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Abstract If M is a submanifold of a space form, the nullity distribution N of its second
fundamental form is (when defined) the common kernel of its shape operators. In this paper
we will give a local description of any submanifold of the Euclidean space by means of its
nullity distribution. We will also show the following global result: if M is a complete, irre-
ducible submanifold of the Euclidean space or the sphere then its complementary distribution
N⊥ is completely non integrable. This means that any two points in M can be joined by a
curve everywhere perpendicular to N . We will finally show that this statement is false for a
submanifold of the hyperbolic space.
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1 Introduction

Let Mn be a submanifold of a space form Qn+k . The nullity distribution N of the second
fundamental form of M is defined as the common kernel of the shape operators of M . The
index of nullity (or relative nullity) of M at p is the dimension of Np . It is well known,
from Codazzi equation, that N is an autoparallel distribution restricted to the open and dense
subset of M where the index of nullity is locally constant. Moreover, its integral manifolds
are totally geodesic submanifolds of the ambient space Qn+k (cf. [1]). If M is complete, and
one restricts to the open subset U of points of M where the index of nullity is minimal, then
the integral manifolds of N through points of U are also complete (see for instance [4, Ch. 5]
or [7]).
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2 F. Vittone

Observe that for an Euclidean submanifold, the nullity distribution arises naturally in many
problems since N = ker(dG), where G : M → Gk(R

n+k) is the Gauss map. Moreover, there
are many examples of complete submanifolds of the Euclidean space with constant index of
nullity and some of them can be obtained from the so called Gauss parametrizations, which
involve the Gauss map (see [5]).

In this paper we will study the perpendicular distribution H := (N )⊥.
For a general distribution D on a Riemannian manifold, it is an interesting problem to

decide whether it is completely non integrable, in the sense that any two points can be joined
by a curve always tangent to D (this means that the Carnot-Caratheodory distance, associated
to D, is finite [8]). For the case of submanifolds, a very important result about completely non-
integrability, is the so called Homogeneous Slice Theorem [11], which has many important
applications (see [2,18]). It states, in particular, that for an irreducible complete (connected)
isoparametric submanifold of the sphere, one can join any two points by a curve always
perpendicular to any given eigendistribution of its shape operator.

Our main goal is to prove a general global result about the non-integrability of the distri-
bution H for submanifolds of the Euclidean space or the sphere. Namely,

Theorem 1 Let M be an immersed, complete, irreducible submanifold of the Euclidean space
or the sphere with constant index of nullity. Then any two points of M can be joined by a
curve always perpendicular to the nullity distribution.

Observe that, in general, the canonical projection pr : M → M/N , where M/N is the set
of all maximal integral manifolds of N , is not a Riemannian submersion.

If we drop the assumption that the index of nullity is constant, then Theorem 1 still holds on
any connected component of the open subset where this index is minimal. On the other hand,
the assumption of completeness can not be removed. In fact, there are abundant many local
counter-examples of the above theorem obtained as the union of suitable parallel manifolds.
Moreover, Theorem 31 shows that any local counter-example arises in this way.

Theorem 1 is not true for submanifolds of the hyperbolic space (see Remark 41).
For infinite dimensional isoparametric Hilbert submanifolds of codimension at least two,

a similar result to Theorem 1 was proved by Heinzte and Liu in [9], using strongly the isop-
aramatricity condition. This was a crucial step in the proof of the homogeneity of this type of
submanifolds [9]. Theorem 1 shows that, in finite dimension, the complete non-integrability
of the distribution N⊥ is a very general global fact, that does not depend on any extra property
of the submanifold.

2 Basic definitions and general properties

2.1 The nullity distribution

Let M be an n-dimensional (immersed) Riemannian submanifold of a (simply connected)
space form, i.e., the Euclidean space R

n+k , the sphere S
n+k or the hyperbolic space H

n+k .
We denote by ∇ the Levi-Civita connection of M and by ˜∇ the Levi-Civita connection of
the ambient space form. We will always denote by νM := T M⊥ the normal bundle of M
endowed with the normal connection ∇⊥. The second fundamental form of M will be denoted
by α and the shape operator by A. These two tensors are related by the well known formula

〈α(X, Y ), ξ 〉 = 〈

Aξ X, Y
〉

,

which is symmetric in X and Y , for any X, Y tangent fields and ξ normal field.
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On the nullity distribution of a submanifold of a space form 3

The connection ∇ ⊕∇⊥ in T M ⊕ νM will be denoted by ∇. The Codazzi equation states
that

〈

(∇X A)ξ Y, Z
〉

, or equivalently (∇Xα)(Y, Z), is symmetric in X, Y, Z .
The nullity subspace of M at p is the subspace Np of Tp M defined by

Np := {x ∈ Tp M : α(x, ·) ≡ 0} =
⋂

ξ∈νp M

ker(Aξ ).

If M ⊂ R
n+k then Np coincides with ker(dGp) where G : M → Gk(R

n+k) is the Gauss
map that assigns to each point p ∈ M its normal space νp M .

Let μ(p) := dim(Np), which is called the index of nullity of M at p. Let C be the set
of points p ∈ M such that μ is constant in a neighborhood of p. Then it is standard to
prove, since μ can not increase locally, that C is an open and dense subset of M and so μ is
constant on each connected component of C. Moreover, from Codazzi equation, it follows
that N : p → Np defines a C∞ autoparallel distribution (and hence with totally geodesic
integral manifolds) on each connected component of C. It is not difficult to see that its integral
manifolds are also totally geodesic in the ambient space form. If M is complete, then any
(maximal) integral manifold of N through a point with minimal index of nullity is complete
(see [7]). Then

Lemma 1 Let M be a complete Riemannian submanifold of a space form with constant
index of nullity. Then N is a C∞ autoparallel distribution of M whose integral manifolds
are complete and totally geodesic in the ambient space.

Under the assumptions of Lemma 1, denote by M/N the set of maximal connected integral
manifolds of N and let pr : M → M/N be the projection to the quotient.

Recall that a coordinate chart (U, ϕ = (x1, · · · , xn)) of M is called plane for the distri-
bution N if for each a = (a1, . . . , an) ∈ ϕ(U ), the slice

Sa = {q ∈ U : xl+1(q) = al+1, . . . , xn(q) = an}
is an integral manifold of N , where l is the constant index of nullity of M .

