that for each g ∈ V ′ there exists a unique solution u ∈ K,
such that

a(u , v − u) ≥ 〈g , v − u〉 ∀v ∈ K, (1.1)

where 〈·, ·〉 denotes the duality pairing between V and V ′. So we can consider g 7→ u = ug
as a function from V ′ to K. Let ui = ugi be the corresponding solution of (1.1) with g = gi
for i = 1, 2. We define for µ ∈ [0, 1]

u3(µ) = µu1 + (1− µ)u2, g3(µ) = µg1 + (1− µ)g2, and u4(µ) = ug3(µ). (1.2)

In [7], we established the necessary and sufficient condition to obtain that the convex
combination u3(µ) is the unique solution of the elliptic variational inequality (1.1) with
source term g3(µ), namely

u4(µ) = u3(µ) ∀µ ∈ [0, 1] if and only if α = β = 0, (1.3)

with

α = α(g1) := a(u1, u2 − u1)− 〈g1, u2 − u1〉, (1.4)

β = β(g2) := a(u2, u1 − u2)− 〈g2, u1 − u2〉. (1.5)

In Section 2, we establish the error estimate between u3(µ) and u4(µ) in the case
where α and β defined by (1.4) and (1.5) are not equal to zero. We obtain also some
other information concerning u3(µ) and u4(µ) which will be used in Section 4. We can not
obtain, for an arbitrary convex K, a needed monotony property of u3(µ) and u4(µ) that
u4(µ) ≤ u3(µ) ∀µ ∈ [0, 1] [29] but we can obtain this inequality for the complementary
free boundary problems given in Section 3.

In Section 3, we consider a family of free boundary problems with mixed boundary
conditions associated to particular cases of the elliptic variational inequality (1.1). We
study some dependence properties of the solutions to this family of elliptic variational
inequalities, on the internal energy g (see more details in the complementary problem
(3.1) or the variational inequalities (3.5) or (3.6)) and also on the heat transfer coefficient
h which is characterized in the Newton law or the Robin boundary condition (3.3) (see also
the variational inequality (3.6)). Note that mixed boundary conditions play an important
role in various applications [12, 35].

In Section 4, first for a given constant M > 0 we consider g as a control variable
for the cost functional (4.1), then we formulate the distributed optimal control problem
associated to the variational inequality (3.5). We also formulate the family of distributed
optimal control problems associated to the variational inequality of (3.6), which depend
on a positive parameter h. With the above dependence properties obtained in Section 3,
the inequality obtained in Section 2 and by using the monotony property [29] between
u3(µ) and u4(µ), we obtain a new proof of the strict convexity of the cost functional which
is not given in [29] and then the existence and the uniqueness of the optimal control gop
holds. We obtain similar results for the optimal control goph . We remark here that the
strict convexity of the cost functional is automatically true (then the uniqueness of the
optimal control problems holds) when the equivalence (1.3) is verified.

Then, we prove that the optimal control goph and its corresponding state ugophh
are

strongly convergent to gop and ugop respectively, when h → +∞, in adequate functional
spaces. This asymptotic behavior can be considered very important in the optimal control

2



for heat transfer problems because the Dirichlet boundary condition, given in (3.2) is
not a relevant physical condition to impose on the boundary; the true relevant physical
condition is given by the Newton law or the Robin boundary condition (3.3) [9]. Therefore,
the goal of this paper is to approximate a Dirichlet optimal control problem, governed
by an elliptic variational inequality, by a Neumann optimal control problems, governed
by elliptic variational inequalities, for a large positive coefficient h. Moreover, from a
numerical analysis point of view it maybe preferable to consider approximating Neumann
problems in all space V (see the variational inequality (3.6)), with parameter h, rather
than a Dirichlet problem in a restriction of the space V (see the variational inequality
(3.5)).

We note here that we do not need to consider the adjoint state for problems (3.5)
and (3.6) as in [10, 27] in order to prove the convergence when h → +∞. This is a very
important advantage of our proof with respect to the previous one given for variational
equalities in [10]. This fact was possible because we do not need to use the cornerstone
Mignot’s conical differentiability of the cost functional [29].

Different problems with distributed optimal control governed by partial differential
equations can be found in the following books [3, 25, 31, 38]. Moreover, we describe briefly
some works on optimal control governed by elliptic variational inequalities, see for example:
[1, 30] on optimality conditions for the penalized problem, [4] on augmented Lagrangian
algorithms, [5, 6, 17, 22] on Lagrange multipliers, [39] on quasilinear elliptic variational
inequalities, [15] on estimation of a parameter involved in a variational inequality model,
[8] on optimal control problems of variational inequalities for Signorini problem, [32] on
optimal control for variational inequalities governed by a pseudomonotone operator, [13]
when optimal control problem for a variational inequality is approximated by a family
of finite-dimensional problems, [14] on the identification of a distributed parameter, and
[28] on regularization techniques with state constraints. In conclusion, many practical
applications ranging from physical and engineering sciences to mathematical finance are
modeled properly by elliptic and parabolic variational inequalities (see [15, 16, 18] and
their references within them).

