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Thermal rounding exponent of the depinning transition of an elastic string in a random medium
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1CONICET, Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Rı́o Negro, Argentina

2DPMC-MaNEP, University of Geneva, 24 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
(Received 27 September 2011; published 24 February 2012)

We study numerically thermal effects at the depinning transition of an elastic string driven in a two-dimensional
uncorrelated disorder potential. The velocity of the string exactly at the sample critical force is shown to behave
as V ∼ T ψ , with ψ the thermal rounding exponent. We show that the computed value of the thermal rounding
exponent, ψ = 0.15, is robust and accounts for the different scaling properties of several observables both in
the steady state and in the transient relaxation to the steady state. In particular, we show the compatibility
of the thermal rounding exponent with the scaling properties of the steady-state structure factor, the universal
short-time dynamics of the transient velocity at the sample critical force, and the velocity scaling function
describing the joint dependence of the steady-state velocity on the external drive and temperature.
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I. INTRODUCTION

The understanding of the static and dynamic properties
of elastic interfaces in disordered media has direct impact
on different fields in condensed matter physics. Among a
large variety of systems one can mention magnetic [1–4] or
ferroelectric [5,6] domain walls, contact lines [7], fractures
[8,9], vortex lattices [10–12], charge density waves [13], and
Wigner crystals [14], as paradigmatic examples. Since the
effect of the disordered media in all these systems is nontrivial,
an important question is how these elastic objects respond to
an external drive.

When the temperature is zero, there exists a critical force
value Fc such that the steady-state velocity of the center of
mass of the interface is zero below Fc and is finite above it.
This is due to the complex interplay between disorder and
the external force: the interface accommodates within the
disorder energy landscape and a finite energy barrier must
be overcome by the external force in order to generate a net
movement. Therefore a finite force value has to be set to have
an infinitesimally small finite velocity. This is the so-called
depinning transition. If the critical force value is approached
from above, the velocity vanishes as V ∼ (F − Fc)β for
a thermodynamic system, with β the depinning exponent.
Concomitant with the power-law decrease of the velocity is the
divergence of a characteristic length as ξ ∼ (F − Fc)−ν , with
ν the correlation length exponent. This depinning correlation
length gives the typical size of the correlated displacement (or
avalanche) that makes the interface advance in the direction
of the external force. The finite force threshold, the critical
decrease of the velocity order parameter, and the divergence
of the typical length scale led to a proposed description of
the depinning transition using tools from standard critical
phenomena [15]. More recently, however, the analysis of the
low-temperature averaged steady-state geometry has shown
that no divergent steady-state correlation length scale exists
approaching the critical force from below, thus breaking the
naive analogy with standard phase transitions, where two
divergent length scales are expected above and below the
critical point [16,17].

When the temperature is finite there is no sharp transition
between zero- and finite-velocity regimes. Even at forces much

smaller than the critical value the interface is able to move
since thermal activation is enough to overcome the effective
energy barriers generated by the disorder. This regime, F �
Fc, is the creep regime, and it is characterized by a stretched
exponential dependence of the velocity on the inverse of the
external force [18–23]. On the other hand, at forces around the
critical value, F ≈ Fc, a finite temperature value smears out
the transition, which is no longer abrupt. This thermal rounding
of the depinning transition can be characterized, exactly at the
critical force F = Fc, by a power-law vanishing of the velocity
with the temperature as V ∼ T ψ , with ψ the thermal rounding
exponent [24–30].

