
Appl Intell
DOI 10.1007/s10489-011-0297-9

Designing heterogeneous distributed GAs by efficiently
self-adapting the migration period

Carolina Salto · Enrique Alba

© Springer Science+Business Media, LLC 2011

Abstract This paper investigates a new heterogeneous
method that dynamically sets the migration period of a
distributed Genetic Algorithm (dGA). Each island GA of
this multipopulation technique self-adapts the period for ex-
changing information with the other islands regarding the
local evolution process. Thus, the different islands can de-
velop different migration settings behaving like a hetero-
geneous dGA. The proposed algorithm is tested on a large
set of instances of the Max-Cut problem, and it can be eas-
ily applied to other optimization problems. The results of
this heterogeneous dGA are competitive with the best exist-
ing algorithms, with the added advantage of avoiding time-
consuming preliminary tests for tuning the algorithm.

Keywords Distributed GAs · Heterogeneity · Migration
period

1 Introduction

Since genetic algorithms (GAs) deal with a set of tentative
solutions (known as the population) it is common sense to
think in splitting the population into a set of collaborating
subalgorithms to gain numerical and time reductions be-
cause of this structure [1]. Actually most parallel GAs found
in the literature utilize some kind of spatial disposition for
the individuals and then parallelize the resulting chunks in

C. Salto (�)
Fac. de Ingeniería, Universidad Nacional de La Pampa, Calle 110
esq. 9, General Pico, Argentina
e-mail: saltoc@ing.unlpam.edu.ar

E. Alba
Dpto. Lenguajes y Ciencias de la Computación, Universidad de
Málaga, Campus de Teatinos, 29071, Málaga, Spain

a pool of processors. Among the most widely known types
of structured GAs, distributed GAs (dGAs) [3, 34] are spe-
cially popular optimization procedures and soon became an
important branch of research, since they provide a faster and
more efficient way of solving known and new problems [1].
Their advantage comes from the partitioning of the popula-
tion into several subpopulations, each one running a separate
GA, thus allowing a wide exploration of promising regions
of the problem landscape. A sparse migration of individuals
produces an exchange of genetic material among the sub-
populations, that is actually responsible for enhancing the
exploration-exploitation balance.

There exist distributed models where multiple search
threads concurrently explore the solution space. These mod-
els are called Type 3 parallel strategies in [13, 14] and mul-
tiple walk approaches in [15]. If each thread uses a different
search procedure (a different method or different parame-
ter settings, for example), we obtain a Parallel Heteroge-
neous Metaheuristic (PHM). The utilization of PHMs al-
lows for a larger diversity and deeper exploration of the
search space, which could hopefully lead to more accu-
rate solutions. A taxonomy of PHMs is introduced in [28],
and a survey about the state-of-the-art on parallel heteroge-
neous metaheuristics is given. According to this taxonomy, a
parallel homogeneous metaheuristic (threads with the same
search procedure and parameterizations) are a subtype of
PHMs. Most distributed genetic algorithms proposed in the
literature are members of this category [1].

Whatever a parallel distributed GA might be, it is very
common in the literature to experimentally set the migration
parameters, which are responsible for the structure of the
algorithm and the intercommunication schema among the
subpopulations (migration policy). This usually happens in
the form of an offline set of runs previous to the actual uti-
lization and evaluation of algorithms. In fact, this phase is

mailto:saltoc@ing.unlpam.edu.ar

C. Salto, E. Alba

costly and often unreported in articles on this topic. In any
case, this increases the complexity in using regular dGAs.

Our proposal in this article is to self-adapt the migration
policy, in particular the migration periods at which the in-
dividuals are exchanged among subpopulations. The result-
ing algorithm is then no longer a homogeneous set of GAs,
but a new heterogeneous dGA (HdGA) no longer needing
the traditional ad-hoc pre-tuning of migration parameters.
The algorithm is composed of several subalgorithms that
utilize the same optimization technique, a traditional GA,
but that are using different migration periods, whose values
change dynamically regarding the feedback obtained during
the search (not set a priori in an ad-hoc manner). If such het-
erogeneous dGA could self-adapt at a low overhead and still
be competitive, a new class of techniques could be ready for
researchers to solve optimization problems. Thus, our moti-
vation in this paper is to analyze the behavior of HdGA and
to show that the heterogeneity could help to design powerful
and robust optimization algorithms while reducing the cost
of migration tuning present in homogeneous dGAs.

In order to evaluate the performance of our proposed al-
gorithm, we will use the Max-Cut problem. Given an undi-
rected graph with edge weights, this problem consists in
finding a partition of the nodes into two subsets, such that
the sum of the weights of the edges having endpoints in dif-
ferent subsets is maximized. This is a well-known NP-hard
problem [26] and, besides its theoretical importance, has ap-
plications in several fields (see Sect. 3.1 for more details)
and has been reformulated in a multitude of ways. Its choice
as the case of study will impact positively and also in devel-
oping new solution methods that can influence in the solu-
tion of other optimization problems. We will consider here
also existing algorithms for this problem to prove that our
proposal is not only efficient but also accurate.