2 Some general results

In [7] we proved the equivalence (1.3). In order to study optimal control problems in
Section 4 it is useful for us, to obtain the error estimate between u3(µ) and u4(µ) when
the equivalence (1.3) is not satisfied.

Theorem 2.1. Let u1 and u2 be the two solutions of the variational inequality (1.1) with
respectively as source term g1 and g2, then we have the following estimate

m‖u4(µ)− u3(µ)‖
2
V + µI14(µ) + (1− µ)I24(µ) ≤ µ(1− µ)(α+ β), ∀µ ∈ [0, 1]

where α and β are defined by (1.4) and (1.5) respectively and

I14(µ) = a(u1 , u4(µ)− u1)− 〈g1, u4(µ)− u1〉 ≥ 0

I24(µ) = a(u2 , u4(µ)− u2)− 〈g2, u4(µ)− u2〉 ≥ 0.

Proof. As u4(µ) is the unique solution of the variational inequality

a(u4(µ) , v − u4(µ))− 〈g3(µ), v − u4(µ)〉 ≥ 0, ∀v ∈ K
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and u3(µ) ∈ K so taking v = u3(µ) in this variational inequality, we have

m‖u4(µ)− u3(µ)‖
2
V ≤ a(u3(µ) , u3(µ)− u4(µ))− 〈g3(µ) , u3(µ)− u4(µ)〉.

Using that u3(µ) = µ(u1 − u2) + u2 and g3(µ) = µ(g1 − g2) + g2 we obtain

m‖u4(µ)− u3(µ)‖
2
V ≤ [a(u2 , u2 − u4(µ))− 〈g2 , u2 − u4(µ)〉]

+µ [a(u2 , u1 − u2)− 〈g2 , u1 − u2〉]

+µ2 [a(u1 − u2 , u1 − u2)− 〈g1 − g2 , u1 − u2〉]

+µ [a(u1 − u2 , u2 − u4(µ))− 〈g1 − g2 , u2 − u4(µ)〉]

≤ −I24(µ) + µβ − µ2β − µ2α+ µI24(µ)

+µ [a(u1 , u2 − u4(µ))− 〈g1 , u2 − u4(µ)〉] ,

so

m‖u4(µ)− u3(µ)‖
2
V ≤ µ(1− µ)(α+ β)− [µI14(µ) + (1− µ)I24(µ)] ,

which is the required result.

The result of Theorem 2.1 will be used in Section 4 (see Lemma 4.1). Moreover, from
Theorem 2.1 we deduce the result obtained in [7] and more information concerning u3(µ)
and u4(µ) in the following corollary.

Corollary 2.1.

α(g1) = β(g2) = 0 =⇒







(i) u3(µ) = u4(µ) ∀µ ∈ [0, 1]

(ii) I14(µ) = I24(µ) = 0 ∀µ ∈ [0, 1].

Remark 2.1. We can not obtain a monotony property between u3(µ) and u4(µ) for a
general variational inequality (1.1), precisely for any convex set K. But we can obtain it
when we consider the particular obstacle problems (see Section 3).

3 Dependence properties of solution of obstacle problem

Let Ω an open bounded set in R
n with its boundary ∂Ω = Γ1 ∪ Γ2. We suppose that

Γ1 ∩ Γ2 = ∅, and mes(Γ1) > 0. We consider the following complementarity problem:

u ≥ 0, u(−∆u− g) = 0, −∆u− g ≥ 0 a.e. in Ω (3.1)

u = b on Γ1, −
∂u

∂n
= q on Γ2 (3.2)

and for a parameter h > 0, we consider the complementarity problem (3.1) with the mixed
boundary conditions :

−
∂u

∂n
= h(u− b) on Γ1 −

∂u

∂n
= q on Γ2 (3.3)

where h is the heat transfer coefficient on Γ1, g is the internal energy, b is the temperature
on Γ1, q is the heat flux on Γ2.
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It is well known that the regularity of the mixed problem is problematic in the neigh-
borhood of some part of the boundary, see for example the book [11]. A regularity for
elliptic problems with mixed boundary conditions is given in [2, 24]. Moreover, sufficient
hypothesis on the data in order to have theH2 regularity for elliptic variational inequalities
are ([33], page 139):

∂Ω ∈ C1,1, g ∈ H = L2(Ω), q ∈ H3/2(Γ2) (3.4)

which are assumed from now on.
We define the spaces V = H1(Ω), V0 = {v ∈ V : v|Γ1

= 0} and the convex sets given
by

K = {v ∈ V : v|Γ1
= b, v ≥ 0 in Ω},

K+ = {v ∈ V : v ≥ 0 in Ω}.

