
c© The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syr119

Simultaneously Mapping and Superimposing Landmark Configurations with
Parsimony as Optimality Criterion

S. A. CATALANO1,2,∗ AND P. A. GOLOBOFF1,3

1Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Argentina; 2Fundación Miguel Lillo, Miguel Lillo 251, 4000 S.M. de Tucumán, Argentina;
and 3Facultad de Ciencias Naturales e Instituto Miguel Lillo, Miguel Lillo 205, 4000 S.M. de Tucumán, Argentina;

∗Correspondence to be sent to: Fundación Miguel Lillo, Miguel Lillo 251, 4000 S.M. de Tucumán, Argentina; E-mail: sacatalano@gmail.com.

Received 25 May 2011; reviews returned 1 August 2011; accepted 29 August 2011
Associate Editor: Norman MacLeod

Abstract.—All methods proposed to date for mapping landmark configurations on a phylogenetic tree start from an align-
ment generated by methods that make no use of phylogenetic information, usually by superimposing all configurations
against a consensus configuration. In order to properly interpret differences between landmark configurations along the
tree as changes in shape, the metric chosen to define the ancestral assignments should also form the basis to superimpose
the configurations. Thus, we present here a method that merges both steps, map and align, into a single procedure that
(for the given tree) produces a multiple alignment and ancestral assignments such that the sum of the Euclidean distances
between the corresponding landmarks along tree nodes is minimized. This approach is an extension of the method pro-
posed by Catalano et al. (2010. Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework.
Cladistics. 26:539–549) for mapping landmark data with parsimony as optimality criterion. In the context of phylogenetics,
this method allows maximizing the degree to which similarity in landmark positions can be accounted for by common
ancestry. In the context of morphometrics, this approach guarantees (heuristics aside) that all the transformations inferred
on the tree represent changes in shape. The performance of the method was evaluated on different data sets, indicating that
the method produces marked improvements in tree score (up to 5% compared with generalized superimpositions, up to
11% compared with ordinary superimpositions). These empirical results stress the importance of incorporating the phy-
logenetic information into the alignment step. [Landmark configuration; mapping; optimization; parsimony; phylogeny;
superimposition.]

The use of landmark data in phylogenetics has been
surrounded by a long-lasting controversy, centered
on different topics: the definition of character; the
proper way to handle continuous varying characters;
the dependence issue; the appropriateness of different
phylogenetic methods to analyze these data, etc. (e.g.,
Smith 1990; Bookstein 1994; Zelditch et al. 1995, 1998;
Naylor 1996; Adams and Rosenberg 1998; Rohlf 1998,
2002; Monteiro 2000; Bookstein 2002; MacLeod 2002;
Stone 2003). In recent years, the debate has been re-
newed with the publication of new approaches for the
phylogenetic treatment of landmark data (González-
José et al. 2008, 2011; Catalano et al. 2010; Jones and Mo-
riarty 2010; Klingenberg and Gidaszewski 2010; Adams
et al. 2011). Catalano et al.(2010, p. 544) briefly discussed
how to superimpose (match, align) landmark configu-
rations when these are to be analyzed in a phylogenetic
framework—an aspect that had not been part of the de-
bate before. This issue is essential, given that different
multiple alignments may potentially produce different
ancestral landmark configurations and, concomitantly,
different inferences of shape change along the tree.

The criterion most commonly used for the superim-
position of 2 landmark configurations is minimizing the
sum of squared distances between corresponding land-
marks (Rohlf 1990; Rohlf and Slice 1990) mainly because
it allows subsequent sophisticated statistical analyses
(Slice 2005). However, alternative criteria have been pro-
posed: Siegel and Benson (1982) and Benson et al. (1982)
developed the method of resistant-fit theta–rho analysis
(RFTRA) based on repeated medians, which is less sen-
sitive to outliers; Slice (1996) described an extension of

