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ABS TR AC T  

Latin American cities are amongst those with the highest rates of urbanization in the world. This process has involved their 
territorial expansion as well as the densification of some of its neighborhoods, in mainly central areas. This is the case of the 
city of Santiago del Estero (Argentina) that increased its population by 33% between 1991 and 2010 with the consequent 
transformations of the local space. In this context, this study analyzes the evolution of vegetated areas and densification of 
the central area of the city using satellite data. We analyzed two indices: normalized difference vegetation index (NDVI) and 
Urban Index (UI) time-series data, for the 1992–2011 year period, using the Google Earth Engine for processing Landsat 5 TM 
images.  We found that the NDVI showed a decreasing trend in the timelapse under consideration, while the UI performance 
registered the opposite trend. The mean NDVI decreased from 0.161 (1992) to 0.103 (2011) while the UI mean increased 
from 0.003 to 0.036 in the same timelapse. Further, the NDVI has a strong negative correlation with UI (R-squared = -0.862). 
The results are consistent with the census information that recorded an important demographic and housing growth for the 
entire city in this period. 
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1. Introduction 
 

Rapid urban sprawl is a major contributory factor 
for environmental change in many parts of the world. 
Latin America and the Caribbean is the most 
urbanized region in the developing world and is 
characterized by accelerated growth. One of the 
key developments that shaped Latin American cities 
is the migration of people from the countryside to 
the city, a phenomenon that has generated regional 
imbalances in most countries of the region (VARGAS-
BOLAÑOS ET AL., 2020). Hence, in addition to presenting 
high rates of urbanization, Latin American cities also 
display new urban peripheries, usually without 
planning, resulting in several issues that have 
characterized the cities of this part of the world: 

environmental impact, diseconomies, and a decrease 
in the quality of life of the local population. 
Although urban growth is referred to as necessary 
for a sustainable economy, uncontrolled urban 
growth can cause several problems, such as loss of 
open spaces, landscape modification, environmental 
pollution, traffic congestion, pressure on insufficient 
infrastructure, and other social and economic 
problems (NOLÈ ET AL., 2013). Moreover, in this 
region, urbanization is one of the main anthropogenic 
factors that has produced the reduction of green 
areas and the replacement of pre-existing habitats in 
cities of Latin America (BERKOWITZ ET AL., 2003). 

To address this context, FERRO (2001) argues that 
urban planners may consider diverse approaches: 
new developments planned in the suburbs (a practice 
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that responds to a "traditional" form of growth), 
new cities in the area, or the reuse of existing space 
through densification projects. As a substitute to 
"traditional" urban sprawl, there is a "densification” 
approach through the re-ordering of large areas 
that are well located, but that have deteriorated, 
or are misused or vacant. In Latin America, the 
outcome is an amalgam of growth where the middle 
and upper residential areas have practically 
disappeared due to increasingly smaller high-
density buildings, or from the edification of new 
constructions that replace homes in old residential 
neighborhoods. As opposed to, the lower strata that 
do not have the resources to access the formal 
housing market, and are located in the most distant 
peripheries, in informal urbanization lots where 
they build homes "progressively". Consequently, 
the central areas of the cities have been condensing 
with great force, appealing to the tertiary sector, and 
creating at the same time, an area of commercial 
activity and services, to which is added the 
construction of residential buildings. Hence, while 
the central areas are densified, the single-family 
neighborhoods on the periphery are also growing in 
a process that does not necessarily occur in a planned 
manner. From the urban economic perspective, 
MATTOS, (2016), DEL RÍO (2017) and BENSÚS TALAVERA 
(2018) maintain that this densification course is 
associated with an intense exploitation of the 
urban land in areas of high construction demand, 
closely linked to the real estate market.  