It is classical that, for a given positive b ∈ H
1

2 (Γ1), q ∈ L2(Γ2), and g ∈ H, the two free
boundary problems (3.1)-(3.2) and (3.1), (3.3) lead respectively to the following elliptic
variational problems: Find u ∈ K such that

a(u, v − u) ≥ (g, v − u)−

∫

Γ2

q(v − u)ds, ∀v ∈ K (3.5)

and find u ∈ K+ such that

ah(u , v − u) ≥ (g , v − u)−

∫

Γ2

q(v − u)ds+ h

∫

Γ1

b(v − u)ds ∀v ∈ K+ (3.6)

respectively, where

a(u, v) =

∫

Ω
∇u∇vdx, (g, v) =

∫

Ω
gvdx,

ah(u, v) = a(u, v) + h

∫

Γ1

uvds.

It is evident that [23]

∃λ > 0 such that λ‖v‖2V ≤ a(v , v) ∀v ∈ V0.

Moreover [35, 36]

∃λ1 > 0 such that λh‖v‖
2
V ≤ ah(v, v) ∀v ∈ V, with λh = λ1min{1 , h}

that is ah is a bilinear continuous, symmetric and coercive form on V , as a.

Remark 3.1. Note that we can easily obtain the same results of this paper for more general
problem than (3.1)-(3.2) and (3.1), (3.3) governed by elliptic variational inequalities under
the assumption that the form a must be bilinear, continuous and coercive.

Remark 3.2. The variational inequalities (3.5) and (3.6) are the particular cases of (1.1)
for the particular convex sets K and K+ and

< g , v >= (g, v) −

∫

Γ2

qvds, (3.7)
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< g , v >= (g, v) −

∫

Γ2

qvds+ h

∫

Γ1

bvds (3.8)

respectively. Moreover for g ≥ 0 in Ω, q ≤ 0 on Γ2 and b ≥ 0 on Γ1, then by the weak
maximum principle, the unique solution of (3.5) is in K and the unique solution of (3.6)
is in K+ for each h > 0.

For all h > 0 and all g ∈ H, we associate u = ugh the unique solution of (3.6) and
u = ug the unique solution of (3.5).

Lemma 3.1. a) Let ugn, ug two solutions of (3.5) with gn and g in H then we have

gn ⇀ g in H (weak) as n → +∞ then ugn → ug in V (strong). (3.9)

Moreover, we have

g1 ≥ g2 in Ω then ug1 ≥ ug2 in Ω, (3.10)

umin(g1,g2) ≤ u4(µ) ≤ umax(g1,g2), ∀µ ∈ [0, 1]. (3.11)

b) Let ugnh, ugh two solutions of (3.6) with gn and g in H and h > 0 then we have

gn ⇀ g in H (weak) as n → +∞ then ugnh → ugh in V (strong).
(3.12)

Proof. a) Let gn ⇀ g in H as n → +∞, ugn and ug in K such that

a(ugn , v − ugn) ≥ (gn, v − ugn)−

∫

Γ2

q(v − ugn)ds ∀v ∈ K. (3.13)

Set zn = ugn −B where B ∈ K such that B|Γ1
= b, and taking v = B in (3.13) we obtain

the following inequalities

λ‖zn‖
2
V ≤ a(zn, zn) ≤ −a(zn, B) + (gn, zn)−

∫

Γ2

qznds. (3.14)

As gn ⇀ g in H then ‖gn‖H is bounded, then from (3.14) there exists a positive
constant C which do not depend on n such that ‖ugn‖V ≤ C. Thus

∃η ∈ V such that ugn ⇀ η weakly in V (strongly in H), (3.15)

taking n → +∞ in (3.13), we get

a(η, v − η) ≥ (g, v − η)−

∫

Γ2

q(v − η)ds, ∀v ∈ K. (3.16)

By the uniqueness of the solution of (3.5) we obtain that η = ug. Taking now v = ug in
(3.13), and taking v = ugn in (3.5) with u = ug, then by addition we get

a(ugn − ug, ugn − ug) ≤ (gn − g, ugn − ug),

that is (3.9).

Taking in (3.5) v = u1 + (u1 − u2)
− (which is in K) where u = u1 and g = g1. Then

taking in (3.5) v = u2 − (u1 − u2)
− (which also is in K) where u = u2 and g = g2. By

addition we get
a((u1 − u2)

−, (u1 − u2)
−) ≤ (g2 − g1, (u1 − u2)

−)
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so if g2 − g1 ≤ 0 in Ω then ‖(u1 − u2)
−‖V = 0, and as (u1 − u2)

− = 0 on Γ1 we have
u1 − u2 ≥ 0 in Ω. This gives (3.10). Finally (3.11) follows from (3.10) because

min{g1, g2} ≤ µg1 + (1− µ)g2 ≤ max{g1, g2}, ∀µ ∈ [0, 1].

b) It is similar to a) for all h > 0.