RFTRA to superimpose 3-dimensional (3D) landmark
configurations; Dryden and Walker (1999) proposed a
matching procedure based on least median of squares
estimators; more recently, Larsen (2008) proposed an
approximate method to superimpose landmark con-
figurations minimizing the sum of Euclidean distances
between landmarks. Although any of these criteria can
be applied directly to the superimposition of 2 config-
urations, this is not so when the comparison involves
several configurations. That is, except for trivial cases,
it is not possible to sort out the differences that are not
due to changes in shape for all possible pairs of config-
urations simultaneously. For instance, if configurations
A and B are superimposed against configuration C by
minimizing the sum of squared distances between cor-
responding landmarks, the resulting superimposition
between configurations A and B may not be optimal
for that criterion. Additional considerations (which may
depend on the kind of analysis) are needed to produce
reasonable multiple superimpositions. The generalized
Procrustes analysis (Gower 1975; modified by Rohlf and
Slice 1990) produces a multiple alignment of configura-
tions by minimizing the sum of the squared distances
between corresponding landmarks of each configura-
tion and a consensus configuration. The solution given
by a generalized superimposition procedure may be
reasonable if the goal is to extract shape variables to
be used subsequently in statistical analyses. However,
alternative approximations seem more appealing in a
phylogenetic context.

We have recently proposed a method (Catalano et al.
2010) that establishes ancestral landmark configurations
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by minimizing the differences in landmark position
along the nodes of the tree. The tree score (S) for all
landmarks of a configuration is calculated (for land-
marks in 2D) as

S =
L−1∑

i=0

N−1∑

j=0

2
√

(xi,j − xi,an(j))2 + (yi,j − yi,an(j))2,

where

x = coordinate of the landmark along X-axis
y = coordinate of the landmark along Y-axis
N = number of nodes (internal and terminal) in the
tree excluding the root
L = number of landmarks in the configuration
an( j) = ancestor of node j

Hence, the difference in position for each landmark
on each branch is calculated as the Euclidean distance
between the position of the landmark in the ancestor
and the position of the landmark in the descendant. The
total score for each landmark is obtained by summing
up those distances over all nodes. Finally, the score for
the whole configuration on the tree is obtained by sum-
ming the scores over all landmarks. The choice of the
Euclidean metric to calculate the score of each land-
mark is not arbitrary: it was chosen because this allows
extending the parsimony criterion to the analysis of
continuous characters that change in more than one di-
mension (Catalano et al. 2010). Given that the tree score
for a given configuration is calculated by summing up
the contribution of each landmark, the corresponding
metric for the tree score is a Manhattan-like distance.
This combination of an Euclidean distance to evaluate
the changes between configurations in the position of
each landmark and a Manhattan metric to calculate
the total score by summing up the contribution of each
landmark has the consequence that neither the tree score
nor the inferences of shape change are affected by the
original orientation of the specimens (see Catalano et al.
2010).

Our method (Catalano et al. 2010) to map landmark
data infers the assignments to the internal nodes consid-
ering an a priori superimposition that remains unmod-
ified during the mapping procedure (this is common to
all previously proposed methods to map landmark data
onto a tree). However, the tree score may be improved
(concomitantly maximizing the amount of similarity in
landmark positions that can be explained by common
ancestry) if the superimposition among configurations
is modified during the mapping procedure. This ap-
proach is not novel within systematics: in molecular
sequence analysis this idea has more than 30 years,
grounded on the seminar work by Sankoff and collab-
orators (Sankoff et al. 1973; Sankoff 1975; Sankoff and
Rousseau 1975; Sankoff and Cedergren 1983), and has
been further developed more recently by Wheeler and
collaborators (Wheeler 1996, 2003; Wheeler et al. 2006;
Varón et al. 2010). The problem of finding internal node
assignments with an implied multiple alignment min-
imizing tree alignment score, given a tree, is known as

the tree alignment problem (Sankoff and Cedergren 1983,
Schwikowski and Vingron 1997). In the present study,
we describe a method to obtain a multiple superim-
position of landmark configurations and internal node
assignments using parsimony as optimality criterion.
Throughout this paper, a dynamic alignment denotes
one produced by simultaneously superimposing and
mapping on a tree and a static alignment one produced
by aligning landmark configurations prior to the map-
ping process.

One of the main implications of a dynamic align-
ment approach is that the optimal superimposition de-
pends on the tree (see below). A simple example (Fig. 1)
illustrates how the evaluation of shape change along
the tree is improved by dynamic alignment, with a case
comprising 7 species mapped on 2 different trees that
differ in the position of species B. In one of the trees
(left), B is placed next to A. In the other tree (right), B
is separated from A by several taxa with different parts
of the configuration successively translated. The con-
figurations mapped with a static (top) and a dynamic
approach (bottom) are displayed for each of the trees.
The static approach used for this example is an ordinary
alignment that minimizes the sum of the Euclidean
distances between landmarks and takes configuration
C as reference. However, the point illustrated in this
example also applies to any static alignment strategy.