The values of the different exponents characterizing the
depinning transition are universal in the sense that their
values depend on few parameters of the system such as
the range of the intrinsic elasticity, the dimensionality
of the problem, and the correlated structure of the disorder. For
the experimentally relevant case of (1 + 1)-dimensional elastic
interfaces moving in a random-bond disorder environment
with short-range correlations and short-range elasticity, we
have recently reported the value ψ = 0.15 ± 0.01 using
Langevin dynamics numerical simulations [30]. This value
compares well with the value ψ = 0.16 reported in Ref. [25]
based in numerical simulations. However, these values are
smaller than the value ψ = 0.24 obtained using an artificial
extremal activated dynamics [28], which might indeed be
in a different universality class. The value ψ = 0.2 was
obtained using numerical simulations of domain wall motion
with the random-field Ising model [26,27]. Although it is
expected that for T > 0 and around the depinning transition
the characteristic exponents do not depend on the random-bond
or random-field character of the disorder, this slightly larger
value might be possibly ascribed to the anharmonic corrections
to the elasticity present in the random-field Ising model. On
the other hand, functional renormalization group equations
at the depinning [23] allow one in principle to extract the
thermal rounding exponents. However, in practice there are,
up to now, no analytical estimates of ψ , unlike the other
critical exponents which have been computed using the
functional renormalization group up to two loops [31]. The
very existence of a thermal rounding, obeying a power-law
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scaling, is not rigorously proven, and there are indeed some
models of depinning which exhibit at finite temperature a
totally different type of thermal rounding [32]. It is thus
crucial, given the uncertainty about the very type of thermal
rounding and certainly about the value of the thermal rounding
exponent, to develop new methods to determine ψ , and to
check the robustness, consistency, and expected universality
of the phenomenological scaling arguments.

Experimentally, access to the full force range relevant
to the depinning transition has been reported in ultrathin
ferromagnetic layers [4,33,34]. In this case, the thermal
rounding of the depinning transition is generated through an
effective temperature dependence controlled by the relative
disorder intensity among different samples. Indeed, it has been
shown that thermal effects on the velocity-force characteristics
can be well described using the value ψ = 0.15 ± 0.10 [33].

The aim of the present work is to give further numerical
support to the reported value ψ = 0.15, by checking the
robustness and consistency of the scaling arguments applied
to different observables. To this end, we show how this value
allows us to describe different measures characterizing the
critical behavior of the depinning transition: an analysis of
the finite-temperature structure factor, a short-time dynamics
analysis, and the analysis of the scaling function describing
the velocity dependence on force and temperature around
depinning for different disorder intensities.

II. MODEL SYSTEM AND NUMERICAL SIMULATIONS

In order to model the dynamics of one-dimensional inter-
faces in disordered media we use a short-range elastic string,
as described in the following. The string is defined by a
single-valued function u(z,t), giving its transverse position
u on the z axis. The time evolution of the string is given by the
overdamped equation of motion

γ ∂tu(z,t) = c ∂2
z u(z,t) + Fp(u,z) + F + η(z,t), (1)

where γ is the friction coefficient and c the elastic constant.
The pinning force comes from the derivative of the random-
bond pinning potential U (u,z), i.e., Fp(u,z) = −∂uU (u,z),
whose sample to sample fluctuations are given by

[U (u,z) − U (u′,z′)]2 = δ(z − z′) R2(u − u′), (2)

where R(u) stands for a correlator of range rf [22], and
the overbar indicates the average over disorder realizations.
Thermal fluctuations are included through the thermal noise
term η(z,t), which satisfies

〈η(z,t)〉 = 0,
(3)

〈η(z,t)η(z′,t ′)〉 = 2γ T δ(t − t ′)δ(u − u′),

where T is the temperature (with Boltzmann constant set
to unity, kB = 1) and the angular brackets denote a thermal
average. Finally, the force F in Eq. (1) corresponds to a
uniform and constant external field which drives the string
in the u direction.

The evolution Eq. (1) is numerically solved. The z direction
is discretized in L segments of size δz = 1, i.e., z → j =
0, . . . ,L − 1, while keeping uj (t) as a continuous variable.
This sets the longitudinal finite system size L. The equation is

integrated using the Euler method with a time step δt = 0.01.
The pinning potential is modeled by performing a cubic spline
passing through M regularly spaced uncorrelated Gaussian
numbers points [35,36], which sets the transverse finite
system size M . Numerical simulations are performed using
periodic boundary conditions in both directions and using
the parameters γ = 1, c = 1, and rf = 1. The strength of the
disorder is given by R0 = R(0). For each disorder realization,
i.e., for each finite-size sample, the critical force Fc can be
accurately obtained using an exact algorithm, which also
gives the critical pinned configuration of the string uc(z) [35].
The results presented in the following sections were obtained
by typically averaging over 100 disorder configurations, the
error bars being typically of the order of the size of the data
points.