The outline of the paper is as follows. Section 2 presents
the background to our parallel implementation of dGAs and
the characteristics of the proposed heterogeneous algorithm.
Section 3 formally presents the Max-Cut problem and its
application to solve real world problems, while Sect. 4 gives
details of the principal components of our algorithms. Sec-
tion 5 presents the parameterizations used and Sect. 6, the
analysis of the results from a numerical point of view. Fi-
nally, we summarize the conclusions and discuss several
lines for future research in Sect. 7.

2 Heterogeneous dGAs

In this work we focus on distributed GAs (dGAs) [34],
where the population is structured into smaller subpopula-
tions (islands) relatively isolated one from the others (see
Algorithm 1 for the structure of an elementary genetic al-
gorithm (dGAi)). Copies of individuals within a particular

Algorithm 1 Elementary dGA (dGAi)
t = 0; {current generation}
initialize(Pi(t));
evaluate(Pi(t));
while (t < maxgenerations) do

P ′
i (t) = evolve(Pi(t)); {recombination and mutation}

P ′
i (t) = improve(P ′

i (t)); {local search}
evaluate (P ′

i (t));
P ′

i (t) = send/receive individuals from dGAj ; {neigh-
bor dGA}
Pi(t + 1) = select new population from Pi(t) ∪ P ′

i (t);
t = t + 1;

end while

subpopulation Pi (where i is the identifier of an island) can
occasionally migrate to another one. A migration policy de-
fines the island topology, when migration occurs, which in-
dividuals are being exchanged, the synchronization among
the subpopulations, and the kind of integration of exchanged
individuals within the target subpopulations [9, 34]. Conse-
quently, additional parameters controlling the migration pol-
icy are needed. This in general adds an extra setting time,
that in fact authors rarely report in their studies, but that rep-
resents a considerable effort both for the researcher and for
the computer. Although many parameters regulate the mi-
gration, most of them are standard and widely used, like us-
ing a ring topology, sending one (or few) individuals, replac-
ing the local worst, and using asynchronous communication
to get larger speedups. The main parameter left controlling
the actual intensity of the interaction that attract authors is
the migration period, that is the number of generations in
every subpopulation between two successive exchanges of
individuals with its neighbor subpopulations. Typically, mi-
gration intervals are specified as a predefined constant num-
ber of generations. The setting of an appropriate frequency
period requires considering several values, from low to high
periods, in a factorial-analysis-kind-of study, carrying out
the corresponding previous experimentation, thus analyzing
which one of those periods will be finally used in the actual
solver for the problem. This task is computationally expen-
sive and the appropriate period depends of the characteris-
tics of the problem to be solved. In a novel approach, we
propose here a different strategy: a self-adapting dGA that
automatically defines this period at a low cost. Our tech-
nique can be used by any dGA to solve an arbitrary problem
and then the pre-tuning time will be minimized.

The new heterogeneous proposal consists in that each
population dynamically adjusts the migration period as the
genetic search proceeds. A major advantage of this adap-
tive criteria lies in that it is not necessary to set it to any
ad-hoc value. Also, we focus in reducing the overhead to
a minimum, so as to finally allow savings in the numerical

Designing heterogeneous distributed GAs by efficiently self-adapting the migration period

Algorithm 2 Pattern for our dynamic adaptive criteria

if avgg�f < (1 + ε) · avgg−1�f then
mig_period = mig_period × 2;

else if avgg�f > (2 − ε) · avgg−1�f then
mig_period = mig_period ÷ 2;

end if

effort which can be used later to solve the actual optimiza-
tion problem. According to the taxonomy proposed in [28],
our proposal is a Parallel Heterogeneous Metaheuristic us-
ing the same search method (a GA) but with different con-
figurations, in particular different parameter settings (migra-
tion period).

The criterion to modify the migration period (mig_pe-
riod) is a function of the average fitness of the popu-
lation. Following the ideas presented in [2], we define
�f g as the difference between the average fitness values
in generation t and t − 1: �f g = f t − f t−1. We cal-
culate the average of this difference during two consec-
utive migration steps (g and g − 1); the average is de-
noted as avgg�f = ∑mig_period

t=1 �f t/2. The algorithm will
change the period to its closer larger power of two value
if the difference avgg�f between two contiguous migra-
tions (g and g − 1) decreases at least by a factor of ε :
avgg�f − avgg−1�f ≤ ε · avgg−1�f . On the contrary,
the period will change to its closer smaller power of two
value if that difference increases by a factor greater than
(1 − ε) : avgg�f − avgg−1�f > (1 − ε) · avgg−1�f .
Of course, migration periods assume discrete values in
the range [mig_periodmin,mig_periodmax]. Algorithm 2 de-
scribes the basic adaptive pattern. This criterion is inexpen-
sive to measure, since it checks simple conditions based on
information already available in any standard GA, like the
mean fitness.