From Frobenius theorem, there exists a plane chart (U, ϕ) around each point that inter-
sects each integral manifold of N in a disjoint countable union of slices of (U, ϕ). Since the
integral manifolds of N are totally geodesic in the ambient space form, it is not difficult to
see that there is a plane chart around each point, that intersects each integral manifold of N
in at most one slice. Then the distribution N is regular.

We give M/N the quotient topology and so pr is open (see [15]). From the fact that the
integral manifolds of N are totally geodesic in M one has that R = {(x, y) ∈ M × M :
pr(x) = pr(y)} is closed in M × M . In fact, if (xn, yn) is a sequence in R such that
(xn, yn) → (x, y) ∈ M × M , then yn = expxn Xn for some Xn ∈ Nxn . (xn, Xn) must
contain a convergent subsequence and so y = expx X for some X ∈ Nx . Then (x, y) ∈ R.
This implies that M/N is a Hausdorff space (see [12]) and therefore it is a differentiable
manifold (see [15, ThmVIII,ChI]).

2.2 Fiber bundle structure

All throughout this section, M will be a submanifold of the Euclidean space or the sphere.
Recall that given three differentiable manifolds E, N and F we say that π : E → N is a

fiber bundle with standard fiber F , if
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4 F. Vittone

(i) π is a C∞ suryective map;
(ii) there is an open covering U of N such that for every U ∈ U there exists a differentiable

map Ψ : π−1(U ) → F such that the function

Ψ := (π, Ψ ) : π−1(U ) → U × F

is a diffeomorphism.

The map Ψ is called a local trivialization for the fiber bundle.
The projection π is a submersion and for every p ∈ N , the fiber E p = π−1(p) is an

embedded submanifold of E diffeomorphic to F . Moreover, if (U, Ψ ) is a local trivialization
such that p ∈ U , then the diffeomorphism is given by Ψ|E p .

Consider now the group Di f f (F) of diffeomorphisms of F and let (π,Θ), (π, Ψ ) be local
trivializations over open sets U and V on N . Then the function fΘ,Ψ : U ∩ V → Di f f (F)

given by fΘ,Ψ (p) = Θ ◦ Ψ −1
|E p

is called the transition function between both trivializations.
The fiber bundle π : E → N is said to have structure group G if any transition function
takes values in a subgroup G of Di f f (G).

Denote by A
n the space R

n with its natural affine structure. A fiber bundle π : E → N
with standard fiber n is an affine bundle if each fiber E p has an affine space structure such
that for every local trivialization (π, Ψ ), Ψ|E p : E p → A

n is an affine isomorphism. Equiv-
alently, π : E → N is an affine bundle if it has structure group A f f (n) := GL(n) � R

n , the
group of affine transformations of A

n (analogous to [16, Prop. 1.14]).
A fiber bundle with standard fiber S

n is called a sphere bundle. Then:

Lemma 2 Let M be a complete submanifold of the Euclidean space or the sphere with con-
stant index of nullity l and let N be its nullity distribution. Then pr : M → M/N is an
affine bundle if M is a Euclidean submanifold and it is a sphere bundle with structure group
O(l + 1) if M is a submanifold of the sphere.

Proof The proof is standard, but we include it since it is difficult to find in the bliography
and we will need some of the notation introduced here.

In order to simplify the notation, we will assume that M is a 1 − 1 immersed submani-
fold. Let (U, ϕ = (x1, . . . , xn)) be a plane regular chart of M with respect to N , such that
0 ∈ ϕ(U ). Let l be the constant index of nullity of M . Then there exists a unique (n − l)-
dimensional chart ϕ in M/N with domain U = pr(U ) such that ϕ ◦ pr = (xl+1, . . . , xn)

(see [15]). Define the local section σ : U → pr−1(U ) by σ(r) = ϕ−1( j0(ϕ(r))), where
j0 : R

n−l → R
n is the inclusion j0(xl+1, . . . , xn) = (0, . . . , 0, xl+1, . . . , xn).

Let us begin with the case M ⊂ R
n+k . Set Mr := pr−1(r). From Lemma 1, Mr =

p + Tp Mr for any p ∈ Mr (identifying Mr with the corresponding subspace of R
n+k). Set

Xi (r) = (∂/∂xi )σ(r) ∈ R
n+k via this identification. So, if r ∈ U then any element x of Mr

is of the form

x = σ(r) +
l

∑

i=1

vi Xi (r).

For (r, (v1, . . . , vl)) ∈ U × l, define ρ(r, (v1, . . . , vl)) = σ(r) + ∑l
i=1 vi Xi (r). Then it

is not difficult to see that ρ is a diffeormorphism from U × l into pr−1(U ) and so Ψ = ρ−1

is a local trivialization for pr : M → M/N . It is clear from this construction that transition
functions are affine.

If M ⊂ S
n+k . Then Mr is the l-sphere in the (l + 1)-dimensional linear subspace

Lr := Tσ(r)Mr ⊕ Rσ(r) (1)

123



On the nullity distribution of a submanifold of a space form 5

of R
n+k+1 (regarding M as a submanifold of R

n+k+1 and identifying Tσ(r)Mr with the cor-
responding subspace of R

n+k+1). Let {Ei } be the (local) orthonormal frame of T M obtained
by applying the Gram-Schmidt orthogonalization process to {(∂/∂xi )}. Set ρ : U × S

l →
pr−1(U ) as

(r, (v1, . . . , vl+1)) �→
l

∑

i=1

vi Ei (σ (r)) + vl+1σ(r).

Then it is not difficult to see that ρ is a diffeormophism and Ψ = ρ−1 is a local trivialization
for pr : M → M/N . It is clear from construction that the transition functions are in O(l +1).

��
Given a piece-wise differentiable curve c̃ : I → M we say that c̃ is horizontal with respect

to N if c̃ ′(t) ⊥ Nc̃ (t), for every t ∈ I . Given a curve c : I → M/N we say that c̃ : I → M
is a horizontal lift of c if c̃ is horizontal and pr(̃c(t)) = c(t) for every t ∈ I .