FIGURE 1. Improvement in shape change inference obtained with
the dynamic approach. The inference of shape change is the same in
static (top) and dynamic (bottom) approaches in the left tree where
A is next to B. However, the approaches give different inferences of
shape change when these species are separated in the tree (right tree).
The dynamic approach recognizes that the similarity between A and B
is due to convergence and hence does not force these configurations to
be perfectly superimposed (as the static approach does) and improves
25% the tree score by repositioning shape B differently from A.
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Both approaches, static and dynamic, produce the same
alignment and conclusions of shape changes for the
left tree but not for the right tree. In the right tree,
the difference arises because the multiple alignment
derived from a static approach will perfectly superim-
pose the configurations of A and B, but the distribution
of shapes on the tree indicates that the similarity be-
tween configurations A and B is due to convergence
and not to common ancestry. The dynamic alignment
thus lowers tree score (25% compared with the static
approach) by repositioning shape B differently from A,
as implied by the sequencing of shapes on the tree. In
contrast, in the left tree A is next to B, thus making it
possible to perfectly account for the shape similarity in
A and B in terms of common ancestry. The dynamic
alignment, taking this into account, positions A and B
identically—which static alignments always do, regard-
less of what the tree and the rest of the observations
may indicate. Also note that, since both trees suggest
a different scenario of how the differences in shape
arise, then it is not possible for a single alignment to
provide the best framework for mapping both trees at
the same time—each tree should ideally be considered
under a different alignment, showing that the idea of us-
ing a single static alignment for phylogenetic studies is
misguided.

Given that the dynamic approach produces more ap-
propriate evaluations of how a tree fits the observations,
it can also be used for tree selection, considering either
landmark data alone or in combination with other data
such as DNA sequences and qualitative morphological
data. Using the method for tree selection only requires
that each tree be evaluated during a search routine
(Wagner tree, subtree pruning regrafting [SPR], tree bi-
section reconnection [TBR], etc.) considering its optimal
alignment.

Just as the dynamic approach can be seen as an
extension of the optimization method of Catalano et al.
(2010), it can at the same time be considered as an ex-
tension of the superimposition methods for the case of
landmark configurations linked by a tree. Within geo-
metric morphometrics, differences in shape are defined
as those differences in landmark configurations that
remain after sorting out rotation, size, and translation
(Kendall 1977). This definition of differences in shape
is completely tied to criteria to superimpose, with al-
ternative criteria producing alternative evaluations of
shape differences. Changes in shape between config-
urations are quantified by a metric that is a function
of the differences in position of individual landmarks
once the configurations are optimally superimposed.
In the analysis of shape change on a tree, in order to
properly interpret differences between landmark con-
figurations along the tree as changes in shape, the met-
ric should also form the basis to choose the ancestral
assignments. In other words, the metric to superimpose
and map must be the same. In our parsimony-based
method (parsimony sensu Farris 1983), this metric is the
sum of the Euclidean distances between corresponding
landmarks.

In the following sections, we describe new algorithms
to produce optimal multiple alignments and ancestral
landmark configurations by minimizing the sum of the
Euclidean distances between corresponding landmarks.
In addition, we evaluate the performance of the method
in several data sets. The methods described have been
implemented in the program TNT (Tree Analysis using
New Technologies; Goloboff et al. 2003, 2008).

THE APPROACH

Throughout this paper, the term “position” when re-
ferring to a configuration indicates not only its location
in a x, y, z coordinate system but also its orientation.
Obtaining an exact solution for the tree alignment prob-
lem for the case of landmark configurations would
require evaluating every combination of positions for
the configurations observed in the terminal nodes and
every possible landmark configuration for each inter-
nal node and choosing that combination which mini-
mizes the tree score. As this task seems computationally
impossible even for the smallest data sets, a heuris-
tic method to find suitable solutions is needed. The
method presented here allows obtaining improvements
in tree score by rotating and translating configurations
but not by resizing. As the score of a multiple align-
ment depends on the size of the configurations, the
score will always decrease if all the configurations are
shrunk. Hence, configurations should be adjusted in
size before the analysis (e.g., scaling to centroid size
or performing an ordinary alignment). There are pos-
sible modifications of the method presented here that
would allow analyzing landmarks configurations de-
spite the differences in size, allowing changes in size to
be considered as an additional source of phylogenetic
evidence. This possible approach will be included in
future contributions.