We begin the execution by setting the mig_period to a
power of two value in each island in the range [1..512], this
value is randomly selected. Whenever the criterion is ful-
filled, the adaptive search pattern performs a change in the
migration period. The bounding cases are the total commu-
nication (migration period equals to one) or almost inde-
pendent execution (migration period equals to 512). When
the current value is equal to one and the algorithm needs to
change to the next lower one, the algorithm does not make
any change in the migration period at all. The same action
is triggered when the current value is 512 and the algorithm
needs to increase the value to the next one.

3 A standard and difficult benchmark: the Max-Cut
problem

This well-known NP-hard problem consists in partitioning
the set of nodes of a weighted graph G = (V ,E), where

V = {1, . . . , n} is the set of nodes and E = {(i, j) : i, j ∈ V }
the set of edges, into two disjoint subsets S and S = V − S,
such that the sum of the weights of the edges from E that
have one endpoint in S and the other in S, is maximized. Let
wi,j be the weight associated with edge (i, j) ∈ E. Then, the
following expression must be maximized:

cut(S,S) =
∑

i∈S,j∈S

wij (1)

Goemans and Williamson [21] proposed an adaptation of
Semidefinite Programming (SDP) to the problem, which
is useful to calculate upper bounds on some graphs in-
stances for heuristic performance comparison. Burer et al.
[11] proposed for this problem a method called CirCut,
which is a rank-2 relaxation heuristic that produces better
solutions than previous methods in shorter computational
times. Festa et al. [20] compared the CirCut with six new
proposed heuristics derived from GRASP, variable neigh-
borhood search (VNS), and path relinking (PR). The authors
reported that their VNS algorithm with PR (VNSPR) obtains
high quality solutions (approaching 5% of SDP bounds) but
with long computational times. Martí et al. [29] proposed
an Advanced Scatter Search (SS), which produces better re-
sults both in quality and computational times when com-
pared with all previous approaches. More recently, a sig-
nificant work on Max-Cut used both Simulated Annealing
(SA) and Tabu Search (TS) and was proposed by Arraiz and
Olivo [7]. They created a neighborhood generation proce-
dure that balances diversity and quality. SA was able to re-
port unseen optimal values for some instances and to match
the best results reported on the literature for the rest, requir-
ing less computational time compared to former approaches
(i.e., an actual state of the art algorithm for Max-Cut). We
include CirCut, VNSPR, SS, and SA in our computational
analysis (see Sect. 6) in order to make a wide comparison of
our proposal.

3.1 Practical issues

Although the Max-Cut problem might appear, at first glance,
to be interesting in the academic field, its domain of applica-
bility is extraordinarily broad, including VLSI design, statis-
tical physics, data clustering, facility layouts, etc. In follow-
ing paragraphs a more detailed description of each of these
topics is carried out, in order to clearly state the practical
implications of the problem we have selected in this article.

The most common applications come from the field of
design of very large scale integrated (VLSI) circuits and sta-
tistical physics where the ground states of spin glasses in
the presence of an external magnetic field are sought [5, 8].
In VLSI circuits, given an electronic circuit specified by
a graph, the maximum cut defines the largest amount of
data communication that can simultaneously occur in the

C. Salto, E. Alba

circuit. The highest-speed communications channel should
thus span the vertex partition defined by the maximum edge
cut.

Clustering analysis, used in many disciplines and appli-
cations [10, 35], is an important tool and a descriptive task
seeking to identify homogeneous groups of objects based on
the values of their attributes. The problem of cluster analysis
can be modelled as a maximum cut problem [18]. The prob-
lem consists in partitioning a set of data points into groups of
“closely related” observations. Cluster analysis can be for-
mulated as a maximum cut problem by creating a graph that
contains a node for each data point and an edge between
each pair of points. The weight of the edge is determined
by the relative “closeness” of the points represented by the
nodes it connects.

Regarding layout facility problems, the single-row facil-
ity layout problem (SRLFP) has several interesting connec-
tions to the Max-Cut problem [6]. The SRLFP consists in ar-
ranging a given number of rectangular facilities next to each
other along a line so as to minimize the total weighted sum
of the center-to-center distances between all pairs of facili-
ties. Several practical applications of the SRFLP have been
identified in the literature [23, 31, 33].

Applications on the field of image segmentation can be
found in recent years [19, 30, 32]. Several methods using a
tree structured framework have been applied to high dimen-
sional data, such as hyperspectral images, using the Max-
Cut problem as a tool for constructing that hierarchical tree
[24, 27]. Chen et al. [12] proposed a method, called Support
Vector Machines (SVM), that utilizes a tree structure frame-
work and solves a series of Max-Cut problems to perform
the unsupervised class decomposition.