III. VELOCITY-FORCE CHARACTERISTICS:
SCALED VARIABLES

In this section we will present the general features of the
velocity-force characteristics, allowing us to define the critical
region and the scaled variables that will be used throughout
the rest of this work. Figure 1(a) shows typical velocity-force
curves at finite temperature, as obtained with the present model
for L = 1024 and M = 5792 ≈ Lζdep , with ζdep = 1.25 [37,38]
the depinning roughness exponent (see below). Given a fixed
force F , the velocity is computed in the steady state, which
is typically reached within one sweep over the transverse size
M (as detailed below, the transverse size M will be varied
following a scaling relation with the string length L). Then,
of the order of five sweeps over M are used to compute the
velocity

V = 〈∂tu(z,t)〉. (4)

The thermal average is taken by computing 200 values of the
velocity with independent thermal noise realizations within
this steady-state regime. Different curves correspond to the
same single disorder realization with intensity R0 = 2 and
increasing temperature. The characteristic critical force is
indicated in the key. The lowest curve, corresponding to T = 0,
clearly presents the typical abrupt depinning transition: the
velocity is strictly zero for F < Fc, while it increases as
(F − Fc)β for F > Fc, where β < 1 is the velocity exponent.
As observed, by increasing the temperature the T = 0 sharp
transition is smeared out. Although at very small temperatures
the curves still present the curvature corresponding to (F −
Fc)β , at higher temperatures there are no clear signatures of the
underlying T = 0 depinning transition. Finally, at very high
temperatures, when the thermal energy is larger than the typical
pinning energy, the velocity tends to increase linearly with the
force, V = mF , with the mobility m = 1/γ , corresponding to
the dashed line in Fig. 1(a).

In Fig. 1(b) the disorder intensity effects on the velocity-
force characteristic can be observed. The critical forces for
the corresponding disorder realizations for each intensity are
quoted. Since around the depinning transition the velocity
strongly depends on the sample critical force value, throughout
the present work we will use scaled variables for velocity and
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FIG. 1. (Color online) (a) Velocity-force characteristics for a
single disorder realization of intensity R0 = 2 and different tem-
peratures. (b) Velocity-force characteristics for temperature T = 0.3
and different disorder intensities as indicated. The inset shows the
scaled data according to v = V/(mFc) and f = (F − Fc)/Fc, where
Fc is the sample-dependent critical force. Furthermore, this rescaling
strongly reduces sample-to-sample fluctuations.

force. The scaled velocity is given by

v =
( 〈∂tu(z,t)〉

mFc

)
=

(
V

mFc

)
, (5)

which defines a systematics to average over disorder realiza-
tions. In addition, we use as the control parameter the scaled
force

f = F − Fc

Fc

, (6)

which measures the scaled distance to the critical force for
each disorder realization. These definitions of scaled variables
are different than the scaled variables used in standard critical
phenomena. In our case, we are using the critical force of each
disorder realization in order to measure how close the system
is to the critical point, instead of using the disorder averaged
value Fc. In addition, we also incorporate into the definition
of the order parameter v a nontrivial disorder average when
using the disorder-realization-dependent value Fc.

Although a temperature-dependent critical force can be
considered for studying thermal properties at depinning [10],
we are using here the zero-temperature value. From a practical
point of view the temperature-dependent critical force can be
defined as the inflection point of the velocity-force curves.
In fact, in the temperature range we are studying here
this temperature-dependent critical force does not deviate
much from the zero-temperature value. Instead of using
a temperature-dependent critical force, we adhere here to
the idea that the important quantity given by the disorder
potential is the zero-temperature critical force and that the
small-temperature data can be interpreted using this quantity.
In addition, the zero-temperature critical force strictly depends
only on the disorder configuration and therefore permits the
computation of the average velocity using Eq. (5) with disorder
and temperature averages independently realized.

The scaled variables, Eqs. (5) and (6), are natural for an
overdamped particle driven in a periodic potential U (x) =
R0 cos(x/λ), γ dx/dt = −dU (x)/dx + F , where one can
readily obtain that Fc = R0/λ and γV/Fc ≈ √

(F − Fc)/Fc

close to Fc. They also arise in functional renormalization
group calculations for the center of mass velocity of an elastic
manifold, γ̃ V /Fc ∼ [(F − Fc)/Fc]β , but with γ̃ an effective
friction coefficient [23]. On the other hand, from a practical
point of view, it was shown that the scaled variables defined
in Eqs. (5) and (6), applied to each particular sample, serve
to diminish sample-to-sample fluctuations when the depinning
transition of a string is studied [30,37].