Densification is usually more noticeable in specific 
neighborhoods/parts of a city as recent studies 
indicate (DARCHEN & POITRAS, 2018; TILLIE ET AL., 
2018; TREIJA ET AL., 2018; SKREDE & BERG, 2019; 
ANDERSSON ET AL., 2020; LI ET AL., 2021; EGGIMANN 

ET AL., 2021; CELLUCI & SIVO, 2021; among others), 
and is viewed as an answer to the uncontrolled 
urban sprawl, however, compared to urban 
growth, densification has some environmental 
merits, but is not without negative environmental 
impacts (NÆSS ET AL., 2020; COPPOLA, 2012). Dense 
cities are a logical choice for an increasingly urbanized 
world, where worries about environmental 
sustainability and urban growth are significant 
(UN HABITAT, 2012). Among their many benefits, 
dense cities, in addition to helping to preserve 
rural land, also reduce greenhouse gas emissions 
(LIBERTUN DE DUREN AND COMPEÁN, 2016). Densification 
is viewed as an appropriate measure to cope with 
fast urban growth that aims to limit the expansion of 
the constructed area on the outskirts by expanding 
additional living space within already built areas 
(BERNDTSSON ET AL., 2019) and can be seen as an 
opportunity for sustainable urban development, as 
it fosters resource efficiency and transportation, 

while undeveloped land outside the city could be 
retained as a natural environment (EMILSSON & 

SANG, 2017). Although vegetation cover loss is 
prevalent, densification does not always indicate a 
reduction in greenness. In certain instances, more 
vegetation in urban areas has emerged from 
planning and the drive for more sustainable cities, 
such as the cases of Taipei (WANG ET AL., 2018) 
and Singapore (GAW & RICHARDS, 2021). On the other 
hand, most case studies in Argentina demonstrate 
the opposite results (MERLOTTO ET AL., 2012; PAOLINI 

ET AL., 2016; FERRELLI & BUSTOS., 2015; ARBOIT & 

MAGLIONE, 2018). Therefore, in most cases, this 
process usually involves the loss of green spaces 
with negative environmental impacts such as the 
alteration of wind and temperature patterns (PAULEIT 

ET AL., 2005; FONTENELLE ET AL., 2015; LEMONSU ET 

AL., 2015).  
Land-use changes are the most notable indicator 

of the human footprint and are considered to be 
the most important factor of biodiversity loss and 
land degradation. The effect of land-use change varies 
by region and geographic location (ZURQANI ET AL., 
2019). Generally, in developed countries there is 
effective territorial planning, while, in Latin America, 
it is more anarchic, coexisting urban planning 
measures with growth areas without any control. 
Given that cities in this region will continue to 
expand and densify, the study of changes in urban 
land cover and their impacts on urban vegetation 
is of fundamental interest (FERRELLI ET AL., 2018). 

Tracking urban land cover change, through the 
interpretation of satellite imagery, can be an 
extremely valuable tool for urban planners in 
detecting the effects of environmental change 
(HUANG ET AL., 2009). At present there are numerous 
satellite platforms that record terrestrial information, 
which is disseminated in different repositories. 
This results not only in a wide variety of data, but 
also makes it imperative to handle these large 
volumes of information more efficiently. Due to 
the high volumes of data captured and archived 
regularly and over a long period, changes in land 
use can now be measured not only in two-time 
snapshots, but continuously over many time intervals 
(JIANYA ET AL., 2008). Satellite imagery is rapidly 
being utilized to construct diverse maps of land 
surface features, such as vegetation, snow, water, 
and built-up land characteristics, automatically 
and semi-automatically (FIROZJAEI ET AL., 2019). More 
specifically, Landsat sensors have been instrumental 
in observing geographic phenomena, with datasets 
going back decades (LI JIAN & ROY, 2017). 

Time series analysis of changes in land cover 
allows researchers to understand the general trends 
and dynamics of land-use changes over complete 
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time series rather than a simple increase, or decrease, 
between two points in time. Hence, modeling 
vegetation change rates as well as built-up area 
evolution can be done more accurately using a 
time series provided by satellite imagery (TROMBETTI 

ET AL., 2008). Historically, the large volumes of 
data provided by continuous satellite monitoring 
represented a technical challenge for interpretation 
and analysis. The processing of large time series 
datasets has been made accessible thanks to 
recent technological advances in computing, in 
particular the creation of Google Earth Engine (GEE). 
In this context, access to historical and current 
remote sensing data using Google Earth Engine's 
geospatial technology represents a significant 
improvement in monitoring and evaluating land-
use change over time (ZURQANI ET AL., 2019). 

