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Abstract 

Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the 

industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has 

completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this 

article presents a multi objective evolutionary approach based on decomposition for efficiently addressing the multi objective flow 

shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances 

show the competitiveness of the proposed approach when compared with other baseline metaheuristics. 

 

Keywords- Industry 4.0, Flow shop, Missing operation, Evolutionary algorithms, Multi objective optimization, Makespan, Total 

tardiness. 

 

 

 

1. Introduction 

In recent years, digital tools have strongly penetrated production systems and their supply chains. From 

this, the possibility of managing the information associated with production processes has improved 

remarkably (Xu et al., 2018). The main technologies underlying these transformations are cyber-physical 

systems (CPS) and the Internet of Things (IoT). CPS allow the integration of physical production systems 

with all production planning functions (usually associated with digital technologies) into only one system. 

Thus, production orders are executed with greater precision, generating a more flexible production system. 

While IoT provides the means for all these interactions to take place. This new paradigm is called Industry 

4.0 (Lee et al., 2015). 

 

Information Technologies enhancement of production processes allows for a more fluid management of a 

broader portfolio of products, and to dispense of the rigid standardization that governs mass production 

models (Wang et al., 2017). In mass production environments, computer systems used to be rudimentary, 

and then, they were limited to manage information (needs for materials, operation routes, etc.) for a few 

products. However, by having current information tools and technologies, where the possibility of 

managing different sources of information is incorporated, personalized production models are gaining 

ground. These models allow customers to incorporate their specifications and preferences in their 
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production orders, so that the resulting products are not all the same, but are adapted to the customer. 

Industry 4.0 has greatly enhanced these personalized production business strategies (Perez et al., 2022). 

However, personalized production challenges the decision-making processes for production planning, and 

particularly scheduling, because personalized orders dismiss the standardized production routes and 

incorporate new features. Then, scheduling problems become more difficult than they used to be. A clear 

example is flow shop scheduling problems with missing operations (Rossit et al., 2021a). Where, in the 

classic version of flow shop scheduling problem, all jobs have the same processing route, meanwhile in 

missing operation flow shop, some jobs may require or not some of the operations, which increases 

scheduling decision process. 

 

In this article, a missing operation flow shop scheduling problem is addressed. The studied problem is a 

multi objective version of the flow shop problem with missing operations, considering the simultaneous 

optimization of makespan and total tardiness objectives. Makespan is a relevant metric since it describes 

the capacity utilization, and how the investment made in production lines is used. It measures the efficiency 

for the company, the lower the makespan for a given set of jobs, the better the capacity usage. In turn, total 

tardiness evaluates how the customer service is being achieved. For this, the delivery date of the customer 

order from the production system, is contrasted with the due date that was defined in agreement with the 

customer before the releasing of the order, and if it is computed only if there is delay. Obviously, the larger 

the delay, the poorer the performance (Pinedo, 2012). This problem is NP-hard in its single objective 

version (Lenstra et al., 1977), then the multi objective version is also NP-hard (Minella et al., 2008). Thus, 

for having an efficient approach for this problem a meta-heuristic algorithm is proposed. 

 

Meta-heuristic algorithms have shown great capacity in handling multi objective scheduling problems 

(Yenisey and Yagmahan, 2014; Uniyal et al., 2020). In the case of this article, the proposed resolution 

approach applies the Multi Objective Evolutionary Algorithm based on Decomposition (MOEA/D), an 

evolutionary computation method that has been recognized as a promising tool for solving multi objective 

optimization problems by applying a divide-and-conquer approach (Zhang and Li, 2007). MOEA/D has 

shown great capability on solving flow shop scheduling problems (Chang et al., 2008) (Alhindi and Zhang, 

2014; Wang et al., 2021). For this particular application, the proposed hybrid algorithm is based on a custom 

made version of the jmetal optimization framework, including specific modifications for leveraging its 

optimization capacities. These modifications are based on the normalization of the considered objective 

functions, which improve the scalar mono-objective optimization processes, and also a re-definition of the 

reference points for computing multi objective optimization metrics, which impacts on the solution 

assessments. 

 

The main results of the reported research indicate that the proposed MOEA/Ds are competitive to address 

this combinatorial optimization problem since they were able to efficiently solve a representative set of 

instances with different percentages of missing operations. Moreover, the MOEA/Ds showed to be 

competitive when compared with other state-of-art metaheuristics used as baseline, obtaining better 

distributed Pareto fronts. 

 

The article is organized as follows. Next section presents the main concepts about multi objective 

optimization and describes the multi objective version of the flow shop problem with missing operations. 

Section 3 outlines the resolution approach and describes the multi objective algorithm applied to solve the 

problem. The experimental evaluation of the proposed resolution approach is described in Section 4, which 

also reports and analyzes the experimental results. Finally, the conclusions of the research and the main 

lines for future work are formulated in Section 5. 
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2. Multi Objective Flow Shop Problem 

This section presents the multi objective flow shop problem addressed in this article. The first subsection 

introduces the basic concepts of multi objective optimization problems and the main ideas of the 

optimization approach applied in this article. After that, the next subsection describes the scheduling 

problem addressed, i.e., multi objective flow shop with missing operations, and comments on the main 

contributions of the literature related to the problem. 

 

2.1 Problem Description 

This subsection describes the problem addressed at this work. For this, firstly, the main concepts about 

multi objective optimization problems are detailed, and then, the main features of the special flow shop 

case that is approached here. 

 

2.1.1 Multi Objective Optimization Problems 
Multi objective optimization problems arise when considering typical decision-making situations in real 

environments, such as those addressed in production planning, where issues of internal efficiency of the 

company must be addressed (e.g., minimizing costs or use of machines) simultaneously with issues related 

to the level of service for customers (e.g., measurement of compliance with the delivery date). This type of 

situation involves decisions with interests that are not directly comparable, and even many times, achieving 

optimal solutions in one of the interests is detrimental to the other interest. These types of problems require 

comparison strategies based on Pareto Dominance, where the solution vector 𝑥 is analyzed in terms of 𝑠 

different objective functions 𝑓1(𝑥), … . , 𝑓𝑠(𝑥) simultaneously (Coello et al., 2007). To introduce these 

comparison criteria, we first present an illustrative description of the problem, which consists of a 

minimization problem, then, a multi objective problem can be defined by Equations 1-3, where 𝑝 and 𝑞 are 

the equations and inequalities that define the feasible set 𝑋, meaning that a solution 𝑥 is valid only if 𝑥 ∈ 𝑋. 

In the objective function (1), there are 𝑠 objective functions, with 𝑠 ≥ 2. Thus, for comparing two solutions 

𝑥1 and 𝑥2, such that {𝑥1, 𝑥2} ∈ 𝑋, it is necessary to consider the Pareto Dominance criterion, which is 

accomplished by conditions (4) and (5). 
 