As for the case of a vector bundle with a linear connection, one has that any curve in M/N
can be globally lifted. Namely,

Lemma 3 Let c : I → M/N be a ( piece-wise differentiable) curve and let p be any point
in pr−1(c(0)). Then there is one and only one horizontal lift c̃ of c to M such that c̃(0) = p
(called the horizontal lift of c through p).

Proof Let c : I → M/N be any curve in M/N . It is standard to see, from basic ordinary
differential equation theory, that it suffices to prove the following: for every b ∈ I there
exists an open interval Jb ⊂ I such that b ∈ Jb and such that for every initial condition
z ∈ pr−1(c(b)), there exists a horizontal curve c̃b,z : Jb → M which projects down to c and
such that cb,z(b) = z.

As for any submersion, we have that for every z0 ∈ pr−1(c(b)) there exists a horizontal
lift c̃z of c with maximal domain Jz0 such that c̃z(b) = z, for every z in a neighborhood of z0.

So, if M ⊂ S
n+k , the result follows from the fact that the fibers are compact.

If M ⊂ R
n+k , let q0, q1, . . . , qn form an affine frame on pr−1(γ (b)). Set Jb = ∩n

i=0 Jqi .
Then if z ∈ pr−1(b), z = q0 + ∑n

i=1 vi (qi − q0) and cb,z(t) = cq0(t) + ∑n
i=0 vi (cq0(t) −

cqi (t)) is the curve we were looking for. ��
We can now define a parallel displacement in pr : M → MN . For r ∈ M/N , set

Mr := pr−1(r). Given a (piece-wise differentiable) curve c : [0, 1] → M/N we define the
N -parallel displacement τN

c : Mc(0) → Mc(1) as

τN
c (p) := c̃p(1)

where c̃p is the horizontal lift of c through p.
Since every horizontal lift c̃(t) of c is perpendicular to the family of totally geodesic

submanifolds Mc(t), one has (see e.g. [14, Lemma 2.8])

Lemma 4 Let c : I → M/N be a curve in M/N . Then the parallel displacement τN
c :

Mc(0) → Mc(1) is an isometry ��
If r ∈ M/N , we denote by �(r) (resp. �0(r)) the set of (piece-wise smooth) loops (resp.
null-homotopic loops) in M/N based at r . The holonomy group (associated to N ) based at
r ∈ M/N is

Φr := {τN
c : c ∈ �(r)} ⊂ Iso(Mr )
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6 F. Vittone

and the restricted holonomy group (associated to N ) based at r is the connected subgroup

Φ0
r := {τN

c : c ∈ �0(r)} ⊂ Iso0(Mr ).

It is standard to prove, as in the case of a linear connection (see [16, Teor. 2.25] or [13]) that
Φr and Φ0

r are Lie groups and that Φ0
r is the connected component of the identity in Φr .

The local holonomy group (associated to N ) based at r ∈ M/N is defined by

Φloc
r =

⋂

Φ0(r, U )

varying U among all open neighborhoods of r , where Φ0(r, U ) = {τN
c ∈ Φ0

r : c ⊂ U }.
One has that there is an open neighborhood U of r such that Φloc

r = Φ0(r, V ) for every
neighborhood V of r contained in U (see [13, Prop. 10.1]). Let

(τN
c )∗(Φloc

r ) :=
{

(τN
c )−1 ◦ τN

α ◦ τN
c : τN

α ∈ Φloc
r

}

.

Then one has the following Ambrose-Singer type theorem, which will be very useful to prove
our main global result.

Lemma 5 Let C be a dense subset of M/N . Then the restricted holonomy group Φ0
r is

generated by the groups τN
c (Φloc

c(1)) varying c among all piece-wise differentiable curves in
M/N such that c(0) = r and c(1) ∈ C.

Proof The proof is similar to the case of a linear connection and we shall indicate its main
steps.

For each r ∈ M/N , set Mr = pr−1(r).
We will start assuming that M ⊂ R

n+k . Let A(Mr ) denote the set of affine isomorphisms
h : l → Mr , and set A(M) := ⋃

r∈M/N A(Mr ). Let π : A(M) → M/N be the canonical
projection (i.e, π(h) = r if h ∈ A(Mr )). Then A(M) is a principal fiber bundle with structure
group A f f (l) (see [13, Ch. III, sec. 3]).

As for the case of the connection on the frame bundle defined by a vector bundle with
a linear connection, one can prove that there is a unique connection � on A(M) such that
the corresponding parallel displacement τ̃ is related to τN in the following way (see [16]).
If h ∈ A(Mr ), then {h(0), h(e1), . . . , h(el)} is an affine frame on Mr , where ei are the canon-
ical versors in R

l . Let c : I → M/N be a differentiable curve such that c(0) = r and let
q0 = τN

c (h(0)), qi = τN
c (h(ei )), then τ̃c(h) is the affine isomorphism from l to Mc(1) that

maps 0 into q0 and ei into qi , i = 1, · · · , l.
Given h ∈ A(M), let ˜�0

h and ˜�loc
h denote the restricted and local holonomy groups

of � based at h, respectively (recall that ˜�0
h is the set of elements g ∈ A f f (l) such that

τ̃c(h) = h ◦ g for some curve c ∈ �0(π(h))). If π(h) = r then the map Th(g) = h ◦ g ◦ h−1

defines an isomorphism from ˜�0
h to Φ0

r and from ˜�loc
h to Φloc

r .
Now, without almost any modification of the proof of Ambrose-Singer holonomy theo-

rem [13, Thm. 8.1] and its consequence [13, Thm. 10.2] we can prove that the restricted
holonomy group ˜�0

h is generated by the local holonomy groups ˜�loc
f varying f in any dense

subset U of the holonomy bundle P(h) (i.e, the set of elements that can be joined to h by a
horizontal curve). So Φ0

π(h) is generated by the groups Th(˜�loc
f ) varying f as before. Now let

U = π−1(C)∩P(h). If f ∈ U , then f = τ̃c(h) for some c : I → M/N such that c(0) = π(h)

and c(1) = π( f ) ∈ C. From the way τ̃ and τN are related it is not difficult to prove that if
g ∈ ˜�loc

f then g = f −1 ◦ τN
α ◦ f for some τN

α ∈ Φloc
π( f ) and Th(g) = (τN

c )−1 ◦ τN
α ◦ τN

c .