Vegetation greenness and built-up land are the 
two most important factors for studying urban 
variations. The NDVI reflects the health and density 
of the vegetation, while the built-up indices refer 
to constructed areas. The NDVI and built-up indices 
have also been evaluated as predictors and factors in 
urban land change (GROVER & SINGH, 2015). Due to 
the variability and spectral closeness of built-up 
areas and bare land, using this type of index is 
particularly difficult. Hence, several indices for 
mapping built-up and other land cover types in 
urban areas have been used in various studies, 
including the Normalized Difference Built-Up Index 
(NDBI) (He et al., 2010), Index-based Built-Up Index 
(IBI) (XU, 2008), Urban Index (UI) (KAWAMURA ET 

AL., 1996), Normalized Difference Bareness Index 
(NDBaI) (ZHAO & CHEN, 2005), and Bare soil index 
(BSI). The spectral performance of built-up land 
and other properties related to wavelengths of the 
electromagnetic spectrum in terms of absorption, 
or reflection, serve as the foundation for the 
development of these indices (FIROZJAEI ET AL., 2019), 
although each one has its own set of potentials 
and drawbacks. NDBI and UI, for example, have 
the limitation of mixing to some degree built-up 
and bare land areas, but on the other hand, are 
easy to implement (SINHA ET AL., 2016). Moreover, 
recent studies have demonstrated that using built-
up indices, such as NDBI and UI- recurring to the 
SWIR 1/SWIR 2 bands, are more effective at 
detecting built-up areas, as they possess higher 
reflectance values, allowing them to be readily 
distinguished from other land uses. Therefore, UI, 
like NDBI, is a relevant indicator for urban studies 
since it gives accurate information regarding land 
change across time and can be calculated quickly 
from satellite data (XI ET AL., 2019) and, unlike 
NDVI, which is dependent on and varies with 
climatic conditions, these built-up indices remain 

more constant throughout the year in any climatic 
conditions around the world (KUMARI ET AL., 2020).  

UI was developed as a built-up index in the 1990s 
to generate data and analyze the situation and sprawl 
pattern of built-up areas using remote sensing 
data (KAWAMURA ET AL., 1996). The UI normalizes 
the NIR and SWIR 2 bands, making use of the inverse 
correlation between NIR and SWIR brightness in 
constructed areas. This procedure is based on the 
fact that urban and bare ground areas have low 
reflectivity in the NIR band but relatively high 
reflectivity in the SWIR bands (DO ET AL., 2021). 
The UI is computed by using the bands 7 and 4 from 
Landsat Thematic Mapper (TM) imagery. It is very 
similar to NDBI and is probably the most used 
built-up index, with the difference being that it 
uses SWIR2 instead of SWIR1. 

Although the growth and densification of cities 
are two processes that coexist in Latin American 
cities, most of the research focuses on urban sprawl, 
with fewer articles analyzing the densification at 
intra-urban scale. Consequently, the initial purpose 
of this research is to use The GEE to process the 
large free satellite datasets that are available for 
the long-term monitoring of NDVI and UI in a case 
study focused on the downtown neighborhood 
of the city of Santiago del Estero, in a period 
comprising the years 1992 and 2011. The reason 
for the selection of this timelapse is not arbitrary 
since it comprises, approximately, the last three 
censuses carried out in the country (1991, 2001, 
2010) which provided data, albeit partially, on 
demographic growth as well as on the number of 
houses in the city. The downtown neighborhood 
is the central area that has been more patently 
affected by the densification process throughout 
the city in the last decades. To better contextualize 
this land-change scenario, information on population 
and housing units from these three census periods 
was obtained from the National Statistical and 
Census Institute (INDEC) web page. Unfortunately, 
there is scarce disaggregated data available on 
that web page, with the exception of the 2011 census. 
 