Min {𝑓1(𝑥), … . , 𝑓𝑠(𝑥)}.                                                                                                                                  (1) 

 

subject to 

 

ℎ𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑝                                                                                                                                  (2) 

𝑔𝑙(𝑥) ≤ 0, 𝑙 = 1,2, … , 𝑞                                                                                                                                   (3) 

𝑓𝑟(𝑥1) ≤ 𝑓𝑟(𝑥2), 𝑟 = 1,2, … , 𝑠,                                                                                                                      (4) 

∃𝑟 ∈ {1,2, … , 𝑠}: 𝑓𝑟(𝑥1) < 𝑓𝑟(𝑥2).                                                                                                                   (5) 

 

and, the set of solutions 𝑥 that accomplish conditions (4) and (5) is defined as the Pareto Optimal Front 

(POF). 

 

2.2 Flow Shop Problem with Missing Operations 

The flow shop problem is one of the most widely studied problems in the class of scheduling problems. 

The flow shop problem consists of sequencing a set 𝑁 with 𝑛 jobs, in a set 𝑀 with 𝑚 machines. Each job 𝑗 

(𝑗 ∈ 𝑁), consists of a set 𝑂𝑖𝑗 of operations; the i-th operation must be performed on machine 𝑖. The goal is 

to obtain a sequencing 𝜎 optimizing some criterion 𝑓(𝜎). However, in this case, multiobjective problems 

will be studied, so the criteria to be optimized follow the structure presented in Equations (1-5), which is 

why the problem is especially difficult. 
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In turn, the studied problem has the peculiarity that not all jobs have the same number of operations, that 

is, some jobs do not need to be processed by all machines. That is to say that |𝑂𝑖𝑗| ≠ |𝑂𝑖𝑗′|, 𝑗 ≠ 𝑗′. This 

situation occurs particularly in environments in which production tends to be personalized and the design 

of the product varies in small characteristics according to the client. This type of problem has taken a 

renewed interest since the advent of the fourth industrial revolution where the possibility of offering 

personalized products has been greatly increased. 

 

However, within the first articles that have addressed this problem, Glass et al. (1999) addressed a two 

machine flow shop problem with no-wait conditions. The authors developed some heuristics that handle 

the problem in a sequential procedure, firstly they sequence the jobs that have an operation in each machine, 

and finally they insert the jobs with missing operations. Then, in (Rajendran and Ziegler, 2001) some 

dispatching rules are developed for minimizing the Total Flow Time, and in (Holthaus and Rajendra, 2002) 

similar dispatching rules are used for optimizing a dynamic buffer-constrained flow shop problem. In 

(Marichelvam and Prabaharan, 2014) a case study on a steel furniture manufacturing company is addressed, 

and for optimizing the problem a hybrid genetic scatter search algorithm is proposed. Traditional algorithms 

like Simulated Annealing, have shown to be capable of handling this complex problem (Venkataramanaiah, 

2008, Rossit et al., 2021a). Venkataramanaiah (2008) addressed a cellular manufacturing problem 

considering the makespan, total flow time and idle time, applying a mono-objective approach using a 

weighted sum function. Meanwhile, Rossit et al. (2021a) considered an Industry 4.0 Cellular manufacturing 

environment, optimizing the Total Tardiness as the objective function. 

 

Later, non-permutation solutions were considered for this problem. Pugazhendhi et al. (2003, 2004a, 2004b) 

studied a flow-line problem and designed new heuristics for optimizing the Total Flow Time, in the first 

two cases, and total weighted flow time and makespan in the latter one. The heuristics proposed are based 

on insertion procedures that enables creating non-permutation solutions, that is, the machines process the 

jobs in different orders. Tseng et al. (2008) highlighted the need of representing missing operations in 

scheduling problems, to represent more realistic situations. The authors developed non-permutation 

heuristics for a two stage hybrid flow shop problem. Henneberg and Neufeld (2016) designed and 

implemented a constructive heuristic and a Simulated Annealing algorithm to optimize the flow time. These 

optimization procedures include non-permutation solutions. Ramezanian and Rahmani (2017) developed a 

Mixed Integer Linear Programming (MILP) mathematical formulation for the problem where the makespan 

is the objective function and non-permutation solutions are considered. The MILP model was able to solve 

small-size instances, meanwhile for the large-size instances a genetic algorithm was developed. More 

recently, Dios et al. (2018) developed an extensive study on heuristics for coping with hybrid flow shop 

with missing operations, optimizing the makespan for over 50 different heuristics. Shao et al. (2020) and 

Shao et al. (2021) extended the scope of missing operations problems considering distributed hybrid flow 

shop problems. In the first case, the author developed iterated greedy algorithms for a distributed hybrid 

problem, meanwhile in the latter case, the same authors designed and proposed several constructive 

heuristics. In both articles the makespan is considered as objective function. 

 

3. Resolution Approach: Multi Objective Evolutionary Algorithm based on Decomposition 

There are different ways to address multi objective combinatorial optimization problems, such as exact 

approaches based in mathematical programming (Rossit et al., 2020) or heuristic and metaheuristic 

approaches (Toutouh et al., 2020). In complex combinatorial problems, as the one described in this paper, 

metaheuristics are suitable methods to obtain high-quality approximate solutions. Metaheuristics can obtain 

near-optimal solutions for NP-hard problems in very shorter computing times than exact methods (Rossit 

et al., 2021d). Moreover, they can address large realistic problem instances that are difficult to solve with 

exact methods due to long execution times. 
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This article considers a state-of-the-art multi objective evolutionary algorithm (MOEA) for addressing the 

target problem. Unlike the first single-objective genetic algorithms, the MOEAs were designed to solve 

problems in which there are two or more conflicting goals. These algorithms have been successfully applied 

in many real-world applications (Nesmachnow, 2014). Differently to other traditional multi objective 

resolution approaches that work with a weighted function that summarizes all the optimization criteria, 

MOEAs are population-based methods that can find a set of numerous solutions in a single execution. 

MOEAs were mainly devised to pursue two goals at the same time: to approximate the Pareto front of the 

optimization problem with its Pareto-based evolutionary search, and to maintain diversity of the solutions 

-instead of converging to a particular section of the Pareto front- through the use of diversification tools 

(e.g., sharing, crowding). Among the different MOEAs, this article applies a Multi objective Evolutionary 

Algorithm based on Decomposition (MOEA/D). MOEA/D is a well-known evolutionary algorithm that has 

proven to be relatively efficient in comparison with hypervolume-based and Pareto dominance-based 

algorithms in terms of their search ability and computation time (Zhang and Li, 2007) and has been 

successfully and extensively applied in many different application areas.  This algorithm proposes a 

structured approach, generating a decomposition of the solution space in order to ensure broad coverage 

from the beginning (i.e., diversity). Then, to each region, product of the decomposition, it assigns a scalar 

vector and analyzes the dominance according to these scalar vectors (pursuing convergence). The general 

framework of MOEA/D is presented in Algorithm 1. 