So Th(˜�loc
f ) = τN

c (Φloc
c(1)) as we wanted to prove.
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On the nullity distribution of a submanifold of a space form 7

If M ⊂ S
n+k , consider the principal fiber bundle A(M) := ⋃

r∈M/N A(Mr ) with struc-

ture group O(l + 1) such that A(Mr ) is the set of isometries from S
l to Mr . Observe that

the elements of A(M) are in a 1 − 1 correspondence with the set of orthonormal basis of the
subspace Lr defined by (1). The proof follows in the same way as for a submanifold of the
Euclidean space. ��
2.3 Foliating a spherical tube by holonomy tubes

The technics of this section are mainly inspired on [3].
Let M be a submanifold of R

n . Assume that there exists a positive real number ε such
that the spherical tube

N := Sε(M) = {q + ξq : q ∈ M, ξq ∈ νq M,
∥

∥ξq
∥

∥ = ε}
is a well defined hypersurface of R

n (locally this is always true). Consider the canonical
projection

π : N → M, q + ξq
π�→ q

and the (radial) parallel normal vector field Ψ on N given by

Ψ (x) = π(x) − x .

Then M is the parallel focal manifold NΨ to N and π is the usual parallel focal map. Since
we will work locally, both in M and in N , we may also assume that N has constant index of
nullity.

Let E0 = ker( ÂΨ ), where by Â we denote the shape operator of N . Then E0 is the nullity
distribution of N , since N is a hypersurface.

For each x ∈ N , set

S(x) = π−1(π(x)).

Let E1 = ker(I d − ÂΨ ) = ker(dπ). Then E1(x) = Tx S(x) for every x ∈ N .
Regard N and M as submanifolds of the (n + 2)-Lorentzian space L

n+2, identifying R
n

with an n-dimensional horosphere of the hyperbolic space H
n+1. Denote by η the radial

normal vector field η(x) = −x to H
n+1 and set ˜Ψ := δΨ + η, for some small δ such that ˜Ψ

is timelike. Then

ker(I d − Â
˜Ψ ) = E0.

We can foliate N by the holonomy tubes

H(x) = (N
˜Ψ )−˜Ψ (x) ⊂ N

(locally, see [2]). We shall further assume that these holonomy tubes have all the same
dimension, since we work locally.

If x, y ∈ N , we will denote x ∼ y if x and y can be joined by a differential curve in N
everywhere normal to E0. Then H(x) is locally given by

H(x) = {y ∈ N : x ∼ y}
(see [3], cf. [11]). Since for every x ∈ N , T S(x) ⊥ E0 we get that

S(x) ⊂ H(x).

We now consider the distribution ν̃ on N given by the normal spaces in N to the holonomy
tubes H(x). We will need the following result from [3, Prop. 2]

123



8 F. Vittone

Lemma 6 [3] With the above notations,

1. the distribution ν̃ is autoparallel, invariant under the shape operator of N and contained
in the nullity of N . Moreover, if ˜�(x) is the integral manifold of ν̃ through x, then

˜�(x) = (x + νx H(x)) ∩ N .

2. The restriction of ν̃ to any H(x) is a parallel and flat sub-bundle of ν0 H(x), the max-
imal parallel flat sub-bundle of νH(x). Moreover ˜�(y) moves parallel in the normal
connection of the holonomy tube H(x).

3. If x ∈ ˜�(q), then there is a parallel normal field ς to H(q) such that ς(q) = x − q and
such that H(x) = H(q)ς .

��

We aim to prove that ˜�, and hence ν̃, are constant along the fibers of π .
Note that H(x) has flat normal bundle, since

νH(x) = ν̃|H(x) ⊕ νN|H(x) = ν̃|H(x) ⊕ RΨ|H(x).

Observe that Ψ can be regarded as the curvature normal associated to the eigenvalue 1
of the shape operator ÂΨ of the hypersurface N . On the other hand, T N|H(x) = ν̃|H(x) ⊕
T H(x) with ν̃ Â-invariant. Then H(x) is Â-invariant. Finally, since S(x) ⊂ H(x) we get
that (E1)|H(x) ⊂ T H(x). It then follows that Ψ := Ψ|H(x) is a parallel curvature normal of
H(x) for every x ∈ N (see Lemma 1 in [3]).

Let us consider ˜�(x), the totally geodesic integral manifold of ν̃ through x . Since ν̃ ⊂ E0,
then T ˜�(x) is contained in the nullity distribution of N and therefore ˜�(x) is totally geodesic
as a submanifold of R

n (recall that the integral manifolds of the nullity distribution are totally
geodesic in the ambient space).

Fix x ∈ N and let y ∈ ˜�(x). Let ς be the parallel normal vector field to H(x) such that
ς(x) = y − x given by Lemma 6, (2). Let now z ∈ H(x). We shall see that ς is constant in
the ambient space along S(z) ⊂ H(x).

In fact, since Ψ and ς are both parallel and ς is tangent to the totally geodesic subman-
ifolds ˜�, we get that

〈

Ψ , ς
〉 ≡ 0. On the other hand, given an arbitrary curve c(t) ⊂ S(z),

since T ˜� is contained in the nullity of N , one has

d

dt
ς(c(t)) = AH(x)

ς c′(t) = 〈

ς,Ψ
〉

c′(t) ≡ 0.