Let now g1, g2 in H, and ug1h, ug2h two solutions of the variational inequality (3.6)
with g = g1 and g = g2 respectively, and the same q and h. We define also

u3h(µ) = µug1h + (1− µ)ug2h and u4h(µ) = u(µg1+(1−µ)g2)h.

So we obtain as in (3.11) that

umin(g1,g2)h ≤ u4h(µ) ≤ umax(g1,g2)h, ∀µ ∈ [0, 1]. (3.17)

Remark 3.3. Taking v = u+ in (3.6) we deduce that

ah(u
− , u−) ≤ −(g , u−) +

∫

Γ2
qu−ds− h

∫

Γ1
bu−ds

so for h > 0 sufficiently large we can have ugh ≥ 0 in Ω with g ≤ 0 in Ω, for given q ≥ 0
on Γ2 and b ≥ 0 on Γ1.

Lemma 3.2. Let g1, g2 in H and ug1h, ug2h two solutions of the variational inequality
(3.6) with the same q and h. Suppose that b is a positive constant and q ≥ 0, then we have

g ≤ 0 in Ω =⇒ ugh ≤ b in Ω, and ugh ≤ b on Γ1, (3.18)

g2 ≤ g1 ≤ 0 in Ω, and h2 ≤ h1 =⇒ ug2h2
≤ ug1h1

in Ω, (3.19)

g ≤ 0 in Ω =⇒ ugh ≤ ug in Ω, ∀h > 0. (3.20)

Moreover ∀g ∈ H, ∀q ∈ L2(Γ2) and ∀b ∈ H
1

2 (Γ1), we have

h2 ≤ h1 =⇒ ‖ugh2 − ugh1‖V ≤
‖γ0||

λ1min(1, h2)
‖b− ugh1‖L2(Γ1)(h1 − h2) (3.21)

where γ0 is the trace embedding from V to L2(Γ1) and ‖γ0‖ is its norm.

Proof. Taking in (3.6) u = ugh and v = ugh − (ugh − b)+ (which in K+), we get

−ah(ugh , (ugh − b)+) ≥ −(g , (ugh − b)+) +

∫

Γ2

q(ugh − b)+ds− h

∫

Γ1

b(ugh − b)+ds,

then

ah((ugh − b)+ , (ugh − b)+) ≤ (g , (ugh − b)+)−

∫

Γ2

q(ugh − b)+ds ≤ 0,

so (3.18) holds.

To check (3.19) we take first in (3.6) v = ug1h1
+(ug2h2

−ug1h1
)+, which is in K+, where

u = ug1h1
is in K+ with g = g1 and h = h1, and taking in (3.6) v = ug2h2

−(ug2h2
−ug1h1

)+,
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which is also in K+, where u = ug2h2
is in K+ with g = g2 and h = h2, then adding the

two obtained inequalities we get

ah2
((ug2h2

− ug1h1
)+ , (ug2h2

− ug1h1
)+) ≤ (g2 − g1 , (ug2h2

− ug1h1
)+)ds

−(h2 − h1)

∫

Γ1

(ug1h1
− b)(ug2h2

− ug1h1
)+ds

and from (3.18) we get (3.19).

To check (3.20), let W = ugh − ug and choose in (3.6) v = ugh −W+ which is in K+,
so

a(ugh , W
+) ≤ (g , W+)−

∫

Γ2

qW+ds. (3.22)

We choose, in (3.5), v = ug + W+, which is in K because from (3.18), then we have
W+ = 0 on Γ1, so

a(ug,W
+) ≥ (g , W+)−

∫

Γ2

qW+ds. (3.23)

So from (3.22) and (3.23) we deduce that a(W+,W+) ≤ 0. Then (3.20) holds.

To finish the proof it remain to check (3.21). We choose v = ugh2 in (3.6) where
u = ugh1 , and v = ugh1 in (3.6) where u = ugh2 , adding the two inequalities we get

λ1 min{1, h2}‖ugh1 − ugh2‖
2
V ≤ (h1 − h2)‖b− ugh1‖L2(Γ1)‖ugh1 − ugh2‖L2(Γ1)

≤ ‖γ0‖(h1 − h2)‖b− ugh1‖L2(Γ1)‖ugh1 − ugh2‖V .

Thus (3.21) holds.

Remark 3.4. The Lemma 3.2 gives as a first additional information that, for all g ≤ 0
in Ω and all h > 0, the sequence (ugh) is increasing and bounded exceptionally, so it is
convergent in some space. We study, in the next sections, the optimal control problems
associated to the variational inequalities (3.5) and (3.6) and the convergence when h →
+∞ in Lemma 4.2 and Theorem 4.1 for all g, without restriction to g ≤ 0 in Ω.

4 Optimal control problems and convergence for h → +∞

We will first study in this section two kind of distributed optimal control problems, their
existence, uniqueness results and the relation between them. In fact the existence and
uniqueness, of the solution to the two variational inequalities (3.5) and (3.6) allow us to
consider g 7→ ug and g 7→ ugh as a functions from H to V , for any h > 0.