 
Algorithm 1: The MOEA/D general framework 
INPUT: the number of the sub-problems considered in MOEA/D, N 
a uniform spread of N weight vectors: w0, …, wN 
the number of the weight vectors in the neighborhood of each weight vector, T 
the maximum number of generations, genmax 
OUTPUT: the set of non-dominated solutions (NS) 
 

Step 0 - Setup: 
NS ← ∅ 

gen ← 0 
Step 1 - Initialization: 
Uniformly randomly generate an initial population, 𝑃(0)={x0

, …, xN} and set the vector of values of the objective functions 

FVi=F(xi) 
Initialize the normalization value z=(z1,...,zn)T with a problem-specific procedure. 
Calculate Tchebychev distances between every possible pair of weight vectors, and then select the T closest weight vectors to each 

weight vector. ∀ i=1,...,N, set B(i)={i1,...,iT}, where wi1…wiT are the T closest weight vectors to wi. 
Step 2 – Solution Update:  

For i = 1,...,N 
Genetic operators: randomly select two solution k,l from B(i)m and then generate a new solution y from xk and xl using crossover 

and mutation operators. 
Update z, ∀ j=1,...,n, if zj < fj(y), then set zj = fj(y). 
Update Neighboring solutions: for each index j∈ B(i), if gte(y|wj,z) <= gte(xj|wj,z), then set xj=y and FVj=F(yj). 
Update NS: delete from NS all the solutions dominated by F(y). 
if no vector in NS dominates F(y), then Add F(y) to NS. 
Step 3 - Stopping criteria 
If gen=genmax, then stop and output NS, otherwise gen=gen+1, go to Step 2. 
 

 

Neighborhood size. Three neighborhood sizes T and, thus, three MOEA/D are considered. The value of 

this parameter is set as 1%, 1.5%, and 3% of the population size for MOEA/D T = 1%, MOEA/D T = 1.5%, 

and MOEA/D T = 3% respectively. These values for the neighborhood size are in line with similar works 

in flow shop problems of the literature (Alhindi and Zhang, 2014). The parameters of the three MOEA/Ds are 

tuned independently. 
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Representation of the solution. The solutions are encoded as a permutation of integers of length equal to 

number of jobs 𝑛 in which each index in the vector represents the processing order in the (first) machine 

and the corresponding integer value represents each one of the jobs to schedule. 

 

Initialization. The population -which is a set of size #𝑃- is initialized by applying a random procedure to 

generate permutations in which no integer value is repeated. Using a uniform probability distribution, each 

value in a solution representation is selected within the range [1,𝑛]. 

 

Crossing and mutation operators. The operator used for recombination is the well-known Partially 

Mapped Crossover (PMX). This crossing operator matches two selected individuals with probability 𝑝𝑐 and 

has been applied in several works addressing permutation-encoded scheduling problems. Then, the 

mutation operator is based on Swap Mutation and it swaps two elements of the permutation. The mutation 

operator is applied to an individual with probability 𝑝𝑚. It is important to highlight that the proposed 

operators guarantee the feasibility of the generated solutions. 

 

Fitness assignment and solution selection and replacement. A Mating Selection procedure to randomly 

select two solutions is applied. These two individuals are randomly selected from the same neighborhood 

(with probability 0.9) or from the whole population (with probability 0.1). Fitness is assigned considering 

the weights assigned to the neighborhood of the solution. And a new solution replaces an older one if it has 

better fitness. 

 

4. Computational Experimentation 

This section presents the results of the computational experiments performed by the proposed MOEA/Ds 

in a set of test instances. In particular, this section describes the test cases used in the experimentation, the 

methodology used for the experimental evaluation, and the main results of the computational tests. 

 

4.1 Description of Instances used in the Experimentation 

To assess the competitiveness of the MOEA/D, a set of problem instances was devised similarly to what 

was performed by other authors of the missing operation flow shop literature, in general (Henneberg and 

Neufeld, 2016), and authors that considered due-date related objective functions, in particular (Toncovich 

et al., 2019). Then, for getting the rest of the parameters to define each flow shop problem different 

statistical distributions were used. For processing times 𝑝𝑖,𝑗, (i stands for machines and j for jobs), the 

integer values are generated following a pseudo-uniform distribution in the interval [0;100]. Given that the 

instances should include missing operations, the probability of missing an operation -the zero value, i.e., 

𝑝𝑖,𝑗 = 0- has a relatively larger value than the rest of the possible processing times -integer values from the 

interval [1;100]- which have relatively lower values. Then, three different sets of instances are created 

considering a probability of skipping an operation of 5%, 10% and 20% in line with realistic values in 

industry. Finally, the due dates of the jobs are calculated using Equation 6. 

 

𝑑𝑗 = 𝑟𝑜𝑢𝑛𝑑(∑𝑖∈𝐼 𝑝𝑖,𝑗(1 + 3 𝑟𝑎𝑛𝑑𝑜𝑚))                                                                                                   (6) 

 

Equation 6 considers all the operations that have to be performed to job 𝑗 plus an extra time which is 

randomly determined by a uniform probability distribution in the interval [0;1]. Then, this sum is rounded 

to the nearest integer. 

 

Additionally, to the variation of the probability of skipping operations, different numbers of jobs and 

machines are used for creating the instances. Regarding the number of jobs (𝑛), the values that were used 
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are: 80, 120 and 150. In terms of the number of machines (𝑚) the values that were used are 20 and 30. 

Finally, the names of the problem instances follows the convention 𝑛 × 𝑚 − 𝑝% − 𝑖, in which 𝑛 is the 

number of jobs, 𝑚 is the number of machines, 𝑝% is the probability of skipping operations, and 𝑖 is an 

ordinal to identify problem instances with the same values of 𝑛, 𝑚, and 𝑝%. For example,  20 × 15 −
10% − 1 and 20 × 15 − 10% − 2 represent two different problem instances of 20 jobs, 15 machines, and 

10% of missing operations.  

 

4.2 Methodology for the Computational Experimentation 

This subsection presents the description of how the computational experimentation of the proposed 

MOEA/Ds is performed. 