So ς is constant along c in the Euclidean ambient space.
It now follows from Lemma 6, (2) that if z ∈ H(x) and w ∈ S(z), then

˜�(z) = ˜�(w) + (z − w). (2)

Observe also that, since ˜�(x) is contained in an integral manifold of the nullity distribution
of N , then the parallel normal field Ψ is constant in the ambient space along ˜�(x). So, if
z ∈ H(x), since z + ς(z) ∈ ˜�(z), then

Ψ (z) = Ψ (z + ς(z)). (3)

Equation (2) implies that ˜�, and hence ν̃, are constant along the fibers of π . And Eq. (3)
implies that ν̃ projects down to a well defined distribution on M . Therefore we get the
following lemma which is standard to prove (cf. [3, Sect. 2.5]).
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On the nullity distribution of a submanifold of a space form 9

Lemma 7 The distribution ν̃ projects down to a C∞ integrable distribution ν∗ = π∗(̃ν) in
M which is autoparallel and contained in the nullity distribution of M. If p ∈ M then �∗(p),
the integral manifold of ν∗ through p, is a totally geodesic submanifold of the Euclidean
ambient space and for any x ∈ π−1(p)

�∗(p) = ˜�(x) + Ψ (x).

The orthogonal complementary distribution H∗ to ν∗ in M is integrable, invariant under
the shape operators of M and the integral manifold through p ∈ M locally coincides with
π(H(x)), for any x ∈ π−1(p). Moreover, the restriction of ν∗ to π(H(x)) is a parallel and
flat sub-bundle of the normal space ν(π(H(x))) in the ambient space. ��
Remark 21 As a consecuence of the previous lemma, one gets that any parallel normal vector
field to H(x) (tangent to N ) projects down to a parallel normal vector field to π(H(x)).

Remark 22 Observe that since ν∗ ⊂ N , then N⊥ is contained in H∗, which is integrable
(unlike N⊥). This will be a key point to prove both the local and the global results.

2.4 Some remarks on polar actions

Let Q be a space form. A Lie group G ⊂ I so(Q) is said to act polarly on Q if there
exists a complete, embedded and close submanifold � that intersects each orbit of G and is
perpendicular to orbits at intersection points. The submanifold � is called a section and it
must be totally geodesic. The major property of polar actions is that maximal dimensional
orbits are isoparametric submanifolds (see [2,17]). A point p such that the orbit G · p is
maximal dimensional is called a principal point.

We will prove a very simple property that will be very useful in the following sections.
Namely:

Lemma 8 Let Q be a space form and let G ⊂ I so(Q) be a Lie group such that its Lie
algebra g is linearly spanned by the Lie algebras gi , i ∈ I . Let Gi ⊂ I so(Q), i ∈ I be the
Lie group associated to the Lie algebra gi . If each Gi acts polarly on Q, then the action of
G is polar.

Proof Let g be the Lie algebra of G and let gi be the Lie algebra of Gi , i ∈ I . Let �i be a
section for the action of Gi . Then, at principal points,

Tp�i = gi · p :=
{

X · p := d

dt |0
exp(t X) · p/X ∈ gi

}

Set � := ⋂

i∈I �i . We shall see that � is a section for the action of G. In fact, � is clearly
a submanifold of Q that intersects each orbit of G and, at principal points, Tp� = ⋂

gi · p.
So � is perpendicular to the orbits of each Gi , and therefore, is perpendicular to the orbits
of G. ��

The action of G is said to be locally polar if the distribution given by the normal spaces
to maximal dimensional orbits is integrable (and hence with totally geodesic integral mani-
folds). The group G may not be closed but the maximal dimensional orbits of an action that
is locally polar form a parallel family of isoparametric submanifolds, and so the closure of G
acts polarly on Q and has the same orbits as G (see [2,10,17]). Therefore we shall make no
difference between a polar action and a locally polar action. The following lemma is standard
to prove.
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10 F. Vittone

Lemma 9 Let G be a Lie subgroup of I so(Q). Assume there is an open subset U of Q such
that the normal spaces of the orbits through points of U define an integrable distribution
on U. Then the action of G is polar.

3 The local theorem

Theorem 31 Let M be a submanifold of the Euclidean space R
n or the sphere S

n and let Np

be the nullity subspace of M at p ∈ M. If U is an open subset of M and p, q ∈ U, denote
by p ∼U q if p and q can be joined by a curve c contained in U such that c′(t) ⊥ Nc(t) for
every t. Let [p]U be the equivalent class {q ∈ U : p ∼U q}, for p ∈ U.

There is an open and dense subset C of M such that for every p ∈ C one and only one of
the following statements holds:

1. [p]U contains a neighborhood of p, for any open neighborhood U of p.
2. There exists an open neighborhood U of p and a proper submanifold S of U such that

p ∈ S and U is the union of parallel manifolds to S over a parallel flat sub-bundle ν∗
of ν(S) contained in NU . Furthermore, the leaves of this parallel foliation are, locally,
equivalent classes.

Proof We will keep the notations introduced in Sect. 2.3. Assume first that M is a submani-
fold of the Euclidean space. Let ˜C be the open and dense subset of M of points p such that
the index of nullity μ is constant around p. Let p ∈ ˜C and let U be an open neighborhood of
p such that there is a well defined spherical tube around U . We say that p is a generic point
of ˜C if p is in the image (via the radial projection) of an open subset of the spherical tube
where the index of nullity of the tube is constant and the holonomy tubes H(x) have constant
dimension (cf. Sect. 2.3). Since there is a well defined spherical tube around a neighborhood
of each point and the set of points of the tube where the index of nullity and the dimension
of the holonomy tubes H(x) are locally constant is dense in the tube, it follows that the set
C of general points of ˜C is open and dense in M .

Let p ∈ C and assume condition (1) does not hold. Let U be an open neighborhood of p,
let N be a spherical tube around U and let π : N → U be the radial projection. Let V be
an open part of N with constant index of nullity such that p ∈ π(V ). Let Ψ be the radial
normal vector field defined on V and consider the holonomy tubes

H(x) = (N
˜Ψ )−˜Ψ (x)

(cf. Sect. 2.3), which we may assume have constant dimension on V .
Then, from Lemma 7, U is foliated (locally around p) by the submanifoldsπ(H(x)), which

from statemen (3) of Lemma 6, are parallel manifolds over the parallel and flat sub-bundle
ν∗ of νπ(H(x)).