Let a constant M > 0. We define the two cost functional J : H → R and Jh : H → R

such that [25] (see also [19]-[21])

J(g) =
1

2
‖ug‖

2
H +

M

2
‖g‖2H , (4.1)

Jh(g) =
1

2
‖ugh‖

2
H +

M

2
‖g‖2H , (4.2)

and we consider the family of distributed optimal control problems

Find gop ∈ H such that J(gop) = min
g∈H

J(g), (4.3)
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Find goph ∈ H such that J(goph) = min
g∈H

Jh(g). (4.4)

Lemma 4.1. Let g, g1, g2 in H and ug, ug1 , ug2 are the associated solutions of (3.5). We
have

‖u3(µ)− u4(µ)‖
2
V + µ(1− µ)‖ug1 − ug2‖

2
V +

µ

λ
I14 +

(1− µ)

λ
I24

≤
µ(1− µ)

λ2
‖g1 − g2‖

2
H . (4.5)

For ugh , ug1h , ug2h the associated solutions of (3.6), we also have

‖u4h(µ)− u3h(µ)‖
2
V + µ(1− µ)‖ug2h − ug1h‖

2
V +

µ

λh
I14h +

(1− µ)

λh
I24h

≤
µ(1− µ)

λ2
h

‖g1 − g2‖H , (4.6)

Proof. For i = 1, 2 we have

Ii4(µ) = a(ui , u4(µ)− ui)− (gi, u4(µ)− ui) +

∫

Γ2

q(u4(µ)− ui)ds ≥ 0

and therefore by using Theorem 2.1 and (3.7) we obtain

λ‖u3(µ)− u4(µ)‖
2
V + µI14 + (1− µ)I24 ≤ µ(1− µ)(α+ β) ∀µ ∈ [0, 1].

As

α+ β = a(u1, u2 − u1)− (g1, u2 − u1) +

∫

Γ2

q(u2 − u1)ds

+a(u2, u1 − u2)− (g2, u1 − u2) +

∫

Γ2

q(u1 − u2)ds

≤ −a(u2 − u1, u2 − u1) + (g2 − g1, u2 − u1)

≤ −λ‖u2 − u1‖
2
V + ‖g2 − g1‖H‖u2 − u1‖H

≤ −λ‖u2 − u1‖
2
V +

1

λ
‖g2 − g1‖

2
H

thus (4.5) follows. (4.6) follows also from Theorem 2.1 and (3.8) as above.

By using Lemma 4.1 and the references [3], [25], we can obtain firstly the existence (not
the uniqueness) of optimal controls gop and goph solution of Problem (4.3) and Problem
(4.4) respectively. Then, the corresponding uniqueness of the optimal control problems
can be obtained by using ([29], pages 166 and 177). Secondly, in order to avoid the use of
the conical differentiability (see [29]) and by completeness of the proof of the result we can
do another proof of the uniqueness of the optimal control problems which is not given in
[29]. For that, we can prove two important equalities (4.7) and (4.8) which allow us to get
that J and Jh are strictly convex applications on H, so there exist the unique solutions
gop and goph in H to the Problem (4.3) and Problem (4.4) respectively. This fact is also
very important for us because it permits us to obtain the convergence in Theorem 4.1, our
mean result, without using the adjoint state problem.
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Proposition 4.1. Let given g in H and h > 0, there exist unique solutions gop and goph
in H respectively for the Problems (4.3) and (4.4).

Proof. We remark first that using Lemma 4.1 and ([3], [10], [25], [29]) we can obtain the
following classical results

lim
‖g‖H→+∞

J(g) = +∞, and lim
‖g‖H→+∞

Jh(g) = +∞,

J and Jh ∀h > 0, are lower semi-continuous on H weak,

so we can deduce the existence, of at least, an optimal control gop solution of Problem
(4.3) and respectively an optimal control goph solution of Problem (4.4).

The uniqueness of the solutions of Problems (4.3) and (4.4) can be also obtained by
using ([29], pages 166 and 177). For completeness we will prove that the cost functional J
and Jh are strictly convex applications on H which are not given in [29]. Let u = ugi and
ugih be respectively the solution of the variational inequalities (3.5) and (3.6) with g = gi
for i = 1, 2. We have

‖u3(µ)‖
2
H = µ2‖ug1‖

2
H + (1− µ)2‖ug2‖

2
H + 2µ(1− µ)(ug1 , ug2)

then the following equalities hold

‖u3(µ)‖
2
H = µ‖ug1‖

2
H + (1− µ)‖ug2‖

2
H − µ(1− µ)‖ug2 − ug1‖

2
H , (4.7)

‖u3h(µ)‖
2
H = µ‖ug1h‖

2
H + (1− µ)‖ug2h‖

2
H − µ(1− µ)‖ug2h − ug1h‖

2
H . (4.8)

Let now µ ∈ [0, 1] and g1, g2 ∈ H so we have

µJ(g1) + (1− µ)J(g2)− J(g3(µ)) =
µ

2
‖ug1‖

2
H +

(1− µ)