 

Implementation details. The implementation of the proposed MOEA/Ds was performed in Java, using the 

framework JMetal version 4.5.2 (publicly available at http://jmetal.sourceforge.net/). Adjustments were 

made to the original framework in two aspects. Firstly, a normalization of the objectives was introduced in 

the internal handling of MOEA/D since the objectives that are addressed in this article have different 

magnitudes and ranges. Thus, the lack of normalization can lead to a deterioration in the MOEA/D 

performance (Ishibuchi and Nojima, 2017). For achieving this a correction factor was used to multiply the 

weights. This correction factor is the relation between the best value of both objectives and is updated in 

every iteration. Secondly, the reference point that was used to calculate the Relative Hypervolume (RHV) 

was modified to correctly get the nadir point -the point conformed by the worst value of each objective 

within the solution of the Pareto front (Figure 1(a))- to calculate the hypervolume. In the original version, 

the reference point was taken from the true Pareto front or approximated Pareto front, i.e., the front that is 

built considering every run of each instance. As it is shown in Figure 1, this can lead to a sub representation 

of the solution space and, thus, affect the RHV. In the modified version, the reference point is selected 

considering all the Pareto fronts obtained for a certain instance. 

 

        

(a) Reference point used by JMetal (b) Reference point used in the modified version 

 

Figure 1. Reference points used for computing the RHV metric. 
 

The experimental evaluation was performed in an HP ProLiant DL380 G9 high end server with two Intel 

Xeon Gold 6138 processors (20 cores each) and 128 GB RAM, from the high performance computing 

infrastructure of National Supercomputing Center, Uruguay (Cluster-UY) (Nesmachnow and Iturriaga, 

2019). 

http://jmetal.sourceforge.net/
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Metrics. The results of the proposed MOEA/Ds are evaluated with two standard metrics for multiobjective 

optimization: spread and Relative Hypervolume (RHV).  Spread is a metric of diversity that evaluates the 

distribution of the non-dominated solutions. Thus, it assesses the capacity of correctly sampling the Pareto 

front. Differently to other typical metrics for distribution, such as spacing, the spread -which its formula is 

defined in Equation (7) (Deb, 2001)- takes into account the information about the extreme points of the true 

Pareto front to calculate a more accurate value of the distribution. In Equation (7), 𝑑ℎ
𝑒  is the distance 

between the extreme point of the Pareto front regarding objective h and the closest non-dominated solution 

in the computed Pareto front; 𝑑𝑖 is the distance between the i-th non-dominated solution in the computed 

Pareto front and the closest neighbor non-dominated solution; and 𝑑̲ is the average value of all 𝑑𝑖. ND and 

k are the number of non-dominated solutions and objectives respectively. 

 

𝑆𝑝𝑟𝑒𝑎𝑑 =
∑𝑘

ℎ=1 𝑑ℎ
𝑒+∑𝑁𝐷

𝑖=1 |𝑑−𝑑𝑖|

∑𝑘
ℎ=1 𝑑ℎ

𝑒+𝑁𝐷 𝑑
.                                                                                                                     (7) 

 

The smaller the value of the spread, the better is the distribution of the non-dominated solutions in the 

calculated Pareto front. Thus, in an ideal equally spaced distribution the spread is equal to zero. 

 

In turn, the relative hypervolume is the ratio between the volumes (in the search space of the objective 

functions) covered by the computed Pareto front and the true Pareto front of the problem. Thus, in an ideal 

situation the value of the RHV is equal to one. Therefore, RHV is a good summary metric that evaluates 

both the numerical accuracy, i.e., proximity of the computed Pareto front to the real Pareto front, and also 

the distribution of the non-dominated solutions. When the true Pareto front for a problem instance is 

unknown, it is estimated with all the non-dominated solutions found in all the resolutions performed for 

that instance. 

 

Statistical analysis for comparison. Since the procedure of the MOEA/Ds have aleatory decisions in its 

functioning, the comparison is performed using adequate statistical methods after performing 30 

independent executions of each version of MOEA/D for each problem instance. Then, a two-step statistical 

analysis is applied (Toutouh et al., 2020). These steps depend on whether the metric to study follows a 

normal distribution or not. On the one hand if the results of the analyzed metric of all the MOEAs follow a 

normal distribution, the first step is to calculate the mean value and the standard deviation (std) to typify 

the sample, and then use the ANOVA procedure to analyze whether there are statistically significant 

differences among the means. On the other hand of the metric of any of the compared MOEAs does not 

have a normal distribution, the first step is to calculate the median and interquartile range (IQR) to typify 

the sample, and then the non-parametric Kruskal-Wallis procedure is used to analyze the differences among 

the medians of the different algorithms. 

 

Parameters setting. The selection of the best parametric configuration was also performed by the 

application of statistical analysis. This was used to set the values of the three main parameters of the studied 

MOEA/Ds: the population size #P, the crossover probability pc and the mutation probability pm. For the 

population size the tested values were 100 and 200 individuals. For the crossover probability the tested 

values were 0.5, 0.7 and 0.9. Finally, for the mutation probability the tested values were 0.01, 0.05 and 0.1. 

Thus, a total of fifteen parametric configurations were analyzed. The analysis was based on the RHV since, 

as aforementioned, it is a good summary metric. As a stopping condition, the maximum number of 

evaluations of the objective function for the executions for the parameters setting was set to 100,000. Three 

instances of size 𝑛 = 15 , m 𝑚 = 20 and %𝑝 = 15 were used for this analysis. These instances are different 

from the ones used for the normal computational experimentation of Section 4.3 to avoid bias. For each 

combination of instance and parametric configuration -(pc, pm, P)-, 50 independent executions were 
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performed with each MOEA/D. To test the goodness of fit of the RHV results to the standard normal 

distribution, the Shapiro-Wilk test was used. This test determined that RHV values did not adjust to a 

normal distribution. Thus, the values were analyzed with the Friedman rank test, which is non-parametric, 

in order to determine the configuration that allowed computing the best results (Table 1). Since 15 

parametric configurations were tested, this rank orders the configurations from the worst -expressed with 

number 1- to the best configuration -expressed with number 15-. For the MOEA/D T = 1% and MOEA/D 

T = 1.5%, the parametric configuration that allowed computing the best results is pc = 0.9, pm = 0.05, and 

#P = 200. In the case of the MOEA/D T = 3% the used configuration is pc = 0.9, pm = 0.1, and #P = 200. 

Thus, these parametric configurations are used to compute the results of Section 4.3. 

 
Table 1. Parametric setting of the MOEA/Ds using the Friedman rank test. 