The inset of Fig. 1(b) shows the same data as in the main
panel but in scaled form for a single realization. The difference
between these curves close to the threshold is due to the fact
that the full function V (F,T ) depends on the disorder intensity
not only through the value of the critical force; one also needs
to consider both the extra disorder-dependent temperature
scale and the friction coefficient. This interesting issue will not
be crucial for our present study however (see the discussion in
Sec. VII below).

IV. TEMPERATURE DEPENDENCE OF THE VELOCITY
AT THE CRITICAL FORCE

Here we show the finite-temperature response of the elastic
string exactly at the critical force and discuss some finite-size-
scaling effects, in particular the crossover to single-particle
dynamics. Figure 2 presents velocity-temperature curves for
different system sizes. All the curves were computed at exactly
the sample critical force, using the scaled force variable
f = 0, and then averaged over disorder realizations. The
disorder intensity is R0 = 0.5 and the results are qualitatively
similar to those reported for R0 = 1 in Ref. [30]. At very
high temperatures, T 
 R0, the system enters the fast-flow
regime and the velocity practically equals the force; therefore
the reduced velocity (which incorporates the critical force)
tends to unity. At intermediate temperatures, the velocity is
reduced and the curves tend to display the critical behavior
v ∼ T ψ . This power-law behavior is, however, interrupted by
finite-size effects at smaller temperatures, when the dynamic
characteristic length ξ equals the system size L.

At very small temperatures a crossover to single-particle
dynamics [37,39] is observed, as shown by the L = 32 curve.
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FIG. 2. (Color online) Velocity-temperature curves for different
system sizes L, as indicated, while keeping M = 4 Lζdep , with
ζdep = 1.25 [37,38] the depinning roughness exponent. The disorder
intensity is R0 = 0.5. All the data were computed at exactly the
sample critical force and then averaged over disorder realizations.
The dashed line corresponds to the expected power-law behavior.
The dotted line describes the crossover to the one-particle regime as
discussed in the text.

A simple ad hoc model to rationalize this crossover has
been given by Duemmer and Krauth [37] while numerically
studying the zero-temperature depinning transition. Within
this model, one can write the velocity in the regime of very
small temperature as

v = M

τ0 + τ1(T )
, (7)

where τ1(T ) is the temperature-dependent time the interface
spends near the critical configuration and τ0 is the rest of the
time needed to cover the transverse spatial period M of the
computational box. In this simple model, τ0 is approximated
to be temperature independent at very low temperatures. Using
the temperature dependence of the escape rate for a particle
in a random potential [40], one can propose that τ1 = aT −1/3.
In Fig. 2 we show with a dotted line that the very-small-
temperature regime for L = 32 is well fitted with Eq. (7). For
L = 32 and M = 304 ≈ 4Lζdep , we fitted the T < 10−3 regime
using Eq. (7), and we found the fitting parameters τ0 = 779.5
and a = 3.42. This is a simplified model allowing to rationalize
the crossover to one-particle dynamics and should be further
tested.

The finite-size effects displayed by the velocity-
temperature curves in Fig. 2 are not easily accounted for
by standard finite-size-scaling arguments. In fact, assuming
finite-size scaling as in standard critical phenomena, the
velocity should be described by universal functions as in

v = L−β/νg(Lβ/νψ T ), (8)

with g(x) ∼ 1 for x � 1 and g(x) ∼ xψ for x 
 1. As
mentioned in Ref. [30], strong corrections-to-scaling effects
are present in these results. In order to show that, Fig. 3 presents
an attempt to use the standard finite-size-scaling correction
scaling, Eq. (8), with the bare data in Fig. 2. One can observe
strong finite-size corrections and this can also be observed with
other values of R0. In addition, the collapse of the data does
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FIG. 3. (Color online) Finite-size scaling of the velocity-
temperature curves for different L values according to Eq. (8). The
disorder strength is R0 = 0.5 and the transverse size has been kept
at M = 4Lζdep . We show points for T � 0.02 and L � 64, since for
L = 32 the single-particle regime is present at small temperatures.
The dashed line corresponds to the power-law behavior with ψ =
0.15. We also used the values β = 0.33 [37] and ν = 1.33 [41].

not improve significantly when other values of the scaling
exponents are used. Despite these strong finite-size effects
exhibited by the velocity at critical force, the power-law regime
characterized by the thermal rounding exponent ψ = 0.15
does not suffer from strong finite-size effects, as shown in
the following sections.