2
‖ug2‖

2
H

−
1

2
‖u4(µ)‖

2
H +

M

2

{

µ‖g1‖
2
H + (1− µ)‖g2‖

2
H − ‖g3(µ)‖

2
H

}

and by using (4.7) for g3(µ) = µg1 + (1− µ)g2 we obtain

µJ(g1) + (1− µ)J(g2)− J(g3(µ)) =
1

2
{µ‖ug1‖

2
H + (1− µ)‖ug2‖

2
H − ‖u4(µ)‖

2
H}

+
M

2
µ(1− µ)‖g1 − g2‖

2
H . (4.9)

Following [29] we obtain the cornerstone monotony property

u4(µ) ≤ u3(µ) in Ω, ∀µ ∈ [0, 1], (4.10)

and as u4(µ) ∈ K so u4(µ) ≥ 0 in Ω for all µ ∈ [0, 1], we deduce

‖u4(µ)‖
2
H ≤ ‖u3(µ)‖

2
H , ∀µ ∈ [0, 1].

By using (4.7) we have

µ‖ug1‖
2
H + (1− µ)‖ug2‖

2
H − ‖u4(µ)‖

2
H = ‖u3(µ)‖

2
H − ‖u4(µ)‖

2
H + µ(1− µ)‖ug1 − ug2‖

2
H

which is positive for all µ ∈ [0, 1]. Finally we deduce from (4.9) that

µJ(g1) + (1− µ)J(g2)− J(g3) ≥
µ(1− µ)

2

{

‖ug1 − ug2‖
2
V +M‖g1 − g2‖

2
H

}

> 0 (4.11)
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for all µ ∈]0, 1[ and for all g1, g2 in H. So J is a strictly convex functional, thus the
uniqueness of the optimal control for the Problem (4.3) holds.

The uniqueness of the optimal control of the Problem (4.4) follows using the analogous
inequalities (4.9)-(4.11) for any h > 0, that is

µJh(g1) + (1− µ)Jh(g2)− Jh(g3(µ)) =
1

2
{µ‖ug1h‖

2
H + (1− µ)‖ug2h‖

2
H − ‖u4h(µ)‖

2
H}

+
M

2
µ(1− µ)‖g1 − g2‖

2
H (4.12)

from
u4h(µ) ≤ u3h(µ) in Ω, (4.13)

so we get
‖u4h(µ)‖

2
H ≤ ‖u3h(µ)‖

2
H , (4.14)

and obtain

µJh(g1) + (1− µ)Jh(g2)− Jh(g3) ≥
µ(1− µ)

2

{

‖ug1h − ug2h‖
2
V +M‖g1 − g2‖

2
H

}

> 0

for all µ ∈]0, 1[, for all h > 0 and for all g1, g2 in H. So Jh is also a strictly convex
functional, thus the uniqueness of the optimal control for the Problem (4.4) holds.

Remark 4.1. The Proposition 4.1 is automatically true (and then it is not necessary in
order to study the convergence given in Theorem 4.1) when the equivalence (1.3) is verified
for all g1, g2 in H.

Now we study the convergence of the state ugophh, and the optimal control goph, when
the heat transfer coefficient h on Γ1, goes to infinity. For a given fixed g ∈ H, we have the
following property which generalizes the one obtained for variational equality in [36, 35].
After that, we can study the limit h → +∞ for the general optimal control problems.

Lemma 4.2. Let ugh the unique solution of the variational inequality (3.6) and ug the
unique solution of the variational inequality (3.5), then

ugh → ug in V strongly as h → +∞ ∀g ∈ H.

Proof. We take v = ug in (3.6) where u = ugh , recalling that ug = b on Γ1 and h > 1, we
obtain

a1(ugh − ug, ugh − ug) + (h− 1)

∫

Γ1

(ugh − ug)
2ds

≤ (g, ugh − ug)−

∫

Γ2

q(ugh − ug)ds +

∫

Γ1

b(ugh − ug)ds− a1(ug, ugh − ug)

≤ (g, ugh − ug)−

∫

Γ2

q(ugh − ug)ds − a(ug, ugh − ug). (4.15)

From what we deduce that ‖ugh − ug‖V and (h − 1)‖ugh − ug‖L2(Γ1) are bounded for all
h > 1. So there exists η ∈ V such that ugh ⇀ η weakly in V and η ∈ K. From (3.6) we
have also

a(ugh , v − ugh) + h

∫

Γ1

(ugh − b)(v − ugh)ds ≥ (g, v − ugh)−

∫

Γ2

q(v − ugh)ds ∀v ∈ K+,
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taking v ∈ K so v = b on Γ1, thus

a(ugh , ugh) ≤ a(ugh , v) − (g, v − ugh) +

∫

Γ2

q(v − ugh)ds ∀v ∈ K. (4.16)

Thus we can pass to the limit in (4.16), for h → +∞, to obtain

a(η, v − η) ≥ (g, v − η)−

∫

Γ2

q(v − η)ds ∀v ∈ K.