HEURISTICS

The problem can in principle be decomposed in 2
parts: how to obtain the positions of the configurations
assigned to the terminals and how to obtain the opti-
mal ancestral assignments, both subproblems requir-
ing simultaneous resolution. The spatial optimization
(Catalano et al. 2010; Goloboff and Catalano 2011) al-
lows establishing ancestral landmark configurations
from a multiple superimposition of the terminals. Hence,
the problem can be solved if the score of every possible
multiple alignment is calculated by means of spatial op-
timization and the one that minimizes the score is kept
as the best solution, but the process can be made more
time efficient in several ways.

The approach starts from a preliminary multiple
alignment and an initial assignment of ancestral land-
mark configurations obtained by spatial optimization
(Goloboff and Catalano 2011). A good starting point
can be an ordinary superimposition minimizing the
sum of Euclidean distances between corresponding
landmarks. Given that all the costs are symmetric, it is
irrelevant whether the tree is rooted or not. For the sake
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of simplicity, the method will be presented for an un-
rooted tree. The procedure starts visiting internal nodes
(for the time being, no particular order is required).
At each internal node N, the tree is decomposed into
as many subtrees as nodes are connected to N (3 in
the case of binary trees), with their terminals forming an
equal number of sub-alignments (Fig. 2). Better multiple
alignments can be obtained by modifying the positions
of the configurations for each sub-alignment in tandem,
relative to the rest of the multiple alignment. The score
for the new multiple alignment is calculated by a com-
plete spatial optimization; the alignment is kept if better,
discarded otherwise.

A drawback of the above procedure is the time re-
quired to re-optimize the whole tree each time the mul-
tiple alignment is modified. However, it is possible to
evaluate the quality of a candidate multiple alignment
without making a complete re-optimization. To see why
this is so, consider Figure 2. The tree score (i.e., the sum
of the landmarks displacements) can be decomposed
into 6 terms: the sum of the scores for all the branches
belonging to each of the 3 sub-alignments (S1, S2, S3)
and the score along the branches that connect each sub-
alignment to the central node (B1, B2, B3). The total tree
score L can hence be expressed as L =

∑
Si+

∑
Bi. When

a sub-alignment i is modified relative to the rest, if all
its configurations (terminal and internal) are modified
in the same way (i.e., maintaining the relative posi-
tions of the configurations within the sub-alignment),
its score Si remains unaltered. So do the S’s and the
B’s corresponding to the unmodified sub-alignments.
The only score that changes is Bi for the branch that
subtends the modified sub-alignment. If the modifica-
tion produces a smaller Bi, L will be necessarily smaller,
and a better multiple alignment is obtained. This score
for the new multiple alignment, however, may be an

FIGURE 2. Decomposition of the tree score into 6 components: the
score of each sub-alignment (Si) and the score of each branch connect-
ing the central node and each sub-alignment (Ei).

overestimation of the score that would be established if
a new spatial optimization is conducted, updating the
assignments for the rest of the nodes. This procedure
is repeated for all internal nodes, and after that, a new
spatial optimization is performed considering the new
multiple alignment, obtaining new assignments to the
internal nodes. At this point, the procedure can be ei-
ther restarted, visiting all the internal nodes in a second
round of improvements, or interrupted if no further
improvement was observed.

A rearrangement among the sub-alignments that pro-
duces a smaller Bi necessarily improves the score of
the multiple alignment. However, some rearrangements
worsening Bi may also produce better multiple align-
ment. This is the cost to be paid for saving time in not
fully updating the ancestral assignments when a rear-
rangement is evaluated, and it will decrease the effec-
tiveness of the method to find better global solutions. A
way to reduce the rejection rate of better solutions main-
taining time efficiency is to update the assignments only
in the nearby region of the node that subtends the mod-
ified sub-alignment. Every time a new rearrangement
is evaluated, a new assignment to the central node is
established considering the new position for the neigh-
bor node that subtends the modified sub-alignment and
the remaining (unmodified) neighbor nodes. The new
assignment to the central node is determined by calcu-
lating for each landmark the position that minimizes
the sum of distances with homologous landmarks on
neighbor nodes (see Catalano et al. 2010). The decision
of rejecting or accepting the new rearrangement will be
now based on the new 6Bi and not only on the score of
the branch leading to the modified sub-alignment.