 

Parametric 

configuration 

(pc, pm,#P) 

Instances 

Instance 1 Instance 2 Instance 3 

T = 1% T = 1.5% T = 3% T = 1% T = 1.5% T = 3% T = 1% T = 1.5% T = 3% 

(0.5,0.01,100) 1 3 1 1 1 1 1 1 1 

(0.7,0.01,100) 4 4 3 2 3 3 2 3 4 

(0.9,0.01,100) 3 1 4 4 2 5 3 2 5 

(0.5,0.05,100) 8 7 6 8 7 12 7 8 8 

(0.7,0.05,100) 9 8 8 9 9 9 9 9 9 

(0.9,0.05,100) 11 6 10 10 12 11 11 10 11 

(0.5,0.1,100) 10 14 13 13 16 13 15 13 14 

(0.7,0.1,100) 14 11 16 18 15 17 16 14 17 

(0.9,0.1,100) 12 13 12 16 11 18 17 15 16 

(0.5,0.01,200) 2 2 2 3 4 2 4 5 2 

(0.7,0.01,200) 5 5 5 5 5 4 5 4 3 

(0.9,0.01,200) 6 10 9 6 6 6 6 6 6 

(0.5,0.05,200) 7 9 7 7 8 7 8 7 7 

(0.7,0.05,200) 13 16 11 11 13 10 10 12 10 

(0.9,0.05,200) 18 18 17 17 18 8 18 18 13 

(0.5,0.1,200) 17 12 15 14 17 16 13 17 12 

(0.7,0.1,200) 16 17 14 15 14 15 12 16 15 

(0.9,0.1,200) 15 15 18 12 10 14 14 11 18 

 

 

4.3 Results of Test Instances 
This subsection describes the result of the computational experimentation. 

 

Metrics for multi objective optimization. Tables 2 and 3 show the results obtained by the MOEA(Ds of 

the RHV and spread respectively. The Tables show from left to right and each table reports for each instance 

and for the corresponding metric computed for each MOEA: the test used to study if the differences among 

the medians or averages are statistically significant (i.e., Kruskal-Wallis for analyzing medians and 

ANOVA for analyzing maverages); and the smallest or minimal value, the median or average value, the 

largest or maximal value, and the measure used for representing dispersion of the results (standard deviation 

for normal distributions or the interquartile range for non-parametric distributions). 
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In the aforementioned Tables 2 and 3, data of special interest for this study was highlighted. The best results 

for each metric are shown in bold. Some results were marked with an asterisk to indicate the cases in which 

the statistical test verified a significant statistical difference with respect to the rest of the MOEA/Ds, 

considering a confidence level of 95% (p-value of this statistical test is less than 0.05). 

 

According to Table 2, MOEA/D with T = 3% outperformed the other two MOEA/D in all the instances in 

terms of mean/median RHV. In terms of maximum RHV MOEA/D T = 3% present better results for all the 

instances except for instance 80×20-20-2. The best global RHV result was obtained for instance 150×30-

5-2 by MOEA/D T = 3% (0.9965). Additionally, MOEA/D with T = 3% obtained RHV values larger than 

0.9 for eight instances. 
 

 

Table 2. Results of the RHV metric of each MOEA/D. 
 

Instance Test T = 1% T = 1.5% T = 3% 

min mean/ 

median 

max σ/IQR min mean/ 

median 

max σ/IQR min mean/ 

median 

max σ/IQR 

120×20-10-1 ANOVA 0.2137 0.3943 0.6320 0.1072 0.1683 0.4209 0.6535 0.1081 0.3536 *0.5694 0.8340 0.1370 

120×20-10-2 ANOVA 0.1721 0.4137 0.6037 0.1065 0.1217 0.4505 0.7698 0.1505 0.3679 *0.5834 0.9420 0.1489 

120×30-10-1 ANOVA 0.1948 0.5051 0.8117 0.1236 0.1226 0.5555 0.8100 0.1507 0.3930 *0.6973 0.9541 0.1306 

120×30-10-2 ANOVA 0.2497 0.3982 0.5823 0.0880 0.1686 0.3694 0.6985 0.0999 0.3166 *0.5609 0.8356 0.1163 

150×30-10-1 ANOVA 0.1762 0.3616 0.6495 0.1114 0.1301 0.3581 0.5693 0.1243 0.3479 *0.6035 0.9435 0.1336 

150×30-10-2 ANOVA 0.0974 0.4160 0.5882 0.1165 0.1914 0.4380 0.7384 0.1263 0.3802 *0.6213 0.8579 0.1218 

40×20-10-1 Kruskal-Wallis 0.4028 0.6087 0.7489 0.0826 0.4133 0.6232 0.7142 0.0686 0.4904 0.6910 0.7996 0.1036 

40×20-10-2 Kruskal-Wallis 0.5721 0.7348 0.8232 0.0751 0.6413 0.7384 0.8001 0.0716 0.6816 0.7732 0.8490 0.0756 

80×20-10-1 Kruskal-Wallis 0.2605 0.4288 0.7723 0.1356 0.2261 0.4527 0.8748 0.1467 0.1761 0.5876 0.8615 0.2324 

80×20-10-2 ANOVA 0.2490 0.4574 0.6212 0.0970 0.2098 0.4703 0.6727 0.1220 0.2422 *0.5752 0.9427 0.1570 

120×20-20-1 ANOVA 0.1165 0.4281 0.6905 0.1457 0.1547 0.3967 0.8355 0.1535 0.2971 *0.5277 0.7672 0.1145 

120×20-20-2 Kruskal-Wallis 0.2076 0.3596 0.8598 0.2066 0.1428 0.4591 0.6902 0.1728 0.3883 0.6364 0.8755 0.1899 

120×30-20-1 ANOVA 0.2111 0.4218 0.7178 0.1150 0.2320 0.4827 0.7145 0.1210 0.2848 *0.6117 0.8557 0.1336 

120×30-20-2 Kruskal-Wallis 0.1981 0.4322 0.6628 0.1403 0.2722 0.4545 0.6593 0.1175 0.3602 0.5581 0.8770 0.1875 

150×30-20-1 ANOVA 0.1172 0.3569 0.5950 0.1115 0.0906 0.4231 0.8552 0.1716 0.2424 *0.5447 0.9471 0.1524 

150×30-20-2 ANOVA 0.0745 0.3399 0.5234 0.1093 0.1874 0.4254 0.7607 0.1384 0.2210 *0.5845 0.8752 0.1699 

40×20-20-1 Kruskal-Wallis 0.5281 0.6686 0.7860 0.0752 0.4566 0.6765 0.8168 0.1363 0.5357 0.7248 0.8488 0.0519 

40×20-20-2 ANOVA 0.5086 0.6600 0.8193 0.0717 0.5320 0.6524 0.7958 0.0668 0.5877 *0.7066 0.8439 0.0695 

80×20-20-1 ANOVA 0.2665 0.5352 0.7416 0.1037 0.2448 0.5182 0.8238 0.1388 0.4182 *0.6520 0.8961 0.1282 

80×20-20-2 ANOVA 0.1839 0.4158 0.6595 0.1240 0.1529 0.4546 0.8177 0.1585 0.1916 *0.5710 0.7837 0.1235 

120×20-5-1 ANOVA 0.1892 0.4091 0.5993 0.1051 0.1308 0.4192 0.7382 0.1292 0.2214 *0.5466 0.8522 0.1426 

120×20-5-2 ANOVA 0.1974 0.3869 0.5886 0.0921 0.2223 0.3830 0.6258 0.1044 0.3372 *0.5324 0.9035 0.1280 

120×30-5-1 Kruskal-Wallis 0.1714 0.3356 0.6376 0.1306 0.1899 0.3672 0.6127 0.1451 0.3692 0.4889 0.9599 0.1520 