Using the uniqueness of the solution of (3.5) we get that η = ug.

To prove the strong convergence of ugh to ug, when h → +∞, it is sufficient to use the
inequality (4.15) and the weak convergence of ugh to η = ug for all g ∈ H. This ends the
proof.

We give now the main result of the paper which generalizes, for optimal control prob-
lems governed by elliptic variational inequalities, the convergence result obtained in [10].
Moreover, this convergence is obtained without need of the adjoint states. We remark
here the double dependence on the parameter h in the expression of state of the system
ugophh corresponding to the optimal control goph.

Theorem 4.1. Let ugophh, goph and ugop, gop are the states and the optimal controls defined
in the problems (4.4) and (4.3) respectively. Then, we obtain the following asymptotic
behavior:

lim
h→+∞

‖ugophh − ugop‖V = 0. (4.17)

lim
h→+∞

‖goph − gop‖H = 0. (4.18)

Proof. We have first

Jh(goph) =
1

2
‖ugophh

‖2H +
M

2
‖goph‖

2
H ≤

1

2
‖ugh‖

2
H +

M

2
‖g‖2H , ∀g ∈ H

then for g = 0 ∈ H we obtain that

Jh(goph) =
1

2
‖ugophh

‖2H +
M

2
‖goph‖

2
H ≤

1

2
‖u0h‖

2
H (4.19)

where u0h ∈ K+ is solution of the following elliptic variational inequality

ah(u0h , v − u0h) ≥ −

∫

Γ2

q(v − u0h)ds+ h

∫

Γ1

b(v − u0h)ds ∀v ∈ K+.

Taking v = B with B ∈ K+ such that B = b on Γ1, we get

a1(u0h , u0h) + (h− 1)

∫

Γ1

(u0h − b)2ds ≤ a1(u0h , B) +

∫

Γ2

q(B − u0h)ds+

∫

Γ1

b(u0h − b)ds

thus ‖u0h‖V is bounded independently of h, then from ‖u0h‖H ≤ ‖u0h‖V , we deduce that
‖u0h‖H is bounded independently of h. So we deduce with (4.19) that ‖ugophh

‖H and
‖goph‖H are also bounded independently of h. So there exists f and ξ in H such that

goph ⇀ f in H (weak) and ugophh
⇀ ξ in H (weak). (4.20)
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Taking now v = ugop ∈ K ⊂ K+ in (3.6) with u = ugophh and g = goph , we obtain

a1(ugophh, ugop − ugophh) + (h− 1)

∫

Γ1

ugophh(ugop − ugophh)ds ≥ (goph , ugop − ugophh)

−

∫

Γ2

q(ugop − ugophh)ds + h

∫

Γ1

b(ugop − ugophh)ds

as ugop = b on Γ1 we obtain

a1(ugophh − ugop, ugop − ugophh)− (h− 1)

∫

Γ1

(ugophh − b)2ds ≥ (goph , ugop − ugophh)

−

∫

Γ2

q(ugop − ugophh)ds+

∫

Γ1

b(b− ugophh)ds − a1(ugop , ugop − ugophh)

so

a1(ugophh − ugop, ugophh − ugop) + (h− 1)

∫

Γ1

(ugophh − b)2ds ≤

≤ (goph , ugophh − ugop)−

∫

Γ2

q(ugophh − ugop)ds− a(ugop , ugophh − ugop)

thus there exists a constant C > 0 which does not depend on h such that (as h → +∞ we
can take h > 1):

‖ugophh − ugop‖V ≤ C and (h− 1)

∫

Γ1

|ugophh − b|2ds ≤ C,

then

ugophh ⇀ ξ in V weak (in H strong), (4.21)

ugophh → b in L2(Γ1) strong, (4.22)

and then ξ ∈ K.
Now taking v ∈ K in (3.6) where u = ugophh and g = goph so

ah(ugophh, v − ugophh) ≥ (goph , v − ugophh)−

∫

Γ2

q(v − ugophh)ds + h

∫

Γ1

b(v − ugophh)ds

as v ∈ K so v = b on Γ1, thus we obtain

a(ugophh, ugophh) + h

∫

Γ1

(ugophh − b)2ds ≤ a(ugophh, v)− (goph , v − ugophh)

+

∫

Γ2

q(v − ugophh)ds.