Other applications can be found in the area of com-
binatorial optimization where many geometric reformula-
tions of the Max-Cut problem are possible based on the
incidence vector representation. Examples here include lin-
ear programming over the cut polytope and unconstrained
quadratic 0–1 programming [16, 17].

As stated in previous paragraphs, the Max-Cut problem
has several and interesting applications in many practical or
theoretical fields, so it is of interest to develop new tech-
niques to provide better quality solutions to this problem, as
we do in this paper. Therefore, our methods can contribute
to the solution on the applications of the Max-Cut problem
previously detailed.

4 Heterogeneous dGA and Max-Cut

In this section we describe the principal components of our
proposed HdGA to solve Max-Cut.

Representation A solution to this problem can be repre-
sented as a binary vector x = (x1, x2, . . . , xn) of length n,
where xi corresponds to a node. Each vector encodes a par-
tition of the nodes, with xi = 1 meaning xi ∈ S and xi = 0
meaning xi ∈ S.

Initialization The algorithm creates several initial solu-
tions using the constructive heuristic proposed by Kahruman
et al. [25], called SG3. This method is fast and generates so-
lutions with considerable quality and diversity. SG3 was also
chosen by Arraiz and Olivo [7] to be the constructive heuris-
tic for their SA and TS and seems to be a key component in
all modern well-performing algorithms for Max-Cut.

Local search heuristic After genetic operators (crossover
and mutation), the newly created individuals undergo a lo-
cal optimization procedure with a certain probability. When
applied on a solution x, the procedure starts by creating a set
T of all nodes i (for i = 1, . . . , n). The iterative procedure
randomly selects a node i from the set T and then changes
that node from one subset to the other in x according to the
following rules:

if xi = 0 and σS(i) − σS(i) > 0 then xi = 1

if xi = 1 and σS(i) − σS(i) > 0 then xi = 0

where, for each node i : 1, . . . , n, σS(i) = ∑
j∈S wij and

σS(i) = ∑
j∈S wij [20], σS(i)−σS(i) represents the change

in the objective function associated with moving a node i

from one subset of the cut to the other. All possible moves of
a solution are investigated by making a single pass through
all the nodes. The current solution is replaced by the im-
proved one. The pseudo-code of the local search procedure
is given in Algorithm 3. This algorithm is an efficient vari-
ation of the local search phase proposed by Festa et al. [20]
used in their GRASP method (O(n2) complexity), since our
local search procedure makes one single pass through all the
nodes, i.e., O(n).

Table 1 Max-Cut instance description

Instances |V| Density (%)

G1–G2–G3 800 6.12

G11–G12–G13 800 0.63

G14–G15–G16 800 1.58

G22–G23–G24 2000 1.05

G32–G33–G34 2000 0.25

G35–G36–G37 2000 0.64

G43–G44–G45 1000 2.10

G48–G49–G50 3000 0.17

Designing heterogeneous distributed GAs by efficiently self-adapting the migration period

5 Experimental setup

The first step in the experimentation consists of exploring
the effect of some operators that effect the subpopulations
of a dGA. The following paragraph explains the set of pa-
rameters used in the experimentation for the homogeneous
dGA, which were selected after an empirical parameter tun-
ing process.

The global population of all evaluated models is com-
posed of 512 individuals and there are 16 islands with 32
individuals each (μ). The maximum number of generations
is fixed to 6500. Each parent is selected by a binary tourna-
ment. In every island, the number λ of created offspring is
32 at each iteration. The uniform crossover is applied with a
probability of 0.65, the bit-flip mutation is applied to all new
generated individuals with an intensity of 1/|V | per bit, and
the local search procedure is applied with a probability of
0.2. The next population is build up from the (μ + λ) indi-
viduals using fitness proportional selection. The distribution
scheme of islands is based on a unidirectional ring topology.
The communication is asynchronous for efficiency. A copy
of the best individual is sent to the neighboring subpopula-
tion, while the target island selects the worst individual to be
replaced with the incoming one (only if it has better or equal
fitness).

The algorithms are implemented in MALLBA [4], a C++
software library. Our computing system is a cluster of 8
machines with AMD Phenom8450 Triple-core Processor at
2 GHz with 2 GB of RAM, linked by Gigabit, under Linux
with 2.6.27-4 GB kernel version. Each island is physically
run on a separate processor.

For our experiments we used the set of instances gen-
erated by Helmberg and Rendl [22] (publicly available at
http://www.stanford.edu/yyye/yyye/Gset/). In particular, we
use a set of widely used graphs. They consist of toroidal,
planar and randomly generated graphs of varying sizes and
densities, with weights taking values 1, 0, or −1. The size of
the graphs (|V|) varies from 800 to 3000 nodes meanwhile

Algorithm 3 Local Search
T ← V ;
while (T �= ∅) do

i ← random vertex in T ;
if i ∈ S and σS(i) − σS(i) > 0 then

S ← S \ {i};
S ← S ∪ {i};

end if
if i ∈ S and σS(i) − σS(i) > 0 then

S ← S \ {i};
S ← S ∪ {i};

end if
T ← T \ {i};

end while

the density fluctuates from 0.17% to 6.12% (see Table 1 for
more details). Festa et al. [20], Martí et al. [29], and Arráiz
et al. [7] all used these graphs in their experiments, so it is a
convenient election for comparison purposes.