2. Study area 

 
Santiago del Estero is the capital of the 

homonymous province in northern Argentina. 
With a surface area of 2,116 km2 and a population 
of 252,192. It is the country's tenth largest city, 
and it is located 1,042 kilometers north-northwest of 
Buenos Aires. Santiago del Estero is placed in a 
transition zone between the temperate climates 
of the Pampas, and the subtropical climates of the 
Chaco region and according to the Köppen 
classification, it has a hot semi-arid climate (BSh). 
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The annual precipitation of 695 mm is concentrated 
mostly from November to March with the occurrence 
of frosts between May and August and the average 
annual temperature is 21.5 °C (ROGER ET AL., 2016). 

It is not possible to know exactly the population 
of the downtown (central) neighborhood of the 
city of Santiago del Estero. However, in the period 
1991-2010 (Table 1) the number of inhabitants 
residing in the city increased by 33%, ten more 
percentage points than the national average. On the 
other hand, housing also registered a significant 
increase in the Capital department (where the city of 
Santiago del Estero is located and comprises 94% 
of the population) with an increment of 85% in the 
same period. The central neighborhood of the city 
has a perimeter of 5.10 km and an area of 1.55 km2. 
In its interior, 25 census blocks are located totally or 
partially (each of them contains approximately 200 
houses) (Fig. 1). This area contains 1965 pixels which 
are sufficient to carry out a microscale study. 

An inventory of the street trees carried out by 
ARIAS & CELEMIN (20218), indicates how the 
vegetation is located, mainly to the central-south 
and south-east of the study area, as the abundance 
increases from the interior to the bordering 
avenues of the neighborhood. It also registered 
the location of green spaces, where only two 

occupy an entire block, out of the 98 blocks in the 
neighborhood (Fig. 2). It is an area where concrete 
predominates, with few green spaces and trees 
(Fig. 3). 

Table 1. Increment of population and housing units (1991-
2010) (Source: INDEC, 1991, 2001, and 2010 Census) 

Year Population in Santiago 
del Estero city 

Housing Units in 
Capital Dep. 

1991 189 947 42 241 

2001 230 614 53 711 

2010 252 192 78 281 

1991-2010 

Variation 
32.77 [%] 85.32 [%] 

 
Fig. 1. Study area location 

 

 

Fig. 2. Tree abundance and green spaces in the study area 
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Fig. 3. Street photo in the study area (-27.7912; -64.2572), 
Arias, 20/04/2022 

 
Given the capacity of the GEE to create visual 

information continuously, a video was made with 
the monthly evolution of the NDVI in the 1991-
2011 period, as a way to provide a better visual 
interpretation of the study area and of the spatial 
distribution of vegetation greenness. For this, a 
script was created with Landsat 5 TM 32-Day 
NDVI Composite data. Video available at: 
https://drive.google.com/file/d/1x31fiqykxCBin
beI0FefnYknnq9pMK_x/view?usp=sharing 
 
3. Methods 
 

The GEE catalogue for the Landsat 5 TM was 
used in this investigation. This satellite was a low-
Earth-orbit platform launched on March 1, 1984, 
and administered jointly by the USGS and the 
National Aeronautics and Space Administration 
(NASA). The USGS Earth Resources Science and 
Observation Center collected and distributed 
Landsat 5 TM data (EROS). Landsat 5 TM was 
formally deactivated on June 5, 2013, after 29 
years in space. 

GEE provides online access to archived Landsat 
data, including Landsat 5 TM from 1991 to 2011. 
We used the "LANDSAT/LT05/C01/T1_SR" catalogue 
that contains atmospherically corrected surface 
reflectance images from the Landsat 5 TM sensor. 
These images contain 4 visible and near-infrared 
(VNIR) bands and 2 short-wave infrared (SWIR) 
bands processed to orthorectified surface reflectance, 
and one thermal infrared (TIR) band processed to 
orthorectified brightness temperature. The VNIR 
and SWIR bands have a resolution of 30m / pixel 
(https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_LT05_C01_T1_S
R#description). 
On the GEE platform (https://earthengine.google.org/), 
all data processing was done using cloud computing 
technology. To this purpose, a script was created 
with the goal to acquire the overall value of NDVI 
and UI for the study area for all images available 
throughout the study period. Landsat 7 ETM+ 
images were not used due to the failure of the 
Scan Line Corrector (SLC) in 2003, resulting in 
some areas that are imaged twice and others that 
are not imaged at all.  