Thus

a(ugophh, ugophh) ≤ a(ugophh, v)− (goph , v − ugophh) +

∫

Γ2

q(v − ugophh)ds,

13



using (4.20) and (4.21) we deduce that

a(ξ, v − ξ) ≥ (f, v − ξ)−

∫

Γ2

q(v − ξ)ds, ∀v ∈ K,

so by the uniqueness of the solution of the variational inequality (3.5) we obtain that

uf = ξ. (4.23)

Now we prove that f = gop. Indeed we have

J(f) =
1

2
‖ξ‖2H +

M

2
‖f‖2H

≤ lim inf
h→+∞

{

1

2
‖ugophh‖

2
H +

M

2
‖goph‖

2
H

}

= lim inf
h→+∞

Jh(goph)

≤ lim inf
h→+∞

Jh(g) = lim inf
h→+∞

{

1

2
‖ugh‖

2
H +

M

2
‖g‖2H

}

using now the strong convergence ugh → ug as h → +∞, ∀ g ∈ H (see Lemma 4.2), we
obtain that

J(f) ≤ lim inf
h→+∞

Jh(goph) ≤
1

2
‖ug‖

2
H +

M

2
‖g‖2H = J(g), ∀g ∈ H (4.24)

then by the uniqueness of the optimal control problem (4.3) we get

f = gop. (4.25)

Now we prove the strong convergence of ugophh to ξ in V , indeed taking v = ξ in (3.6)
where u = ugophh and g = goph we get

ah(ugophh, ξ − ugophh) ≥ (goph , ξ − ugophh)−

∫

Γ2

q(ξ − ugophh)ds + h

∫

Γ1

b(ξ − ugophh)ds,

as ξ ∈ K so ξ = b on Γ1, we obtain

a1(ugophh − ξ, ugophh − ξ) + (h− 1)

∫

Γ1

(ugophh − ξ)2ds ≤ (goph , ugophh − ξ)

+

∫

Γ2

q(ξ − ugophh)ds + a(ξ, ξ − ugophh)

thus

λ1‖ugophh − ξ‖2V ≤ (goph , ugophh − ξ) +

∫

Γ2

q(ξ − ugophh)ds + a(ξ, ξ − ugophh).

Using (4.21) we deduce that

lim
h→+∞

‖ugophh − ξ‖V = 0,

and with (4.23) we deduce (4.17). Moreover, as f ∈ H, then from (4.24) with g = f and
(4.25) we can write

J(f) = J(gop) =
1

2
‖ugop‖

2
H +

M

2
‖gop‖

2
H

= lim
h→+∞

Jh(goph) = lim
h→+∞

{

1

2
‖ugophh‖

2
H +

M

2
‖goph‖

2
H

}

(4.26)
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and using (4.17) the strong convergence ugophh → ξ = uf = ugop in V , we get

lim
h→+∞

‖ugophh‖H = ‖ugop‖H , (4.27)

thus from (4.26) and (4.27) we get

lim
h→+∞

‖goph‖H = ‖gop‖H . (4.28)

Finally

lim
h→+∞

‖goph − gop‖
2
H = lim

h→+∞

(

‖goph‖
2
H + ‖gop‖

2
H − 2(goph , gop)

)

. (4.29)

By the first part of (4.20) we obtain that

lim
h→+∞

(goph , gop) = ‖gop‖
2
H ,

so from (4.28) and (4.29) we get (4.18). This ends the proof.

Remark 4.2. Much of the recent literature on optimal control problems governed by
variational inequalities (often called mathematical programs with equilibrium constraints
(MPEC)) is focused on the numerical realization of stationary points to these problems.
See for example recent works as e.g. [16] and their references within it. The numerical
analysis of the convergence of optimal control problems governed by elliptic variational
equalities [10] is given in [37] but the numerical analysis of the corresponding convergence
of optimal control problems governed by elliptic variational inequalities given by Theorem
4.1 is an open problem.

Conclusions: In this paper we have first established the error estimate between the
convex combination u3(µ) = µug1 + (1 − µ)ug2 of two solutions ug1 and ug2 for elliptic
variational inequality corresponding to the data g1 and g2 respectively, and the solution
u4(µ) = ug3(µ) of the same elliptic variational inequality corresponding to the convex
combination g3(µ) = µg1 + (1 − µ)g2 of the two data. This result complements and
generalizes the previous one given in [7].

Using the existence and uniqueness of the solution to particular elliptic variational
inequality, we consider a family of distributed optimal control problems on the internal
energy g associated to the heat transfer coefficient h defined on a portion of the boundary
of the domain. Using the monotony property [29] (see (4.10) and (4.13) ) we can obtain the
strict convexity of the cost functional (4.1) and (4.2), and the existence and uniqueness of
the distributed optimal control problems (4.3) and (4.4) for any h > 0 holds by a different
way used in [29] avoiding the conical differentiability of the cost functional. Then we
prove that the optimal control goph and its corresponding state of the system ugophh

are
strongly convergent, when h → +∞, to gop and ugop which are respectively the optimal
control and its corresponding state of the system, for a limit Dirichlet distributed optimal
control problems. We obtain our results without using the notion of adjoint state (i.e.
the Mignot’s conical differentiability) of the optimal control problems which is a very
important advantage with respect to the previous result given in [10] for elliptic variational
equalities.
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