V. STRUCTURE FACTOR ANALYSIS

In this section we turn to the complementary geometrical
analysis of the structure factor, which contains information
on the geometry of the string at different length scales. The
results presented in this section complement those reported in
Refs. [30,42] by including different disorder strengths.

From the numerical simulations, the steady-state structure
factor is defined as

Sq = 1

L

〈∣∣∣∣∣
L−1∑
j=0

uj eiqj

∣∣∣∣∣
2〉

, (9)

where q = 2πn/L, with n = 1, . . . ,L − 1. One can show
using dimensional analysis that, when the width w of a
self-affine interface of size L is described through a roughness
exponent ζ , i.e., w ∼ Lζ , then the structure factor behaves as
Sq ∼ q−(1+2ζ ) in 1 + 1 dimensions.

At small length scales, q 
 1/ξ , the structure factor
shows the typical roughness regime associated with depinning,
i.e., Sq ∼ q−(1+2ζdep), while at large length scales, q � 1/ξ ,
fluctuations are dictated by effective thermal fluctuations
induced by the disorder, i.e., Sq ∼ q−(1+2ζth). The thermal and
depinning roughness exponents are, respectively, ζth = 1/2
and ζdep = 1.25 [37,38]. In the critical region the depinning
correlation length is given by the velocity as ξ ∼ v−ν/β . Thus,
the depinning correlation length depends on the temperature
only through the velocity and in the thermal rounding regime
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FIG. 4. (Color online) Structure factor and its scaling function
for R0 = 0.5. The curves in (a) correspond to the critical force and
different temperatures. The size of the sample is given by L = 1024
and M = 4Lζdep . (b) Scaled curves showing the crossover between
the depinning regime at small length scales (x = qT −ψν/β 
 1)
and the thermal regime at large length scales (x = qT −ψν/β � 1).
Together with ψ = 0.15, the values β = 0.33 [37], ν = 1.33 [41], and
ζdep = 1.25 [37,38] were also used.

ξ ∼ T −ψν/β [30]. With this information one can write for the
structure factor that

Sq = T −ψν(1+2ζdep)/βs(qT −ψν/β), (10)

where the scaling function s(x) ∼ x−(1+2ζth) for x � 1 and
s(x) ∼ x−(1+2ζdep) for x 
 1. In Ref. [30] we showed that the
structure factor scales with the previous form using L = 1024
and M = Lζdep for the disorder intensity R0 = 1. Here, we
show in Fig. 4(a) the temperature dependence of the structure
factor corresponding to R0 = 0.5, L = 1024, and M = 4Lζdep .
For these parameters the presented data do not show transverse
finite-size effects [42]. Figure 4(b) shows the scaling of the
structure factor according to Eq. (10) and using ψ = 0.15,
which shows a very satisfactory data collapse.

In order to reach the steady state for the same temperatures
as in Fig. 4(a) but larger disorder intensities, it is necessary to
equilibrate the system for longer times. Since this equilibration
time scales with the transverse system size, we can reduce
the simulation time by using M = Lζdep for R0 = 5. The
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FIG. 5. (Color online) Structure factor and its scaling function
for R0 = 5. The curves in (a) correspond to the critical force and
different temperatures. The size of the sample is given by L = 1024
and M = Lζdep . (b) Scaled curves showing the crossover between
the depinning regime at small length scales (x = qT −ψν/β 
 1) and
the thermal regime at large length scales (x = qT −ψν/β � 1). The
very large length scale random-periodic fast-flow regime has been
discarded (see the text). Together with ψ = 0.15, the values β = 0.33
[37], ν = 1.33 [41], and ζdep = 1.25 [37,38] were also used.

resulting data, shown in Fig. 5(a), present the small-length-
scale depinning regime and the large-scale effective thermal
regime described above, but also clearly show a regime of
larger length scale where finite-transverse-size effects are
present. In this regime the roughness exponent is the one
corresponding to a random-periodic system in the fast-flow
regime, ζper = 3/2 [42]. Hence, we can detect and discard the
data corresponding to this random-periodic regime in order
to get a curve that can be scaled again using Eq. (10) and
the known random-manifold exponents, as shown in Fig. 5(b),
getting again a very satisfactory collapse.