We shall see that if q = π(x), then

[q]U = π(H(x)) (locally around q). (4)

If y ∈ H(x) near x , then there is a curve c̃ in V joining x and y everywhere perpendicular
to E0 = ker ÂΨ , where Â is the shape operator of N . Set c(t) = π(̃c(t)) = c̃(t) + Ψ (̃c(t)).
Direct computation shows that c is perpendicular to (π)∗(E0). From the tube formula relating
the shape operators of M and N (see [2]), one gets N ⊂ (π)∗(E0). Then c(t) is a horizontal
curve (with respect to N ) in U joining q and π(y). We conclude that π(H(x)) ⊂ [q]U

(locally around q).
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On the nullity distribution of a submanifold of a space form 11

The other inclusion follows from the fact that the distribution H∗ defined in Lemma 7 is
integrable and its integral manifolds are the sets π(H(x)). In fact, if q ′ ∈ [q]U there is a
horizontal curve (with respect to N ) c(t) joining q and q ′ contained in U . But from Lemma 7,
ν∗ ⊂ N . Hence c′(t) ⊥ ν∗(c(t)), that is, c′(t) ∈ (H∗)c(t), for all t . Then q ′ is in the same
integral manifold of H∗ than q , so q ′ ∈ π(H(x)).

Suppose now that M is a submanifold of the sphere. Consider the position vector field on
S

n given by η(p) = p. We can chose a real positive number δ small enough such that

M :=
⋃

−δ<ε<δ

Mεη

is a well defined submanifold of R
n+1, where Mεη is the parallel manifold to M defined by

the parallel normal vector field εη. Observe that Mεη is contained in the sphere S
n
(1+ε) of

radius 1 + ε.
Denote by πε : M → Mεη the usual parallel map (observe that π0 = I dM ). Let N be the

nullity distribution of M . We shall see that

N πε(p) = (dπε)p(Np) ⊕ Rη(p) (5)

Set q = πε(p) ∈ Mεη. Observe first that Tq M = Tq Mεη

⊥⊕ Rηq . Let ˜A be the shape operator
of M (as a submanifold of R

n+1). Then Tq Mεη, and hence Rηq , are ˜A-invariant. So for any
ξq ∈ νq M , we have ker ˜Aξq = ker ˜Aξq |Tq Mεη ⊕ ker ˜Aξq |Rηq .

Let v ∈ ker ˜Aξq |Tq Mεη . Let c̃ be a curve in M such that c̃(0) = p and c ′(0) = v, with
c(t) = πε(̃c(t)). Let ξ(t) be the parallel transport of ξq along c with respect to the normal
connection of M . Observe that ξ(t) can be considered as a normal vector field to M along c̃,
since M y Mεη are parallel manifolds. Then

0 = −˜Aξq (v) = ξ ′(0) = ∇S
n

c̃ ′(0)ξ + αS
n
(̃c ′(0), ξ(0)) = Aξ c̃′(0) + ∇⊥

c̃ ′(0)ξ,

where ∇S
n

is the Levi-Civita connection of S
n and αS

n
is its second fundamental form, and A

and ∇⊥ are the second fundamental form and the normal connection of M as a submanifold
of S

n respectively. We conclude that ξ is ∇⊥-parallel in M along c̃ and c̃′(0) ∈ ker Aξ . Then
v = (dπε)p (̃c ′(0)) ∈ (dπε)p(ker Aξ(0)). In the same way, we can prove that if c̃ ′(0) ∈
ker AM

ξ , then dπε c̃ ′(0) ∈ ker ˜Aξq |Tq Mεη , and so
⋂

ξ∈νq N ker ˜Aξq |Tq Mεη = (dπε)pNp. Direct

computation shows that ˜Aξq η = 0, and so we obtain (5).
Let U be an open set in M such that U := U ∩ M is open in M . Denote by [q]∗

U
the

set of points in M that can be joined to q by a curve perpendicular to N contained in U .
If q ∈ Mεη, then [q]∗ ⊂ Mεη and in particular if p ∈ M , then [p]∗

U
= [p]U , the set of point

of M that can be joined to p by a curve perpendicular to N contained in U . The theorem for
M then follows by applying to M the result for submanifolds of the Euclidean space. ��

4 The global theorem

If f : M → R
n is an immersed submanifold, we say that M is irreducible if there is no non

trivial, A-invariant, autoparallel distribution D on M such that D⊥ is also autoparallel. This
means that M can not be expressed, locally, as the product of submanifolds of the Euclidean
space. If M is complete and simply connected, this is equivalent to the fact that f is not
a product of immersions (see [2]). If M is a submanifold of the sphere, we say that M is
irreducible if it is irreducible as a submanifold of the Euclidean space.
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12 F. Vittone

In this section we will prove Theorem 1.
Consider the fiber bundle pr : M → M/N defined in Sect. 2.2. We will denote, as in the

previous sections, Mr := pr−1(r) for r ∈ M/N .

Lemma 10 For any r ∈ M/N , the restricted holonomy group Φ0
r acts either transitively or

polarly on Mr .

Proof We will keep the notations of Theorem 31.
Assume first that M is a submanifold of the Euclidean Space. In order to simplify the

exposition, we will treat M as an embedded submanifold identifying i(M) with M .
First of all, observe that if Φ0

r acts transitively on Mr for some r , then Φ0
s acts transitively

on Ms for each s ∈ M/N . So let us assume that this action is not transitive.
Let C be the open dense subset of M given by Theorem 31. Sea C el abierto denso en M

dado por el Teorema 31. Assume condition (1) in Theorem 31 is satisfied for some p ∈ C.
Set r = pr(p). Then there exists some ε > 0 such that B(p, ε) ∩ Mr ⊂ Φr · p. Fix
q = τN

c (p) ∈ Φr · p, for some loop c ∈ M/N based at r . Let q ′ ∈ B(q, ε) ∩ Mr and let
p′ = τN

c−1(q
′). Since τN

c is an isometry of Mr , then p′ ∈ B(p, ε) ∩ Mr ⊂ Φr · p. Then

q ′ = τN
c (p′) ∈ Φr · p, and so B(q, ε) ∩ Mr ⊂ Φr · p. We conclude that Φr · p is open. We

have also proved that there is a fixed positive number ε such that B(q, ε) ∩ Mr ⊂ Φr · p for
each q ∈ Φr · p. From this we conclude that Φr · p is closed, and so Φr · p = Mr .

Hence statement (2) on Theorem 31 must hold for every point of C.
So let p ∈ C and let U be the open neighborhood of p given by Theorem 31. Set r = pr(p).