In addition, only cloudless images are selected 
through the script, for both satellite catalogues. 
Finally, the mean was obtained from the images of 
the entire study area using the ReduceMean feature.  

There are different indices obtained from 
satellite images that allow us to know the state of 
the vegetation where the Normalized Difference 
Vegetation Index (NDVI) is the most recognized 
and used. It is calculated by using the following 
expression:  

 

where NIR is near-infrared reflectivity (Landast 5 
TM band 4) and R is reflectivity in red (Landsat 5 
TM band 3). The image value is delimited by the 
range -1 and 1 and the closer it is to 1 the greater 
the presence of healthy vegetation in a place.  

The UI normalizes the NIR and SWIR 2 band, 
which makes full use of the inverse relationship 
between the brightness of the NIR and SWIR in 
built-up area (XI ET AL., 2019). 

 

where SWIR2 is Short Wave Infrared 2 (Landast 
5 TM band 7) and NIR is near-infrared reflectivity 
(Landast 5 TM band 4). 

The entire data analysis of both indices was 
conducted using GEE. An imported shapefile of the 
Central area of Santiago del Estero city was imported 
into the GEE for extracting the NDVI and UI values 
over a 19-year timelapse (1992–2011). With the 
resulting dataset, which provided no data for the 
year 1991, we computed a mean value of the 
NDVI and UI from all pixels in the study area for 
all the 60 images in order to globally know the 
temporal evolution of both indices. Furthermore, 
the seasonality patterns of the NDVI and UI were 
examined using long-term monthly means. Next, 
we studied the annual performance to examine 
the fluctuation of the NDVI and UI over time. 

https://drive.google.com/file/d/1x31fiqykxCBinbeI0FefnYknnq9pMK_x/view?usp=sharing
https://drive.google.com/file/d/1x31fiqykxCBinbeI0FefnYknnq9pMK_x/view?usp=sharing
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR#description
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR#description
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR#description
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Finally, the relationship between both indices was 
analyzed using the R-squared procedure. 
 
4. Results 
 
4.1. Dataset analysis 
 

The data processing from the GEE platform 
resulted in a total of 60 images corresponding to 

Feb 5, 1992 to Sept 25, 2011. An initial visual 
interpretation of the original dataset allows us 
to observe a continuous decrease in the NDVI 
while the UI records show a general increasing 
trend (Fig. 4). The correlation of both datasets 
registers a negative slope, with a high R-squared 
of -0.863 with an NDVI mean of 0.136 and 0.023 
for the UI. 

 
Fig. 4. NDVI-UI evolution (complete dataset) 

 
4.2. Annual and temporal variations of NDVI and UI 
 

The next result models the trend of the NDVI 
and UI over 19 years in the central area of the city 
of Santiago del Estero (Fig 5). By averaging the mean 
NDVI and UI values over all pixels in the study area 
the linear regression model was adopted to identify 
the temporal variation of both indices. The mean 
NDVI values vary from 0.161 in 1992 to 0.103 in 
2011, while the mean UI has a score of 0.003 in 1992 
and 0.036 in 2011. Consequently, since 1992, there 
has been an overall constant decaying trend in 
NDVI while the UI has the opposite output, although 
with more abrupt fluctuations. In the first years it 
registers negative values, with the exception of 
1992, that quickly rise to positive scores beginning in 
1997. From that date on the UI plateaus and even 

decreases a little. The NDVI has an annual mean for 
the 19-year period of 0.136, while the UI registers 
a mean of 0.023. Furthermore, the NDVI has a higher 
R-squared in the linear regression model with a 
score of 0.66, while the UI has a 0.38 score. Both have 
similar Standard Deviation values with 0.021 and 
0.029 respectively.  