6 Analysis of results

In this section we describe the results of the experiments we
have made for testing our HdGAs on the Max-Cut problem.
This section is divided into two parts. In a first place, a com-
parison of our proposed HdGA and dGAs using constant
migration periods is carried out. After that, a comparison of
HdGA with other methods reported in the literature to solve
the Max-Cut problem is conducted to determine the effec-
tiveness of our proposal.

All the results provided here are the mean of 30 indepen-
dent runs. We have performed an analysis of variance of the
results to obtain meaningful conclusions. When the results
happen to follow a normal distribution, we use the ANOVA
test to distinguish meaningful differences among the means
of the results for each algorithm, with a level of significance
of α = 0.05 (to indicate a 95% confidence level). When the
results do not follow a normal distribution, we use the non-
parametric Kruskal-Wallis test.

6.1 Homo versus heterogeneous approaches

In this section we will compare the results produced by the
proposed HdGA and a parallel homogeneous GA, so-called
HomdGA (which performs the same kind of search on dif-
ferent sets of greedy generated individuals) in order to show
the robustness of the heterogeneous dGA as an alternative
search method. As we are interested in the self-adapted mi-
gration schedule, in the case of HomdGA we report a set of
values for the migration period ranging from 1 (maximum
coupling among islands) to 128 (fairly isolated islands), in
order to characterize the effect of the migration period in the
quality of the solutions obtained. Consequently, HomdGAi

means a homogeneous approach with period i.

Fig. 1 Performance comparison of HdGA and HomdGA

http://www.stanford.edu/yyye/yyye/Gset/

C. Salto, E. Alba

Figure 1 shows the relative error with respect to the best-
known solution in the literature for each instance. A first
conclusion is that HomdGAs with low migration periods ob-
tain better results than HomdGAs with high migration pe-
riods. The accumulated error for all instances is 2.80 for
HomdGA1 (the best) and 2.57 for HdGA, that is a 8.2%
lower error for HdGA. HdGA hits the best-known solu-
tion for instances G1, G2, and G3. For instances G11, G12,
and G13 (representing sparse graphs with negative weights),
HomdGAs and HdGA both present high errors, indicat-
ing that these instances are difficult for the algorithms. For
these instances, the automatically self-adapted HdGA ob-
tains the same error as the best Hom-dGA approach. For
instances G22 and G23 the optimum values are reached by
HomdGA1.

HdGA gets improvements to the best-known solution for
instances G16 and G45. This is a remarkable result, since it
is a long lasting very studied problem and because our true
goal was to propose an algorithm that reduces pre-tuning.
This result shows that it is also very accurate. In the case of
instance G22, HomdGA1 obtains a fitness 13351, also better
than the best solution reported in the literature (13346, until
now). A similar situation is observed in instance G16, but
in this case other algorithms also obtain solution values over
the best-known solution 3046 (HomdGA1 3049, HomdGA8
3046, HomdGA32 3048, and HdGA 3047). Hence not only

HdGA is a simpler heterogeneous version, but also a cutting
edge algorithm.

Summarizing, HdGA obtains the same quality of results,
or even better, than any HomdGA in 7 of the 12 instances
used in this study. For the rest of the instances, the error
difference is rather low and similar. These claims are cor-
roborated by an ANOVA test: the p-values are higher than
α = 0.05 for the majority of the instances. Consequently, we
have reached the proposed objective of building an alterna-
tive search method based on heterogeneous dGAs.

We want to finish this section with a short comment on
the effective alleviation of the parameter tuning cost that
our heterogeneous dGA provides. We must remind that no
tuning of migration has been done for HdGA, while for
HomdGA it was considerably hard. First of all, our hetero-
geneous dGA needed 26 hours of execution to obtain the
results from the 30 independent executions for all the graph
set addressed in this work (see Table 1). For the HomdGA,
a range of values was considered for the tunable parame-
ter, in fact we tested 4 different values for the migration
period. For each experiment we have performed 30 runs,
consequently we needed 120 runs to find the adequate con-
figuration (90 runs more than HdGA). This process is re-
peated for every problem instance addressed in this work.
In terms of time, that means approximately 104 hours of
computation. Therefore, our proposed HdGA produces sav-
ings of 75% of the overall computation time compared to a

Fig. 2 Steps in the
experimentation for HdGA and
HomdGAs

Designing heterogeneous distributed GAs by efficiently self-adapting the migration period

Table 2 Performance comparison between HdGA and the best algorithms reported in literature