Further Time-Saving Shortcuts

Every time a new rearrangement among the sub-
alignments is evaluated, all the configurations belong-
ing to this subtree must be modified to maintain their
relative positions unaltered. For instance, if the mod-
ification to be evaluated involves a translation of 0.01
units to the right, this requires recalculating the coordi-
nates of all the configurations (those of internal nodes
and terminals) considering this new position. This pro-
cedure can take considerable time, especially in the case
of rotations. An alternative procedure (the one actually
used in the implementation of this method in TNT) is
to modify only the node connected to the central node,
leaving the rest of the nodes unmodified (Fig. 3). This re-
quires visiting tree nodes in an orderly fashion, making
sure that unmodified descendant nodes will be visited
subsequently. The modification of the multiple super-
imposition is hence obtained when the procedure visit
an internal node which has a terminal node as neighbor.

The details of the procedure for choosing the opti-
mal position for the neighbor nodes are included as
Supplementary Material (available from http://www.
sysbio.oxfordjournals.org). Succinctly, the algorithm
modifies in turn the orientation, position in x, y, and z of
each of the neighbor configurations using a binary-like
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2012 CATALANO AND GOLOBOFF—ALIGNING LANDMARK CONFIGURATIONS IN PHYLOGENETICS 5

FIGURE 3. The method works by visiting each internal node,
choosing the assignment for the central node (empty circle) and the
position of the configurations (orientation and location in x-, y-, and
z-axes) in neighbor nodes (gray circles) which minimize the landmark
displacements along the reduced tree defined by these nodes (gray
branches). The multiple alignment is modified when the neighbor
nodes are represented by terminals.

algorithm trying to iteratively minimize the sum of the
Euclidean distance for all landmarks in all branches
connecting the internal node to its neighbors.

Escaping Local Optima

The procedure previously described can be trapped
in a local optimum for several reasons: (i) in our heuris-
tics, each rearrangement evaluated represents a modifi-
cation only in either the orientation of the configuration
or its position on x-, y-, or z-axis. This is more time ef-
ficient, but it is possible that a best solution can only be
achieved if the modification involves a combination of
these changes; (ii) the specific search algorithm used to
improve the score by modifying the x, y, z position and
the orientation at each internal node can be trapped into
a local optimum (see Supplementary Material 1); (iii)
when a node is visited, the neighbor nodes are modified
one at a time to improve the score but achieving a better
alignment may require that several neighbors are simul-
taneously modified; (iv) the optimal multiple alignment
might only be obtained if nodes further apart on the tree
are simultaneously modified. Hence, techniques to over-
come local optima are needed.

Which local optimum the method reaches depends
on the multiple alignment used as a starting point. A
possible solution to overcome local optima is trying dif-
ferent starting points in the hopes that one of them ends
up in a global optimum. This approach has the disad-
vantage that all the computational effort of each run is
thrown away every time a new starting point is evalu-
ated. An alternative solution, the one followed here, is to
take the multiple alignment obtained after a single run,
slightly perturb it, and use it as a new starting point. The
approach we implemented includes a (user-defined)
number of cycles of improvement/perturbation. In the
perturbation phase, the position of some terminal con-
figurations is randomly modified. After that, a spatial
optimization is conducted and a new round of improve-
ment on the multiple alignment is performed. If the
score obtained is better than the best so far, the new
alignment is accepted; otherwise the best alignment is
randomized again. The positions of the configurations

are randomized in such a way that the structure of the
tree is taken into account: the positions of all the con-
figurations belonging to a clade are randomly modified,
not only individual configurations. In each randomiza-
tion cycle, a certain number of clades (one-third of the
total in our implementation) are randomly chosen to
be modified. If an internal node is chosen, the configu-
rations of all the terminals belonging to that node are
modified. Although this approach does not guarantee
reaching a global optimum, in the long run it greatly
increases the chances of doing so.

A summary of the main steps of the whole proce-
dure is

0. Generate a static multiple alignment.
1. Perform a spatial optimization.
2. Travel along all internal tree nodes; for each node:

2.1. Generate a reduced tree formed by the neigh-
bors of the node. Calculate its score.

2.2. Try to improve the score of the reduced tree
by changing in turn the position of the con-
figurations assigned to the neighbor nodes.
If a better score is obtained, update the as-
signment for the middle node and reposi-
tion existing configurations for the neighbor
nodes (for further details, see Supplementary
Material 1).