120×30-5-2 ANOVA 0.1230 0.4138 0.6594 0.1268 0.2140 0.4476 0.6640 0.1143 0.1627 *0.5529 0.7768 0.1483 

150×30-5-1 ANOVA 0.0686 0.3112 0.6907 0.1364 0.1380 0.3327 0.6437 0.1156 0.1686 *0.4875 0.8241 0.1525 

150×30-5-2 ANOVA 0.2156 0.4371 0.6505 0.1301 0.1547 0.4464 0.8364 0.1513 0.2565 *0.5991 0.9965 0.1852 

40×20-5-1 ANOVA 0.4058 0.5758 0.7668 0.0803 0.4795 0.6034 0.7277 0.0753 0.5251 *0.6582 0.8377 0.0758 

40×20-5-2 ANOVA 0.4724 0.6087 0.7334 0.0654 0.4352 0.5927 0.7446 0.0649 0.5358 0.6309 0.7941 0.0563 

80×20-5-1 ANOVA 0.2048 0.3813 0.6068 0.1005 0.2889 0.4664 0.6755 0.0929 0.2200 *0.5524 0.7456 0.1325 

80×20-5-2 ANOVA 0.2467 0.5138 0.6971 0.1123 0.2963 0.5232 0.8022 0.1200 0.3355 *0.6248 0.8486 0.1500 
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In terms of the spread metric for multi objective optimization, MOEA/D T = 1% obtained the best 

median/mean value in 14 out of 30 instances while MOEA/D T = 1.5% in the other 16 instances. Regarding 

the smallest spread value, MOEA/D with T = 1% computed the best results in 16 instances, MOEA/D T = 

1.5% in 12 instances, and MOEA/D with T = 3% only in 3 instances. The overall smallest value is 1.0000 

and is obtained for instances 120×20-10-2, 120×30-10-1, 120×20-20-1 by MOEA/D T = 1%, instance 

80×20-5-1 for MOEA/D T = 1.5%, and instances 120×20-20-1 and 80×20-5-2 by MOEA/D T = 3%. The 

same minimal spread value of 1.0000 is obtained by MOEA/D with T = 1% and MOEA/D T = 3% for 

instance 120×20-20-1. 

 

 

Table 3. Results of the spread metric for each MOEA/D. 
 

Instance Test  

T = 1% 
T = 1.5% T = 3% 

min mean/ 

median 

max σ/IQR min mean/ 

median 

max σ/IQR min mean/ 

median 

max σ/IQR 

120×20-10-1 ANOVA 1.0812 1.2156 1.4356 0.0900 1.0826 1.2530 1.4944 0.0959 1.1781 1.3386 1.4863 0.0856 

120×20-10-2 Kruskal-Wallis 1.0000 1.2302 1.4897 0.1087 1.0673 1.2247 1.4879 0.0946 1.0377 1.2905 1.7373 0.1404 

120×30-10-1 Kruskal-Wallis 1.0000 1.1896 1.4421 0.0472 1.0502 1.2185 1.4163 0.1361 1.0725 1.2413 1.5799 0.1174 

120×30-10-2 ANOVA 1.0562 1.2663 1.4243 0.0802 1.0816 1.2487 1.4513 0.0755 1.1863 1.3248 1.4428 0.0712 

150×30-10-1 ANOVA 1.0663 1.2616 1.4854 0.1191 1.0497 1.2350 1.3747 0.0889 1.1291 1.3381 1.5159 0.1025 

150×30-10-2 ANOVA 1.0757 1.2113 1.3570 0.0769 1.0750 1.2053 1.3941 0.0873 1.0624 1.2714 1.4391 0.1117 

40×20-10-1 ANOVA 1.2695 1.4835 1.7227 0.1022 1.3386 1.4852 1.6187 0.0806 1.3166 1.4983 1.7006 0.0889 

40×20-10-2 Kruskal-Wallis 1.4262 1.5141 1.6249 0.0824 1.3925 1.4891 1.6249 0.0627 1.2993 1.5049 1.5510 0.0742 

80×20-10-1 ANOVA 1.1081 1.2571 1.4846 0.0941 1.0120 1.2324 1.5275 0.1066 1.0371 1.3003 1.5767 0.1216 

80×20-10-2 ANOVA 1.0667 1.3012 1.4274 0.0894 1.0465 1.2805 1.4325 0.1077 1.1096 1.3633 1.5115 0.0984 

120×20-20-1 ANOVA 1.0000 1.2498 1.5529 0.1156 1.0376 1.2244 1.5637 0.1198 1.0000 1.2663 1.4500 0.1114 

120×20-20-2 ANOVA 1.0759 1.2288 1.3752 0.0808 1.0227 1.2282 1.4383 0.0939 1.1336 1.3161 1.5896 0.1076 

120×30-20-1 Kruskal-Wallis 1.0863 1.2589 1.4157 0.1172 1.0968 1.3133 1.5632 0.1415 1.2254 1.3119 1.5457 0.1806 

120×30-20-2 ANOVA 1.1507 1.2566 1.4481 0.0658 1.1336 1.2650 1.4352 0.0695 1.1189 1.3233 1.5786 0.1156 

150×30-20-1 ANOVA 1.0309 1.1867 1.3424 0.0797 1.0784 1.2180 1.4777 0.0995 1.0837 1.2689 1.5638 0.0973 

150×30-20-2 ANOVA 1.0540 1.1835 1.3395 0.0661 1.0697 1.1892 1.3996 0.0821 1.1408 1.2734 1.5401 0.1045 

40×20-20-1 ANOVA 1.2600 1.3865 1.5643 0.0788 1.1899 1.4007 1.6305 0.1086 1.1997 1.4142 1.5797 0.0882 

40×20-20-2 ANOVA 1.3498 1.4821 1.6159 0.0646 1.3842 1.4840 1.5969 0.0614 1.3729 1.5035 1.6275 0.0685 

80×20-20-1 ANOVA 1.1570 1.3676 1.5432 0.1068 1.1742 1.3499 1.5492 0.0932 1.1667 1.3985 1.6187 0.1168 

80×20-20-2 ANOVA 1.1080 1.2785 1.4348 0.0835 1.0415 *1.2322 1.4446 0.0859 1.1090 1.3186 1.5793 0.1145 

120×20-5-1 Kruskal-Wallis 1.0718 1.2513 1.4447 0.1058 1.0383 1.2747 1.3984 0.0890 1.1308 1.3462 1.4278 0.0852 