Therefore, we have presented here data on the structure
factor for different disorder intensities which show that the
quoted thermal rounding exponent is disorder independent.
Furthermore, we have shown how the thermal rounding
exponent gives the temperature dependence of the depinning
correlation length, ξ ∼ T −ψν/β , from a steady-state geometry
analysis.
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VI. SHORT-TIME DYNAMICS ANALYSIS

One possible way to get rid of finite-size effects is to analyze
the short-time dynamics. Starting from a given nonsteady ini-
tial condition at fixed force F and temperature T , the velocity
begins to evolve with time until it reaches the steady-state
value corresponding to the values of F and T . This transient
dynamics is controlled, at short times, by a single growing
correlation length ξ (t), which at longer times saturates to the
steady-state correlation length above threshold, ξ ∼ v−ν/β .
Since the transient correlation length grows as ξ (t) ∼ t1/z,
with z ≈ 3/2 [41] the depinning dynamical exponent, scaling
arguments show that the velocity decreases with time as v(t) ∼
ξ (t)−β/ν ∼ t−β/zν [41] before saturating to the steady-state
value above threshold, given by v(t → ∞) ∼ f β at T = 0 or
by v(t → ∞) ∼ T ψ at f = 0.

Figure 6(a) shows the time evolution of the velocity exactly
at the critical force and for different temperature values
as indicated. The dashed line corresponds to the expected
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FIG. 6. (Color online) (a) Short-time evolution of the velocity at
the critical force and for different temperatures, from T = 0.0001
(lower curve) to T = 0.01 (upper curve), as indicated in the key.
Data correspond to R0 = 1, L = 1024, and M = Lζdep . (b) Short-time
scaling of the velocity for t > 20. The behavior x−β/zν for x =
tT ψzν/β � 1 is indicated with a dashed line. Together with ψ = 0.15,
the values β = 0.33 [37], ν = 1.33 [41], and z = 3/2 [41] were also
used.

short-time critical behavior v(t) ∼ t−β/zν . Discarding the very-
short-time regime, t � 20, which contains information about
the microscopic nonuniversal dynamics [41], the curves in
Fig. 6(a) can be recast into a universal form using the scaling
function

v(t) = T ψh(tT ψzν/β), (11)

with h(x) ∼ x−β/zν for x � 1 and h(x) ∼ 1 for x 
 1. The
data collapse shown in Fig. 6(b) uses the previously known
depinning exponents β = 0.33 [37], ν = 1.33 [41], z = 3/2
[41], together with the thermal rounding exponent ψ = 0.15.
Since the data collapse is good with no need of adjustable
parameters we can conclude that the value of the thermal
rounding exponent obtained in Ref. [30] is consistent and does
not suffer from strong finite-size effects.

VII. VELOCITY SCALING FUNCTION
AROUND DEPINNING

In this section we turn to the analysis of the universal
behavior of the force- and temperature-dependent velocity
function v(f,T ). Focusing on testing the robustness of the
thermal rounding exponent ψ , the parameter values around
the critical point given by f = 0 and T = 0 are tested. If there
were not strong finite-size effects, in the vicinity of the critical
region the velocity should scale as

vT −ψ ∼ H (f T −ψ/β), (12)