3. Repeat step 2 until no improvement in the score
on any internal node is obtained or the number of
rounds equals a predefined limit.

4. Perform a new spatial optimization. If no improve-
ment in tree score is obtained or the number of
optimization cycles equals a predefined limit go to
5, else restart at 1.

5. If the number of perturbation cycles equals the
user-defined number, stop the procedure and keep
the multiple alignment; otherwise, perturb the
alignment and restart at 1.

EMPIRICAL ANALYSES

The data sets analyzed comprise configurations
representing different biological structures, different
taxonomic groups, and different sizes in terms of both
number of landmarks and number of terminals
(Table 1). The trees used as guide were derived from pre-
viously published phylogenies and, except for the ho-
minid data set, were obtained from alternative sources
of evidence. Unless indicated, all the analyses were
conducted in TNT (Goloboff et al. 2008).

Behavior of the Algorithms

The results obtained with the procedure just de-
scribed may depend on the starting point. This is caused
by the heuristic aspect of our procedure, and not by the
criterion itself; if the full space of solutions were evalu-
ated, the same (optimal) solution would always be ob-
tained. To evaluate empirically the effect of the starting
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6 SYSTEMATIC BIOLOGY VOL. 61

TABLE 1. Information of the data sets used in comparison between dynamic and static approaches

Source of landmark data Source of guide tree Taxonomic group Structure Number of landmarks Number of terminals

González-José et al. (2008) Goloboff and Catalano (2011) Hominids Cranium 7 17
Astúa (2009) Astúa (2009) Didelphids Scapula 14 32
Rohlf (2002) Harbach and Kitching (1998) Culicids Wing 18 11
Morales M.M., Prevosti F.J.,
Catalano S.A., Giannini N.P.
(unpublished data) Johnson et al. (2006) Felids Cranium 24 47

point on the results, we analyzed the convergence in
scores among runs starting from different multiple
alignments. Two different types of starting points were
considered. In a first analysis, each run started from an
alignment generated by superimposing all the config-
urations against a single one (a so-called ordinary su-
perimposition), considering as many starting points as
configurations included in the data set. The superimpo-
sition criterion was the minimization of the sum of the
Euclidean distances between corresponding landmarks
(i.e., the same criterion used to measure alignment opti-
mality on the tree; a heuristic procedure was developed
to match a pair of configurations using this criterion,
see Supplementary Material 1). In a second analysis,
each run started from a multiple alignment obtained by
randomizing the position of all the configurations in the
data set. Ten different starting points were considered
in this case. The level of modification was such that the
tree scores derived from the randomized alignments
were about 10 times the score derived from an ordinary
superimposition. The convergence was evaluated com-
paring the coefficient of variation of tree scores from the
original alignments (ordinary alignments or random-
ized alignments) with the coefficient of variation of the
scores obtained after 1, 10, 100, and 1000 cycles of im-
provement/perturbation. Before superimposing with
the ordinary or the randomize procedure, and in order
to filter out the differences in size, the data sets were first
superimposed by generalized procrustes analysis (GPA)
using tpsRelw (Rohlf 2008) and no further changes in
size were subsequently performed (see “The Approach”
section).

FIGURE 4. Convergence of tree scores (expressed as the coefficient
of variation) among runs departing from different ordinary superim-
positions along 10 cycles of improvement/perturbation. Type of line
indicates data set: solid, culicids; long-dashed, felids; short-dashed,
hominids; dotted line, didelphids.

The analyses showed that the different runs rapidly
converge to similar scores, regardless of whether the
starting point is from ordinary (Fig. 4) or random (not
shown) alignments. In the former analysis, the coeffi-
cient of variation of tree scores was reduced after the
first cycle between 6 and 23 times—depending on the
data set—and diminished between 25 and 180 times
after 100 cycles of improvement/perturbation. After
100 cycles, the coefficient of variation is lowered to val-
ues between 3.3 × 10−3 and 9.2 × 10−5. These results
strongly suggest that the final result is not significantly
determined by the starting point.

The results also showed that most of the improvement
in tree score was obtained in the first cycle, before en-
tering the phase of improvement/perturbation (Fig. 5).
However, the score continued improving as more cycles
of improvement/perturbation are conducted.