Inst. HomdGA1 HdGA CirCut GRASP VNSPR SS TS SA SDP

G1 11624 11624 11624 11540 11621 11624 11612 11624 12078

G2 11611 11620 11617 11567 11615 11620 11604 11607 12084

G3 11617 11622 11622 11551 11622 11622 11602 11622 12077

G11 560 562 560 552 564 562 562 564 627

G12 552 552 552 546 556 552 550 554 621

G13 576 576 574 572 580 578 574 582 645

G14 3057 3057 3058 3027 3055 3060 3053 3060 3187

G15 3047 3047 3049 3017 3043 3049 3041 3045 3169

G16 3049* 3047 3045 3013 3043 3045 3042 3044 3172

G22 13351* 13338 13346 13185 13295 13346 13273 13319 14123

G23 13321 13309 13317 13203 13290 13317 13303 13321 14129

G24 13307 13308 13314 13165 13276 13303 13285 13310 14131

G32 1394 1386 1390 1370 1396 1398 1382 1386 1560

G33 1350 1360 1360 1348 1376 1362 1354 1366 1537

G34 1356 1364 1368 1348 1372 1364 1364 1372 1541

G35 7632 7643 7670 7567 7635 7668 7629 7653 8000

G36 7630 7640 7660 7555 7632 7660 7627 7648 7996

G37 7637 7650 7666 7576 7643 7664 7642 7655 8009

G43 6651 6655 6656 6592 6659 6656 6658 6659 7027

G44 6629 6647 6643 6587 6642 6648 6641 6650 7022

G45 6629 6653* 6652 6598 6646 6642 6651 6643 7020

G48 6000 6000 6000 6000 6000 6000 6000 6000 6000

G49 6000 6000 6000 6000 6000 6000 6000 6000 6000

G50 5880 5880 5880 5862 5880 5880 5880 5880 5988

Value sum 150460 150540 150623 149341 150441 150620 150329 150564 157743

% of SDP 4.62 4.57 4.51 5.33 4.63 4.52 4.70 4.55

search method requiring migration period tunning. Figure 2
shows the steps in the experimentation carried out, and con-
sequently the stated differences, in a more intuitive way.

6.2 Solution of Max-Cut

In this section, we show a comparison of the best results ob-
tained by our heterogeneous approach and HomdGA1 with
those accomplished by the state of the art methods. The re-
sults reported in Table 2 for CirCut, GRASP, VNSPR, SS,
TS, and SA were taken from [7]. This table shows, for each
instance and each method, the best value obtained and also
the theoretical lower bound SDP. Last row gives the total
sum of the best values and the mean relative percent devia-
tion of this sum from DSP, for each method.

HdGA reports 6 of the best results known in the litera-
ture (G1, G2, G3, G48, and G49), and it also obtains un-
seen optimal values for G45. On the other instances, it per-
forms relatively well, very near other methods. Moreover, an

ANOVA test indicates that differences among the best val-
ues means are not significant (the p-value is higher than the
significance level α = 0.05), suggesting that the proposed
algorithm presents a similar behavior to the best algorithms
reported in the literature, a promising result.

Regarding wall-clock execution times, HdGA presents
slightly high computation time compared to CirCut, SS, and
SA, but not superior to the ones exhibited by VNSPR. The
reason is that we impose a predefined effort to run our al-
gorithms, expressed in a fixed number of generations, while
the rest of the algorithms executes until a number of consec-
utive iterations without improvement is reached, a different
stop condition. In a more in-depth analysis of the run times
of HdGA, we can observed that the best values of the algo-
rithm are obtained near the middle of the execution in the
majority of the instances. This suggests that the number of
generations imposed as stop condition could be decreased
by half, and consequently the computational time, without
affecting the quality of the final solutions.

C. Salto, E. Alba

7 Conclusions

In this paper we have presented a new heterogeneous dGA
to solve the Max-Cut problem, which uses different migra-
tion periods in each subpopulation following an adaptive,
automatic, and problem matching strategy. Migration peri-
ods are dynamically set based on the changes observed in the
average fitness population, resulting in an inexpensive self-
adaptation procedure. The proposed heterogeneous dGA are
not particular to the Max-Cut problem and could be consid-
ered for future applications to other optimization problems.

We consider that the behavior of our heterogeneous dGA,
as well as the homogeneous dGA, is very satisfactory since
it obtains the best-known solution in most cases, or values
very close to it, for all the test suite. Moreover, it has been
able to improve the known best solution so far for three of
the tested instances, which represents an important record
in present research. Besides, as the heterogeneous algorithm
dynamically determines the best period, this method helps
to alleviate the setting time required, by at least 75%, to de-
termine the best migration period in traditional dGAs, which
implies a costly exploration.

There exit however several issues that still require further
analysis. The heterogeneous solver shows good results at the
expense of slightly high computational time, consequently
a future work will be directed to reduce the computational
times required for the search. Here, specially when compar-
ing to other distributed algorithms, it is important to quantify
and compare the time needed for setting the best migration
policy to be used, a step not required in the HdGA. Further-
more, we plan to extend our work to other problems and also
in order to include other parameters of the migration policy
to be set automatically at low cost, such as the number of
individuals to be sent in each communication.