120×20-5-2 ANOVA 1.0567 1.2167 1.3956 0.0879 1.0934 1.2190 1.4096 0.0748 1.1369 1.2787 1.5498 0.0968 

120×30-5-1 ANOVA 1.0309 1.2156 1.4131 0.0759 1.0919 1.2408 1.4106 0.0805 1.1292 1.2952 1.5305 0.1114 

120×30-5-2 ANOVA 1.0491 1.2577 1.4182 0.1035 1.1144 1.2476 1.4068 0.0702 1.1658 1.3168 1.4915 0.0809 

150×30-5-1 Kruskal-Wallis 1.0873 1.1717 1.3206 0.0724 1.0814 1.1867 1.4270 0.1168 1.1428 1.2542 1.5921 0.1872 

150×30-5-2 Kruskal-Wallis 1.0481 1.1632 1.2679 0.0658 1.0672 1.1574 1.3361 0.0627 1.0930 1.2261 1.9196 0.1037 

40×20-5-1 Kruskal-Wallis 1.2974 1.4694 1.6993 0.1144 1.1350 1.4585 1.6101 0.0957 1.1722 1.4652 1.6951 0.1432 

40×20-5-2 ANOVA 1.2594 1.4698 1.6643 0.0905 1.2822 1.4371 1.5852 0.0945 1.2825 1.4637 1.6407 0.0883 

80×20-5-1 ANOVA 1.0297 1.2645 1.4945 0.0969 1.0000 1.3031 1.5836 0.1117 1.1179 1.3459 1.6324 0.1350 

80×20-5-2 ANOVA 1.1654 1.3511 1.5715 0.1036 1.1228 1.3299 1.5385 0.1125 1.0000 1.3493 1.5745 0.1299 
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Distance between the ideal vector and the best trade-off or compromising solution. To explain the 

calculation of this metric, Figure 2 is introduced. This Figure shows a generic minimization problem with 2 

objective functions 𝑓1(𝑥)and 𝑓2(𝑥), and the ideal vector or solution which is represented with a yellow point. 

That point is obtained by combining the best values achieved in any execution for each objective function 

and, thus, it is an unattainable point. Then, within the calculated Pareto front, the best compromising or trade-

off solution is marked with a red point. This solution is obtained by selecting the solution of the Pareto front 

that minimizes the distance to the ideal solution (yellow point), using in this case the Euclidean distance. Then, 

Table 4 shows the Euclidean distances between the best compromising solution obtained by each MOEA and 

the ideal solution in each instance. These distances are expressed in terms of percentage difference with 

respect to the ideal vector considering each of the objective functions, i.e.,  Total Tardiness (𝛿𝑇) and Makespan 

(𝛿𝐶) respectively, and finally a global deviation ∆, which is obtained through Equation (8). 
 

∆= √∑𝑜∈𝑂 (
𝑣𝑎𝑙𝑢𝑒−𝑖𝑑𝑒𝑎𝑙𝑜

𝑖𝑑𝑒𝑎𝑙𝑜
)

2
                                                                                                                         (8) 

 

 
 

Figure 2. Representation of the ideal solution or vector of the instance and the best compromising solution achieved 

by each algorithm. 

 

Analyzing the results of the distance between the ideal solution and the solution with the best-trade-off 

shown in Table 4, it can be concluded that the three MOEAs obtain, in general, accurate solutions for most 

of the instances. The exceptions are compromising solutions obtained in the instances with the smallest 

number of jobs (type 40x20). In those instances the distance to the value of the objective total tardiness is 

much larger, contributing with a larger overall deviation ∆. Conversely, for this subset of instances the 

distance to the makespan is much smaller and in line with the values obtained for the rest of the instances. 

 

Regarding the comparison among the MOEA/Ds, similar to the results of the RHV metric, the situation is 

more favorable to the MOEA/D T = 3%. Indeed, MOEA/D T = 3% outperforms the other two algorithms 

in 22 out of 30 instances in terms of difference from the ideal solution for total tardiness, 23 out of 30 

instances in terms of difference from the ideal solution for makespan, and 22 out of 30 instances in the 

overall deviation. MOEA/D T = 1% outperforms the other two algorithms in 8 out of 30 instances in terms 

of difference from the ideal solution for total tardiness, and 8 out of 30 instances in the overall deviation 

while MOEA/D T = 1% obtains the compromising solution with the smallest distance to the ideal vector in 

terms of makespan in 8 out of 30 instances. 
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The solution with the smallest distances were all obtained by MOEA/D T = 3%: in terms of total tardiness 

is 0.13% for instance 120×20-10-1, in terms of makespan is 0.01% for instance 120×30-10-1, and 0.39% 

in terms of overall distance for instance 150×30-5-2. MOEA/D T = 3% also outperformed the other two 

when considering the average values. 

 

 
Table 4. Distance of the best trade-off solution obtained with MOEA/D to the ideal vector. 

 