Scores of Dynamic versus Static Approach

Although the approach presented here is theoretically
sounder, in practice it might be the case that prior align-
ments provide a good enough approximation to the
values and results obtained with the present method.
This question can be evaluated empirically by examin-
ing whether the dynamic approach produces a marked
improvement on tree scores compared with the non-
phylogenetic alignments. Should the results be very
similar, this would indicate that the static approach is
a good and fast approximation to the real (=optimal)
solution. To evaluate this issue, the scores obtained

FIGURE 5. Improvement in tree score along 100 cycles of im-
provement/perturbation. Values expressed as percentage of the total
improvement obtained after 1000 cycles. Most of the improvement is
obtained in the first cycle. The runs used generalized Euclidean super-
imposition as a starting point. Line codes as in Figure 4.
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TABLE 2. Improvement (expressed as percentage) on tree scores
obtained by the dynamic approach against those derived from differ-
ent fixed alignments strategies

Generalized Ordinary Euclidean,
Euclidean mean/largest

Hominids 5.2 7.6/10.9
Didelphids 4.9 5.9/10.6
Culicids 0.7 2.6/4.6
Felids 1.2 2.2/5.4

by simultaneously mapping and aligning were com-
pared with the scores derived from mapping configura-
tions that were aligned a priori by (i) superimposing all
configurations against a single configuration (ordinary
superimposition) and (ii) superimposing all configu-
rations against a “mean” configuration (generalized
superimposition). In both the cases, the optimality cri-
terion to align was the same as in the present method:
the sum of the Euclidean distances between landmarks,
so that any difference in the score between the dy-
namic and the static approach can be attributed solely
to considering, or not, phylogenetic information in the
alignment step. The results of generalized superimposi-
tion should be taken cautiously given that, unlike GPA,
the generalized alignment based on Euclidean distances
is not guaranteed to monotonically converge.

The analyses showed that the tree scores obtained by
the dynamic approach (after 1000 cycles of improve-
ment/perturbation) were considerably better in all the
data sets, although there were differences among data
sets (Table 2). The improvements were of up to 5% rela-
tive to generalized alignments and up to 11% relative to
ordinary alignments.

Tree Searches

In order to evaluate the performance of the method
in tree searches, we analyzed 2 data sets that have been
previously used to evaluate other approaches to analyze
landmark data in phylogenetics. One of them is the well-
known simulated fish data set of Naylor (1996). The
shapes were scanned from MacLeod (2002: p. 127, figure
7.11) and separated into 12 different configurations fol-
lowing MacLeod (2002). The second data set comprises
landmark configurations representing the wing mor-
phology of 11 species of Drosophila used in Klingenberg
and Gidaszewski (2010). Given that we obtained no an-
swer from the corresponding author to our request for
this data set, we scanned the figures from the paper. In
the case of Naylor’s data set, to decrease the influence
on tree choice of those configurations represented by
many landmarks, configurations were down-weighted
in inverse proportion to the number of landmarks
(Catalano et al. 2010). Landmark rescaling and opti-
mization were performed as described by Goloboff and
Catalano (2011). The search used 10 different starting
points (random trees) followed by TBR. The score of
each candidate tree in the TBR procedure was calcu-
lated considering the best multiple alignment obtained
after 20 cycles of perturbation/improvement. The spa-

tial optimization settings (see Goloboff and Catalano
(2011) for an explanation) to calculate the score were
a grid of 5 × 5 cells, 3 nesting levels, and a window
of 1 cell, states of the terminals included as possible
states in the internal nodes, and iterative improvement
of ancestral assignments. The analysis of Naylor’s data
set retrieved the correct (model) tree. In the case of
the Drosophila data set, the analysis retrieved a single
tree that has the same distance to the molecular “ref-
erence” tree of Klingenberg and Gidaszewski (2010) as
the tree obtained with the method of Klingenberg and
Gidaszewski (2010), when tree distance was measured
either with number of SPR moves (3) number of taxa
in the agreement subtree (5) or by Robinson–Foulds
distance (0.714).