Acknowledgements This work has been partially funded by the
Spanish Ministry of Science and Technology and the European FEDER
under contract TIN2008-06491-C04-01 (the M* project) and project
DIRICOM (P07-TIC-03044). We acknowledge the Universidad Na-
cional de La Pampa and the ANPCYT in Argentina from which the
first author receive continuous support.

References

1. Alba E (2005) Parallel metaheuristics: a new class of algorithms.
Wiley, New York

2. Alba E, Dorronsoro B (2005) The exploration/exploitation trade-
off in dynamic cellular genetic algorithms. IEEE Trans Evol Com-
put 9(2):126–144

3. Alba E, Troya JM (2000) Influence of the migration policy in par-
allel distributed GAs with structured and panmictic populations.
Appl Intell 12(3):163–181

4. Alba E, Luna J, Moreno LM, Pablos C, Petit J, Rojas A, Xhafa F,
Almeida F, Blesa MJ, Cabeza J, Cotta C, Díaz M, Dorta I, Gabarró
J, León C (2002) MALLBA: a library of skeletons for combinato-
rial optimisation. LNCS, vol 2400. Springer, Berlin, pp 927–932

5. Anjos MF (2001) New convex relaxations for the maximum cut
and VLSI layout problems. PhD thesis, University of Waterloo

6. Anjos M, Liers F (2010) Global approaches for facility layout and
vlsi floorplanning. Handbook of semidefinite, cone and polyno-
mial optimization: theory, algorithms, software and applications,
p 32

7. Arráiz E, Olivo O (2009) Competitive simulated annealing and
tabu search algorithms for the Max-Cut problem. In: GECCO ’09:
proceedings of the 11th annual conference on genetic and evolu-
tionary computation. ACM, New York, pp 1797–1798

8. Barahona F, Grötschel M, Jünger M, Reinelt G (1988) An applica-
tion of combinatorial optimization to statistical physics and circuit
layout design. Oper Res 36(3):493–513

9. Belding TC (1995) The distributed genetic algorithms revisited.
In: Proceedings of the sixth international conference on genetic
algorithms, pp 114–121

10. Brdiczka O, Maisonnasse J, Reignier P, Crowley JL (2009) De-
tecting small group activities from multimodal observation. Appl
Intell 30(1):47–57

11. Burer S, Monteiro RDC, Zhang Y (2002) Rank-two relaxation
heuristics for Max-Cut and other binary quadratic programs.
SIAM J Optim 12(2):503–521

12. Chen Y, Crawford M, Ghosh J (2004) Integrating support vec-
tor machines in a hierarchical output space decomposition frame-
work. In: Proceeding of IEEE international geoscience and remote
sensing symposium, vol 2, pp 949–952

13. Crainic TG, Tolouse M (2003) Parallel metaheuristics. In: Crainic
TG, Laporte G (eds) Fleet management and logistics. Kluwer Aca-
demic, Dordrecht, pp 205–251

14. Crainic TG, Tolouse M (2003) Parallel strategies for metaheuris-
tics. In: Glover FW, Kochenberger GA (eds) Handbook of meta-
heuristics. Kluwer Academic, Dordrecht, pp 475–514

15. Cung V, Martins SL, Ribeiro CC, Roucairol C (2003) Strategies
for the parallel implementation of metaheuristics. In: Ribeiro CC,
Hansen P (eds) Essays and surveys in metaheuristics. Kluwer Aca-
demic, Dordrecht, pp 263–308

16. Deza M, Laurent M (1994) Applications of cut polyhedra I. Com-
put Appl Math 55(2):191–216

17. Deza M, Laurent M (1994) Applications of cut polyhedra II. Com-
put Appl Math 55(2):217–247

18. Ding CHQ, He X, Zha H, Gu M, Simon HD (2001) A min-max cut
algorithm for graph partitioning and data clustering. In: Proceed-
ings IEEE international conference on data mining, pp 107–114

19. Du Z, Jeong Y-S, Jeong MK, Kong SG (2011) Multidimensional
local spatial autocorrelation measure for integrating spatial and
spectral information in hyperspectral image band selection. Appl
Intell. doi:10.1007/s10489-010-0274-8

20. Festa P, Pardalos PM, Resende MGC, Ribeiro CC (2002) Ran-
domized heuristics for the MAX-CUT problem. Optim Methods
Softw 7:1033–1058

21. Goemans MX, Williamson DP (1995) Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. J ACM 42(6):1115–1145

22. Helmberg C, Rendl F (2000) A spectral bundle method for
semidefinite programming. SIAM J Optim 10(3):673–696

23. Heragu SS, Kusiak A (1988) Machine layout problem in flexible
manufacturing systems. Oper Res 36(2):258–268

24. Hung C-C, Kuo B-C, Chi M-H, Hsieh T-Y (2006) A comparison
of hierarchical classification processes based on hyperspectral im-
age. In: IEEE international geoscience and remote sensing sym-
posium, pp 948–951