with H (x) ∼ xβ for x 
 1. Figure 7(a) shows velocity-
force curves for different temperatures and for R0 = 1. The
numerical data are split into two sets: on the one hand data
points correspond to given parameters which are “inside” the
thermal rounding region, and on the other hand continuous
lines represent data “outside” the thermal rounding region.
The data are outside the critical region either because the
temperature is too high, T > 0.02 in the present case, or
because the force is far away from the critical value, |f | 
 1
(f 
 1 and f � −1 corresponding to the fast-flow and creep
regimes, respectively). In addition, to avoid finite-size effects,
data points are also considered outside the critical thermal
rounding region if they correspond to velocities smaller than
the crossover at v ∼ vmin to single-particle behavior for each
size L. Since in the critical region ξ ∼ v(f,T )−ν/β , as shown
from the structure factor analysis, we roughly have vmin ∼
L−β/ν . According to such criteria, the selected data are finally
presented in the scaled form Eq. (12) in Fig. 7(b) for f > 0.
The dashed line indicates the expected asymptotic xβ form,
corresponding to the scaling function H around the critical
region. The collapse into a single curve for different T and f

confirms numerically that the data set used is inside the critical
scaling region.

The scaling function H is not yet universal as it also depends
on the disorder intensity. Figure 7 shows the critical region
and the form of H for R0 = 1. In Fig. 8 we show the velocity
scaling function H for different disorder intensities, R0 = 1, 2,
and 5, for the full force range within the thermal rounding
region. In Fig. 9 the same data are presented in a double-
logarithmic scale. As can be observed, all curves display the
asymptotic power-law form H ∼ xβ for f 
 T ψ/β , but with
different prefactors for each disorder intensity.
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FIG. 7. (Color online) (a) Velocity-force characteristics at finite
temperatures for R0 = 1. Data shown with points (lines) are inside
(outside) the thermal rounding region (see the text). (b) Scaling of the
data for f > 0 and in the thermal rounding region using the scaling
form given in Eq. (12). The dashed line indicates the asymptotic
expected form xβ for x = f T −ψ/β 
 1. Here, the value β = 0.33
[37] was used together with ψ = 0.15.
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FIG. 8. (Color online) Scaling of velocity-force curves for differ-
ent temperatures and close to the thermal rounding regime. Different
disorder intensities are shown: R0 = 1 (open blue symbols), 2
(orange/light grey symbols), and 5 (filled black symbols). Symbols
represent different temperatures as in Fig. 7(a). Here, the value
β = 0.33 [37] was used together with ψ = 0.15.
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FIG. 9. (Color online) Same data as in Fig. 8 but in double-
logarithmic representation. The upper and lower curves correspond
to f > 0 and f < 0, respectively. We also show fitting curves
using a1 + a2x

β and b1 exp[−b2|x|β/ψ ], as suggested by the scaling
functions Eqs. (15) and (16).

At this point, in order to properly include the disorder
intensity on the scaling velocity function and obtain the
universal function, a disorder-dependent temperature scale Tc

is needed. Again, for the simple example of the depinning
of a particle in a periodic potential U (x) = R0 cos(x/λ),
γ dx/dt = −dU (x)/dx + F + η(t), with η(t) a Langevin
noise at temperature T , it is easy to see, from pure dimen-
sional analysis, that Tc ∼ R0, and therefore γV/Fc = h[(F −
Fc)/Fc,T /R0], where Fc = R0/λ. Such a naive approach does
not work for the elastic string, as the characteristic energy
scale is not simply R0 as for the particle, but arises from
the interplay of disorder and elasticity. Although it is not
obvious that it should work at depinning, one is tempted to use
the scaled temperature τ = T/Tc, where Tc = Uc/kB gives
the characteristic energy scale in the creep regime at small
forces [18,19]. This energy scale is, however, not universal
and depends on microscopic details of the disorder [18,19,43].
The assessment of the full dependence of Uc on microscopic
parameters is thus not straightforward, and from a pragmatic
point of view one could directly fit it from the creep law. As
shown with numerical simulations within the creep regime, at
larger temperatures than the one used here, Uc can be fitted
from the creep law, but its dependence on R0 is not trivial [36].
We do not have access to Tc with the present numerical results,
which focused in the force region around the critical depinning
threshold.

Therefore, we cannot incorporate at this stage the influence
of the disorder intensity in the velocity function. In spite of this,
the data displayed in Fig. 8 clearly show that the velocity can be
represented in a scaled form, with identical critical exponents,
for different disorder intensities. More importantly, these data
support the disorder-independent value ψ = 0.15 tested here.