The seasonal variability of NDVI and UI illustrates 
the NDVI and UI seasonal patterns for the study 
area (Fig. 6). The seasonal peaks of the NDVI are 
observed during spring and summer seasons, 
while the lowest NDVI mean scores are observed 
in the winter. On the contrary, the UI presents 
negative values in the summer months and from 
mid-autumn it increases considerably reaching 
its peak in late winter (August-September).  

 

Fig. 5. Annual performance of NDVI and UI 
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Fig. 6. Seasonal variability of NDVI and UI 

 
5. Discussion 
 

The impact of urbanization on natural ecosystems 
and on habitat quality is a topic of current study 
as the relationship between urban dynamics and 
plant communities involves processes with complex 
characteristics. Population growth is decisive in 
the decline of NDVI, with strong negative correlations 
in urban sites, especially in Latin America (ARBOIT 

& MAGLIONE, 2018). A global scale study focused 
on urban vegetation cover (RICHARDS & BELCHER, 
2019) shows how it had decreased in most urban 
areas between 2000 and 2015, mainly in less 
developed countries; however, vegetation cover 
slightly increased in some urban areas in eastern 
North America and parts of Europe. Urbanization 
that does not take care of its own natural landscape 
poses a threat to the quality of the urban environment 
and, thus, the quality of life of the inhabitants 
(YEPEZ ET AL., 2014). Remote sensing techniques can 
be used to analyze the increase of impervious 
surfaces and vegetation status to gain a better 
understanding of urban areas. Spectral indices 
have the advantages of being easy to build, 
parameter-free, and useful in land surface information 
extraction applications and provide geographical 
and temporal data that are utilized to assist urban 
populations and decision-makers in maintaining, 
or improving, their cities' quality of living in the 
future (HIDAYATI ET AL., 2021). The loss of vegetation 
in a context of coexistence of new urban peripheries 
and densification in Latin American cities urges 
urban planning to enact strategies that not only 
facilitate the creation of new green spaces, but 
also to form an urban framework sustained by 
regulations that favour the planting and maintenance 
of vegetation in private spaces (DE LA BARRERA & 

HENRÍQUEZ, 2017).  

5.1. Densification and loss of vegetation cover 
 
The current study employed Landsat 5 TM 

images to examine the NDVI and UI evolution for 
the downtown neighbourhood of Santiago del 
Estero from 1992 to 2011. In the context of 
densification in the research area, the results suggest 
a decreasing presence of vegetation. Densification 
is an urbanization approach that entails increasing 
the amount of built space and creating compact 
cities rather than expanding cities in order to 
make better use of limited space (EGGIMANN ET AL., 
2021). In Argentina, the analysis of several cities 
in the Region of Cuyo (Argentina) carried out by 
ARBOIT & MAGLIONE (2018) highlights population 
growth as a factor in the decline of NDVI. Other 
studies on the spatial and temporal analysis of NDVI 
for the town of Monte Hermoso in the province of 
Buenos Aires, Argentina, in the period 2008-2012 
(FERRELLI ET AL., 2018) and for the city of Bahía 
Blanca also shows a loss of NDVI values (FERRELLI 

ET AL., 2015). More specifically related to densification 
in cities of Argentina, we can mention the work of 
MERLOTTO ET AL., (2012) who carried out a study 
on land cover between 1967-1984 for the towns of 
Quequén and Necochea, with results showing that 
the process of densification of urban occupation 
is significantly higher than that of the expansion. 
On the other hand, a study focused on twelve 
cities in northern Argentina (the poorest region 
of the country) (PAOLINI ET AL., 2016) found that 
the dynamics of urban growth in this area were 
dominated by patterns of expansion rather than 
homogeneous densification, although both processes 
coexist to some extent, and which seems to be the 
case for the city of Santiago del Estero. For Latin 
America, the work of VEGA ET AL. (2019) records a 
considerable loss of vegetation cover by estimating 
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NDVI for urban areas of the city of Iquitos (Peru) 
between the years 1999-2009. Another recent case 
is in the city of Medellín, for the 1986-2016 timelapse 
shows a greater loss of vegetation in the densest 
area of the town (SOTO-ESTRADA, 2019). Similar results 
are presented by DE CARVALHO & SZLAFSZTEIN (2018) 
in a case study of the city of Belém (Brazil) for the 
period 1986-2009 using Landsat 5 TM images. 