25. Kahruman S, Kolotoglu E, Butenko S, Hicks IV (2007) On greedy
construction heuristics for the max_cut problem. Int J Comput Sci
Eng 3(3):211–218

26. Karp R (1972) Reducibility among combinatorial problems. In:
Miller R, Thatcher J (eds) Complexity of computer computations.
Plenum, New York, pp 85–103

http://dx.doi.org/10.1007/s10489-010-0274-8

Designing heterogeneous distributed GAs by efficiently self-adapting the migration period

27. Kuo B-C, Chi M-H, Yang J-M, Yang C-W (2007) Hierarchical
classification systems for hyperspectral image classification. In:
IEEE international geoscience and remote sensing symposium,
pp 1745–1748

28. Luna F, Alba E, Nebro AJ (2005) Parallel metaheuristics. A new
class of algorithms. In: Alba E (ed) Parallel heterogeneous meta-
heuristics. Wiley, New York, pp 395–422

29. Martí R, Duarte A, Laguna M (2009) Advanced scatter search for
the Max-Cut problem. INFORMS J Comput 21(1):26–38

30. Özyer T, Alhajj R (2009) Parallel clustering of high dimensional
data by integrating multi-objective genetic algorithm with divide
and conquer. Appl Intell 31(3):318–331

31. Picard J-C, Queyranne M (1981) On the one-dimensional space
allocation problem. Oper Res 29(2):371–391

32. Saha S, Bandyopadhyay S (2010) Automatic MR brain image seg-
mentation using a multiseed based multiobjective clustering ap-
proach. Appl Intell. doi:10.1007/s10489-010-0231-6

33. Suryanarayanan JK, Golden BL, Wang Q (1991) A new heuristic
for the linear placement problem. Comput Oper Res 18(3):255–
262

34. Tanese R (1989) Distributed genetic algorithms. In: Proceed-
ings of the third international conference on genetic algorithms,
pp 434–439

35. Verma B, Hassan SZ (2009) Hybrid ensemble approach for clas-
sification. Appl Intell 34(2):258–278

Carolina Salto received her Ph.D.
degree in Computer Science from
the University of San Luis, Ar-
gentina in 2009. She is currently
an Assistant Professor of Computer
Science at the University of La
Pampa, Argentina. She has pub-
lished book chapters, journal pa-
pers, and more than 40 conference
papers. Her current research in-
terests include the design and im-
plementation of evolutionary algo-
rithms, other metaheuristics to con-
tinuous and combinatorial prob-
lems, and parallelism applied to

metaheuristics. Dr. Salto leads the ‘Research Lab on Intelligent Sys-
tems’.

Enrique Alba had his degree in en-
gineering and Ph.D. in Computer
Science in 1992 and 1999, respec-
tively, by the University of Málaga
(Spain). He works as a Full Pro-
fessor in this university with dif-
ferent teaching duties: data com-
munications and evolutionary algo-
rithms at graduate and master pro-
grams, respectively. Dr. Alba leads
a team of 7 doctors and 8 engineers
(most of them Ph.D. candidates) in
the field of complex optimization.
In addition to the organization of
international events (IEEE IPDPS-

NIDISC, IEEE MSWiM, IEEE DS-RT, . . .) Dr. Alba has offered
dozens doctorate courses, multiple seminars in more than 20 interna-
tional institutions and has directed several research projects (5 with
national funds, 5 in Europe and numerous bilateral actions). Also, Dr.
Alba has directed 6 contracts for innovation and transference to the in-
dustry (OPTIMI, Tartessos, ACERINOX, ARELANCE) and at present
he also works as invited professor at INRIA and the Univ. of Luxem-
bourg. He is editor in 13 international journals and one book series
of Springer-Verlag and Wiley, as well as he often reviews articles for
more than 30 impact journals. He has published 38 articles in journals
indexed by Thomson ISI, 17 articles in other journals, 40 papers in
LNCS, and more than 100 refereed conferences. Besides that, Dr. Alba
has published 11 books, 39 book chapters, and has merited 6 awards
to his professional activities. Dr. Alba’s H index is 22, with more than
1500 cites to his works (excluding self-cites).

http://dx.doi.org/10.1007/s10489-010-0231-6

	Designing heterogeneous distributed GAs by efficiently self-adapting the migration period
	Abstract
	Introduction
	Heterogeneous dGAs
	A standard and difficult benchmark: the Max-Cut problem
	Practical issues

	Heterogeneous dGA and Max-Cut
	Representation
	Initialization
	Local search heuristic

	Experimental setup
	Analysis of results
	Homo versus heterogeneous approaches
	Solution of Max-Cut

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