Finally, it is worth relating our results with the universal
scaling function proposed by Nattermann, Pokrovsky, and
Vinokur [43] using a phenomenological interpolating form
for the full force and temperature dependence of the velocity
of a domain wall in a random medium. This form includes
the thermal rounding regime around Fc and the F � Fc

creep regime, thus depending also on the universal creep
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exponent μ = 1/4 (for a one-dimensional elastic interface).
The proposed functional form in Ref. [43] is different
below and above the critical force and can be written
as

V = mF
exp

[ − Tc

T

(
1 − F

Fc

)β/ψ(
Fc

F

)μ]
1 + [

Tc

T

(
Fc

F

)μ]ψ
(13)

for F < Fc and

V = mF

1 + [
Tc

T

(
Fc

F

)μ]ψ
+ mF

(
1 − Fc

F

)β

(14)

for F > Fc. It can be shown that close to the depinning region,
i.e., above the creep regime, where f = (F − Fc)/Fc � 1 and
τ = T/Tc � 1, this phenomenological form can be reduced to
the scaling form Eq. (12), with H (x) = H−(x) for f < 0 and
H (x) = H+(x) for f > 0. The corresponding limit functions
are

H−(f τ−ψ/β) = e−(−f τ−ψ/β )β/ψ

, (15)

H+(f τ−ψ/β) = 1 + (f τ−ψ/β)β. (16)

Since we do not have the temperature scale Tc from
the creep law, we have directly fitted the data for the
velocity scaling function to the universal forms suggested
by Eqs. (15) and (16). The f > 0 and f < 0 ranges have
been fitted separately using a1 + a2x

β and b1 exp[−b2|x|β/ψ ],
respectively, obtaining four fitting parameters for each disorder
intensity. The results are shown in Fig. 9. In all cases the fit
is better in the f < 0 region. Furthermore, one can observe
that the obtained curves interpolate badly around f = 0. In
fact, enforcing a1 = b1 makes the fitting considerably worse.
We therefore conclude that the data cannot be satisfactorily
fitted using this phenomenological form, particularly above
threshold, hence evidently pointing to the need of a more
accurate description of the thermal rounding of the depinning
transition.

The phenomenological functional forms Eqs. (13) and (14)
give a potentially important tool which allows one to directly
fit experimental data. This was used in Ref. [33], where
the velocity-force characteristic below threshold for ultrathin
ferromagnetic layers was fitted using Eq. (13). By fitting
just one experimental curve below threshold, the value ψ =
0.15 ± 0.10 was obtained for the thermal rounding exponent.
Since several fitting parameters were used and due to the large
error bar, this value can be compared with our numerical value

only with extreme caution. In any case, the experimental value
is consistent with our numerical simulations.

VIII. SUMMARY

We have presented extensive numerical simulations to test
the validity of the thermal rounding exponent of the depinning
transition. We analyzed the direct scaling of the steady-state
velocity-force characteristics, the steady-state structure factor,
and the short-time transient dynamics. The existence of a crit-
ical (power-law) thermal rounding of the depinning transition
is consistent with all our results, together with the existence
of a unique divergent length scale, dependent on temperature
and/or distance to the critical pinning force, but ultimately
controlled by the velocity as in the zero-temperature depinning
transition. The results are all consistent with a value of the
thermal rounding exponent of ψ = 0.15, in agreement with
our previously reported value [30]. This exponent describes the
power-law vanishing of the velocity with temperature exactly
at the critical depinning force, V ∼ T ψ , for the universality
class of one-dimensional elastic interfaces with short-range
elasticity and short-range correlations in the disorder.

Although the value of the thermal rounding exponent has
been obtained previously with larger system sizes, where
finite-size corrections are still observable, we have shown here
that this value is also consistent with short-time dynamics
results which do not suffer from severe finite-size effects.
In addition, ψ = 0.15 also describes the scaling properties
of the structure factor for various disorder strength values,
connecting this value with a geometrical roughness crossover
in the interface. Finally, we have shown that it is consistent with
a scaling function describing the velocity-force characteristics
as a function of temperature and force. Experimental confir-
mation of our results, directly targeting the thermal rounding
regime and allowing a test of the value of the thermal rounding
exponent, would be welcome.
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Western Australia, 2009.
[34] P. J. Metaxas, R. L. Stamps, J.-P. Jamet, J. Ferré, V. Baltz,
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