CONCLUSIONS

The method described in this contribution is a re-
finement of that proposed by Catalano et al. (2010) to
analyze changes in landmark configurations along a
given phylogeny. Whereas in the original version of
the method configurations were aligned prior to the
mapping step, the extension presented here simultane-
ously superimposes and maps landmark configurations.
Although the optimality criterion considered here is
parsimony, the general approach can also be extended to
alternative criteria to map landmark data on a tree (such
as the minimization of the sums of squared distances).
In fact, J. Felsenstein and F. Bookstein are currently
working on a method which, despite some differences,
can be thought as a maximum likelihood counterpart of
our method (Felsenstein J., personal communication).

The analysis of the 4 real data sets showed improve-
ments in tree score of up to 5% (up to 11% if the com-
parison is done against scores derived from ordinary
alignments). In other terms, it means that 5–11% of
the shape changes inferred on the trees when map-
ping a fixed alignment were not changes in shape but
merely differences produced by suboptimal alignments.
These marked differences give empirical support to our
claim that, when mapping landmark configurations,
the alignment procedure should take into account the
phylogenetic information. Thus, using an approach as
the one described here seems highly desirable. In fact, it
seems logical to expect that similar improvements will
be obtained when other metrics (such as least squares
minimization) are used to map landmark configura-
tions. Obviously, in some specific cases, there may be
reasonable alternatives to define the frame of compar-
ison other than the pure minimization of landmark
displacements described, such as when relevant exter-
nal biological information is available. A typical case is
the evolutionary conservativeness of parts of the struc-
ture that allows using a 2-point registration approach
(Bookstein 1982).

One of the reviewers indicated that a drawback of our
method is that, given that it is not based on any statisti-
cal model, one really does not know how to evaluate its
suitability. Our main goal was to develop a framework
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that allows incorporating landmark data into a phyloge-
netic analysis either alone or in combination with other
sources of evidence. In this context, it is completely
possible to test the method: if several empirical analyses
indicate that the phylogenetic results obtained with the
method are in general agreement with those obtained
with alternative sources of evidence, the general validity
of the approach is strongly upheld.

A limitation of our approach to select a phylogenetic
tree (i.e., to do tree searches) is the time required to eval-
uate each tree, making it possible to effect TBR searches
for only a few dozen taxa. Two possible strategies may
help overcome this time limitation: (i) parallelize the job,
which can be easily implemented with TNT scripts, and
(ii) establish meta-strategies for searches in which not all
topologies are evaluated according to their best align-
ments (for instance, the configurations are realigned dy-
namically on the tree, but only every X rearrangements
accepted). Alternatively, and until faster implementa-
tions of dynamic alignment are available, searching
under static alignments as an approximation to the
results of searching under dynamic alignments (as pro-
posed by De Laet (2005) for sequence data) may be the
only option for large data sets. The ranking of trees
evaluated according to static or dynamic alignments
may present differences (e.g., a tree A considered to
be worse than a tree B under a static evaluation may,
however, be better when a dynamic evaluation is used).
The rank differences, however, are much smaller when
comparing only the trees in a TBR neighborhood (i.e.,
all the trees produced by TBR rearrangements from a
single tree), suggesting that static evaluations may pro-
duce reasonable approximations during heuristic tree
searches.

The approach presented here, although sharing with
Kendall’s framework the same definition of shape, di-
verges from that approach in using an alternative met-
ric to superimpose and evaluate differences in shape,
a metric that allows extending the parsimony principle
for the analysis of landmark data. Given that the specific
geometric constructions Kendall (1984) proposed were
“designed to suit statistical needs”, working outside
such framework can hardly be considered a drawback
for a method like the one presented here, which is not
proposed as a probabilistic approach to the problem.
The quantification of shape changes as the sum of dif-
ferences in landmark positions (once the configurations
were superimposed) is obviously an overly simplistic
approach to define the ordering of states in characters
that describe shape. One of its limitations (shared with
other approaches to map landmark configurations) is
that under some particular changes in shape that could
occur during the course of evolution, it would not be
possible to establish the superimposition that allows
tracing the actual events of changes (for an example, see
figure 13 of Richtsmeier et al. 2002). Other limitation is
that (as implemented herein) it does not take into ac-
count the dependence among landmarks. Despite these
limitations, the quantification of shape differences by
the analysis of differences in landmark positions is an

improvement compared with the traditional analysis
of shape characters in phylogenetics, where states (and
their ordering, i.e., transformation costs) were defined
in a much more subjective way.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found at http://www.
sysbio.oxfordjournals.org/.
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