A limitation to appropriately measure 
densification in Argentina (either due to an 
increase in population and/or buildings) is the 
way in which the censuses in Argentina record 
the information. Moreover, in most cases, the 
total population can be only approximately known 
since the unit of measurement of the censuses 
(census blocks) rarely coincides with the limits of 
a neighborhood. For example, in the interior of 
the downtown neighborhood of the city of Santiago 
del Estero, there are 18 census blocks, but 7 
partially occupy the surface of the neighborhood.  

Built-up indices are sensitive to construction 
and are frequently used to represent the degree 
of development and density of a built-up area. 
Different indices have been developed to determine 
built-up areas from satellite images, however, 
none have obtained a much higher precision than 
the rest, resulting in a proliferation of indices. 
They all have potential and limitations, while the 
NDBI and the UI stand out for their ease of 
implementation. Previous research revealed that 
built-up indices were better than NDVI for 
quantitatively detecting land changes over time (XIE 

ET AL., 2021; KUMARI ET AL., 2020). However, this is 
not the case in this study since the interpretation 
of the graphs and the data indicates a slightly 
greater variability of the UI than that of the 
vegetation index. In addition, the results arise 
new interrogations that will be addressed in 
future works. For example, it is interesting to 
observe how the UI index plateaus since the late 
nineties. This could suggest that the area has 
reached some degree of building saturation, 
although this does not explain the decrease of 
NDVI values since that date. 

 
5.1. Potentialities and limitations of the use of GEE 

 
 Long-term satellite imaging is critical for 

understanding dynamic land cover, and it is 
especially good for detecting vegetation changes. 
A variety of sensors produce images with varying 
resolutions with the goal of detecting specific types 
of land cover. GEE is a cloud-based geospatial 
processing platform that provides a vast collection of 
data for analyzing free satellite imagery, producing 
statistics and maps, and graphical representations 

(MUGIRANEZA ET AL., 2020). The Landsat library in 
GEE comprises more than three decades of Earth 
observation photos, giving researchers a unique 
chance to track land cover changes through time 
with high temporal and spatial resolution. Because 
of their great spatiotemporal resolution, Landsat-
based time series data are ideal for detecting 
vegetation change (HUANG ET AL., 2018). This study 
demonstrated that a simple analysis of NDVI and UI 
trends in a local context can be easily replicated in 
other areas. The scripts are stored in the GEE platform 
and by replacing the polygons corresponding to a 
study area with another area of interest, the 
information for a new set of data is generated. 
Finally, the importance of obtaining temporally 
continuous data is highlighted, unlike the census 
information that is available on specific dates, 
separated by many years. 
 
6. Conclusions 
 

Latin American cities experience simultaneous 
processes of urban growth and densification. Both 
are complementary but each has its own dynamics. 
The study of densification, which can be observed 
in greater detail in the central areas of cities, is 
not as advanced as that of urban growth, even 
more so it is linked with elements of the local 
landscape, such as vegetation. The development 
of artificial spaces and the replacement of natural 
features are known to function as the main drivers of 
change in the local space. In this context we found 
that the NDVI showed a decreasing trend in the 
timelapse under consideration, while the UI 
performance registered the opposite trend in a 
19-year period in the central area of the city of 
Santiago del Estero (Argentina) which has rapidly 
increased its population and housing units in the 
last decades. Both indices also presented a high 
negative correlation. Because the results were 
valuable and consistent, the approach can be 
used in other cities. The loss of vegetation and the 
increase in built area are common characteristics 
of Latin American cities that require more 
attention, particularly in the context of climate 
change. The findings of this study can help to 
implement local policies aimed at improving and 
increasing the area of green space in the study area. 
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