We shall see that

Φloc
r · q = [q]U ∩ Mr (locally around q)

We can assume (possibly by taking a smaller U ) that Φloc
r = Φ0(r, pr(U )). Then [q]U ∩

Mr ⊂ Φloc
r · q .

Now fix a Riemannian metric on M/N and define a Riemannian metric on M such that the
vertical and horizontal distributions defined by pr (i.e.,N and its orthogonal complement)
are orthogonal and pr is a Riemannian submersion.

For a fixed δ > 0 let Pδ be the subset of Φloc
r consisting of the parallel transport trans-

formations determined by curves in pr(U ) of length less than δ. Then, following the same
ideas of [6, Appendix] we obtain that Pδ contains an open neighborhood U(r) of the identity
in Φloc

r . We may take δ small enough such that Bδ(q) (an open ball for the new metric)
is contained in U . Then if c is a loop based at r of length less than δ, its horizontal lift is
contained in U . So U(r) · q is an open neighborhood of q in Φloc

r · q contained in [q]U . This
proves the other inclusion.

From statement (2) in Theorem 31 and Lemma 9 we conclude that the action of Φloc
r on

Mr is polar.
Let ˜C := pr−1(pr(C)). Then for every p ∈ ˜C, the local holonomy group Φloc

pr(p) acts
polarly on Mpr(p). The lemma now follows from Lemma 5 and Lemma 8.

For the case of a submanifold of the sphere, the proof follows in the same way. ��
Proof of Theorem 1 Since we are working in the cathegory of immersed submanifolds, we
may assume that M is simply connected (eventually by passing to the universal cover).

For p ∈ M denote by [p] the set of points of M that can be joined to p by a curve
horizontal with respect to N . Let V be the open and dense subset of principal points of M
for the action of the restricted holonomy groups Φ0

r . Observe that V ∩ Mr is also open dense
on each fiber Mr .
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On the nullity distribution of a submanifold of a space form 13

Assume first that M is a submanifold of the Euclidean space. If p ∈ V and r = pr(p),
since the action of Φ0

r is polar by Lemma 10, then Φ0
r ·p is a complete embedded isoparametric

submanifold of the Euclidean space Mr . Therefore

Φ0
r · p = E0(p) × S(p)

where E0 is the nullity subspace of Φ0
r · p at p and S(p) is a compact isoparametric

submanifold of a sphere (see [17] or [2, Theor. 5.2.11]).
Let D(p) be the nullity subspace of [p] at p, regarding [p] as a submanifold of M (and

not of R
n+k). Set Hp := N⊥

p ⊂ Tp M . We shall see that

D(p) = Hp ⊕ E0(p).

Fix p ∈ V, r = pr(p) and let ξp ∈ νp(Φ
0
r · p) ⊂ Np . If q ∈ [p] and c is a curve in M/N

such that q = τN
c (p), set ξ(q) := (dτN

c )p(ξp). Since Φ0
r · p ⊂ Mr is a principal orbit, ξ

is a well defined normal vector field to [p]. Moreover, since the action is polar, ξ is parallel
in the directions of the orbits of the holonomy groups (cf. [11] or [2, Cor. 3.2.5]). It is also
parallel in the directions of H = N⊥. In fact, let σ(t) be any horizontal curve contained in
[p]. Set p′ = σ(0), p′′ = p′ + ξ(σ (0)). Observe that the horizontal spaces H are constant
along any fiber of pr : M → M/N (since we move along the nullity of M).

If δ(t) is the horizontal lift of pr(σ ) through p′′, we shall see that ξ(σ (t)) = δ(t) − σ(t).
Set η(t) = δ(t)−σ(t). Let α(s) = p′+sξ(p′) ⊂ Mpr(p′). Then ξ(σ (t)) = dτN

σ|[0,t](ξ(p′)) =
d
ds τN

σ|[0,t](α(s)). But τN
σ|[0,t](α(s)) = σ(t) + sη(t). Then d

ds τN
σ|[0,t](α(s)) = η(t) as we wanted

to show. We conclude that d
dt ξ(σ (t)) = σ ′(t) − δ′(t) ∈ Hσ(t) and is, in particular, tangent

to [p]. So ξ is parallel with respect to the normal connection of [p].
This also proves that [p + ξp] is the parallel (possibly focal) manifold [p]ξ to [p].
Let q = p + ξp and so Hq and Hp coincide (as subspaces of R

n+k). Since they are both
isomorphic to Tpr(p)M/N via dpr, one has the isomorphism

ϕ := dpr−1
q ◦ (dprp)|Hp : Hp → Hq � Hp.

Let X ∈ Tpr(p)M/N and c(t) a curve in M/N such that c(0) = pr(p) and c′(0) = X . Let
σ(t) and β(t) be the horizontal lifts of c through p and q respectively. We have seen that
β(t) = σ(t) + ξ(σ (t)). So

β ′(0) = σ ′(0) + d

dt
ξ(σ (t)) = (I d − ̂Aξp )σ

′(0)

where ̂Aξp is the shape operator of [p] as a submanifold of M (which coincides with the
shape operator as a submanifold of R

n+k).
Hence ϕ = (I d − ̂Aξp ) is an isomorphism from Hp to Hq � Hp for each ξp ∈ νp(Φ

0
r · p).

Suppose now that there exists a normal vector ξp to the orbit Φ0
r · p such that ̂Aξp |Hp �= 0.

Then there is an eigenvector v ∈ Hp associated to a real eigenvalue λ �= 0 of Â. Then
(I d − ̂Aξp/λ)v = 0, which can not occur. So Hp is contained in the nullity subspace of [p]
at p. We conclude that D(p) = E0(p) ⊕ Hp as we wanted to show.

Recall that D(p) is defined only on the dense subset V .
Now observe that since any two maximal dimensional orbits on the same fiber Mr are par-

allel manifolds, they have the same extrinsic Euclidean factor (regarded as submanifolds of
Mr ). Therefore, the subspaces E0(p) can be all identified on V ∩Mr for every fiber Mr . We can
hence extend the distribution E0 to the hole Mr define E0(q) for q ∈ Mr as the common sub-
space E0(p) for any p ∈ Mr ∩V . If p and q are in different integral manifolds, then there is a
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14 F. Vittone

point q ′ ∈ Mpr(q) such thatΦ0
r ·q ′ is the parallel translated ofΦ0

r ·p (along an appropriate curve
in M/N ) and is therefore isometric to it. So dim(E0(q)) = dim(E0(q ′)) = dim(E0(p))

and D is a well defined differential distribution on M .
We will prove that D and D⊥ are autoparallel and invariant under the shape operators A

of M .
Observe that D⊥(p) in M is the orthogonal complement of E0(p) in Mpr(p) and so D⊥

is an autoparallel distribution on M , which is parallel when restricted to any fiber Mr . Since
H is A-invariant and A|E0 ≡ 0, we get that D is A-invariant. Denote by νM [p] and by

νR
n+k [p] the normal bundles of [p] as a submanifold of M or R

n+k respectively. Since [p]
is A-invariant, then νM [p] is a parallel sub-bundle of νR

n+k [p]. From Codazzi equation, the
distribution D (which is the nullity of [p] associated to a parallel sub-bundle of νR

n+k [p]) is
autoparallel in V . Since V is dense in M , we get that D is autoparallel.

Since M is irreducible, D⊥ must be trivial. So any orbit Φ0
r · p coincides with the whole

integral manifold Mpr(p).
Assume now that M is a submanifold of the sphere S

n+k . As in the proof of Theorem 31,
let η(p) = p be the position normal vector field and set N := ⋃

−δ<ε<δ Mεη.
If r ∈ M/N , let Lr := Tp Mr ⊕ Rηp for any p ∈ pr−1(p). Lr is the smallest linear

subspace of R
n+k+1 that contains the sphere Mr .

Let p ∈ V , where V is as in the Euclidean case. Suppose there exists a normal vector
0 �= ξp ∈ νp[p], where νp[p] is the normal space of [p] as a submanifold of M . Then
ξp ∈ Lpr(p) is normal to the isoparametric orbit Φ0

r · p. We can extend ξp to a normal parallel
vector field ξ to [p] (as in the Euclidean case).

Consider in R
n+k+1 the parallel manifold ˜[p] := [p]ξ and then consider the projection

˜[p]λη of this submanifold to the sphere, where λ �= 1 is a suitable real number. Then [p] and
˜[p]λη are parallel manifolds on the sphere S

n+k . Let πξ : [p] → ˜[p] and πλη : ˜[p] → ˜[p]λη

be the corresponding focal maps. Then πλη ◦ πξ (p) ∈ Mpr(p).
Observe that the orthogonal complement Hp to Np in Tp M is constant along Mpr(p).

In fact, if we consider the nullity N of N , then H is also the horizontal space associated to
N and therefore constant along Lpr(p).

If c(t) is any curve in M/N with c(0) = r and c(t) is its horizontal lift to p ∈ Mr , direct
computation shows that πλη(πξ (c(t))) is the horizontal lift of c through q := πλη(πξ (p)).
Then the isomorphism dpr−1

q ◦ dprp from Hp to Hq � Hp is given by dπλη ◦ dπξ |Hp =
(1 + λ)(I d − Âξ )|Hp , where Â is the shape operator of [p]. In the same way as in the

Euclidean case, we conclude that Âξ |Hp ≡ 0.
Let D(p) be the nullity subspace of [p] at p as a submanifold of M . Then Hp ⊂ D(p).

Since the orbits of Φ0
r through points in V are isoparametric submanifolds of a sphere we

may assume that they have no nullity in the sphere (eventually by passing to a nearby parallel
orbit).

Then H|V = D is an autoparallel distribution on V , and since V is dense, H is autoparallel
in M . Since M is irreducible, and both H and N are non trivial, the normal space to any orbit
Φ0

pr(p) · p is trivial, or equivalently the orbit coincides with Mr . ��
Remark 41 It is possible to show with a simple example, that the global theorem is false for
submanifolds of the hyperbolic space. We will construct a 2-dimensional 1 − 1 immersed
complete submanifold of the hyperbolic space H

3 with constant index of nullity 1 (and such
that the perpendicular distribution to the nullity is hence integrable). This submanifold is
given as a union of orbits of points in a geodesic by a 1-parameter subgroup of isometries.
Regard H

3 as the connected component through e4 = (0, 0, 0, 1) of {x ∈ L
4 : 〈x, x〉 = −1}
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On the nullity distribution of a submanifold of a space form 15

where L
4 is the space R

4 with the Lorentz metric 〈x, y〉 = x1 y1 + x2 y2 + x3 y3 − x4 y4. Let
σ be the geodesic trough e4 in H

3 such that σ ′(0) = v, that is, σ(s) = sinh(s)v + cosh(s)e4,
and let w ∈ Te4H

3 such that w ⊥ v. Consider a matrix B ∈ so(3) such that Bv = 0 and

Bw �= 0, and such that A =
(

B w

wt 0

)

verifies A3 = 0 (it is not difficult to see that it is

always possible). Observe that A ∈ so1(4), the Lie algebra of the group of isometries of H
3.

Let X be the Killing vector field on H
3 defined by A and let {ϕt } the one parameter subgroup

associated to it. Define the function

f : R
2 → H

3 / (t, s) �→ f (t, s) = ϕt (σ (s)) = et Aσ(s).

Then it is not hard to see that f is a 1 − 1 immersion. Let M = f (R2) ⊂ H
3. Then it is not

difficult to prove that

(i) The nullity subspace of M at p = f (s, t) is generated by the tangent vector (dϕt )σ(s)

σ ′(s). Therefore M has constant index of nullity 1.
(ii) If M were an extrinsic product in the Lorentz space L

4, it would have constant sec-
tional curvature equal to 0. But since it is a surface in H

3 with nullity, it has constant
curvature −1. Therefore M is irreducible.

(iii) Since A3 = 0, ϕt = et A = I + t A + t2

2 A2. Then it is not difficult to show that any
Cauchy sequence on M is convergent, and therefore M is complete

This procedure can be generalized to higher dimensions, by asking further properties to the
matrix A.
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