Instance 
T = 1% T = 1.5% T = 3% 

𝛿𝑇 𝛿𝐶𝑚𝑎𝑥
 ∆ 𝛿𝑇 𝛿𝐶𝑚𝑎𝑥

 ∆ 𝛿𝑇 𝛿𝐶𝑚𝑎𝑥
 ∆ 

120×20-10-1 2.86% 1.51% 3.23% 4.08% 1.07% 4.22% 0.13% 1.06% 1.07% 

120×20-10-2 3.45% 1.46% 3.74% 1.60% 1.33% 2.08% 1.07% 0.77% 1.31% 

120×30-10-1 1.26% 1.02% 1.62% 1.58% 0.87% 1.80% 0.99% 0.01% 0.99% 

120×30-10-2 6.26% 1.84% 6.52% 3.13% 1.45% 3.46% 1.25% 1.25% 1.77% 

150×30-10-1 1.36% 1.85% 2.30% 3.84% 1.07% 3.99% 0.85% 0.38% 0.93% 

150×30-10-2 3.83% 1.54% 4.13% 3.55% 0.51% 3.59% 1.87% 0.46% 1.93% 

40×20-10-1 36.91% 2.35% 36.98% 30.98% 2.42% 31.08% 27.57% 2.26% 27.67% 

40×20-10-2 88.02% 2.31% 88.05% 92.77% 2.94% 92.82% 101.70% 2.01% 101.72% 

80×20-10-1 3.36% 1.30% 3.60% 3.09% 0.24% 3.10% 2.25% 0.72% 2.37% 

80×20-10-2 5.52% 1.94% 5.85% 5.24% 1.74% 5.53% 0.82% 0.49% 0.96% 

120×20-20-1 2.22% 1.82% 2.87% 3.51% 0.05% 3.51% 3.83% 0.54% 3.87% 

120×20-20-2 0.53% 0.72% 0.90% 1.32% 1.93% 2.34% 1.31% 0.45% 1.38% 

120×30-20-1 1.16% 1.46% 1.87% 1.23% 1.41% 1.87% 0.36% 0.82% 0.90% 

120×30-20-2 3.60% 1.58% 3.93% 5.05% 1.08% 5.16% 2.22% 0.62% 2.31% 

150×30-20-1 1.98% 1.75% 2.65% 1.65% 0.53% 1.73% 0.15% 0.38% 0.41% 

150×30-20-2 4.01% 1.58% 4.31% 2.71% 0.82% 2.83% 0.45% 0.62% 0.77% 

40×20-20-1 79.92% 2.27% 79.95% 89.00% 1.43% 89.01% 86.28% 1.81% 86.30% 

40×20-20-2 52.10% 4.23% 52.28% 70.18% 3.25% 70.25% 60.59% 3.15% 60.67% 

80×20-20-1 3.15% 2.54% 4.05% 3.97% 1.89% 4.40% 2.27% 1.28% 2.61% 

80×20-20-2 4.41% 2.46% 5.05% 3.18% 1.51% 3.52% 1.43% 2.08% 2.52% 

120×20-5-1 2.37% 1.69% 2.91% 1.78% 1.05% 2.07% 1.46% 0.84% 1.68% 

120×20-5-2 3.36% 1.41% 3.64% 1.58% 1.99% 2.54% 0.18% 0.61% 0.63% 

120×30-5-1 5.22% 1.06% 5.33% 3.98% 1.51% 4.26% 1.21% 0.51% 1.31% 

120×30-5-2 4.35% 1.22% 4.52% 3.71% 1.06% 3.86% 2.07% 1.15% 2.37% 

150×30-5-1 1.86% 1.23% 2.23% 2.49% 0.91% 2.65% 2.34% 0.45% 2.38% 

150×30-5-2 3.12% 0.94% 3.26% 1.26% 0.78% 1.48% 0.37% 0.13% 0.39% 

40×20-5-1 24.83% 2.56% 24.97% 25.31% 2.59% 25.45% 36.04% 1.30% 36.07% 

40×20-5-2 42.50% 2.43% 42.57% 60.00% 2.08% 60.04% 54.82% 2.28% 54.87% 

80×20-5-1 4.18% 1.90% 4.59% 3.37% 1.43% 3.66% 1.98% 1.60% 2.55% 

80×20-5-2 4.31% 1.39% 4.52% 3.00% 0.85% 3.12% 2.38% 0.94% 2.56% 

Average 13.40% 1.78% 13.75% 14.60% 1.39% 14.85% 13.34% 1.03% 13.57% 

 
Results for the consolidated Pareto fronts. The consolidated Pareto fronts are obtained from all the non-

dominated solutions obtained by each MOEA for each instance of the problem considering the 30 

independent executions. Table 5 presents the results of this metric. 



Rossit et al.: A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow… 
 

 

 446 | Vol. 7, No. 4, 2022 

Considering RHV, MOEA/D T = 3% obtained a better consolidated Pareto front in 24 out of 30 instances, 

MOEA/D T = 1.5% in 4 out of 30 instances and MOEA/D T = 1% in the other two instances. The highest 

value of RHV for the consolidated Pareto front is 0.8767 and is achieved by MOEA/D T = 3% for instance 

150×30-10-1. 

 

Once again, the performance of the MOEA/D T = 3% to achieve proper distribution and spacing of non-

dominated solutions in the computed Pareto fronts is less effective in comparison to the other algorithms. 

Considering spread, MOEA/D T = 1% obtained a better consolidated Pareto front in 14 out of 30 instances, 

MOEA/D T = 1.5% in 11 out of 30 instances and MOEA/D T = 3% in the other five instances. The minimal 

value of spread for the consolidated Pareto front is 1.0830 and is achieved by MOEA/D T = 1% for instance 

120×20-10-1. 

 
Table 5. Results of the consolidated Pareto fronts metric for each MOEA/D. 

 

Instance 
T = 1% T = 1.5% T = 3% 

RHV spread RHV spread RHV spread 

120×20-10-1 0.433 1.083 0.352 1.2636 0.6468 1.4582 

120×20-10-2 0.4344 1.1771 0.3733 1.2118 0.5984 1.3648 

120×30-10-1 0.5633 1.1601 0.5799 1.3244 0.627 1.2859 

120×30-10-2 0.3606 1.2356 0.2584 1.1354 0.7418 1.3055 

150×30-10-1 0.3218 1.2532 0.4565 1.2479 0.8767 1.4589 

150×30-10-2 0.4908 1.3435 0.4216 1.1748 0.6175 1.1188 

40×20-10-1 0.5652 1.4595 0.6511 1.5043 0.6965 1.4807 

40×20-10-2 0.6184 1.4375 0.7398 1.4439 0.6816 1.5104 

80×20-10-1 0.4894 1.2413 0.4468 1.2335 0.3533 1.1423 

80×20-10-2 0.272 1.3467 0.527 1.2535 0.5982 1.3165 

120×20-20-1 0.4819 1.2753 0.4205 1.2628 0.4356 1.2619 

120×20-20-2 0.2076 1.2062 0.1428 1.1225 0.8527 1.5896 

120×30-20-1 0.3034 1.3634 0.4445 1.2287 0.7096 1.2543 

120×30-20-2 0.4407 1.2099 0.4765 1.2711 0.5971 1.324 

150×30-20-1 0.353 1.1309 0.4353 1.2217 0.4561 1.3687 

150×30-20-2 0.3582 1.1903 0.4216 1.1979 0.6615 1.2338 

40×20-20-1 0.7342 1.304 0.6879 1.4372 0.7628 1.4314 

40×20-20-2 0.7119 1.6029 0.7434 1.4219 0.7047 1.5426 

80×20-20-1 0.5304 1.3902 0.3832 1.1742 0.8207 1.5011 

80×20-20-2 0.2724 1.2008 0.4807 1.2072 0.6059 1.2043 

120×20-5-1 0.3741 1.3091 0.4944 1.3984 0.7146 1.3167 

120×20-5-2 0.3437 1.3075 0.2223 1.0934 0.4981 1.3279 

120×30-5-1 0.4035 1.2746 0.4578 1.3507 0.5665 1.2059 

120×30-5-2 0.4213 1.2981 0.2828 1.1935 0.5576 1.2516 

150×30-5-1 0.2083 1.1264 0.2824 1.1403 0.7424 1.4164 

150×30-5-2 0.5407 1.1052 0.3578 1.1582 0.6204 1.2391 

40×20-5-1 0.4964 1.4105 0.4795 1.2952 0.7376 1.6269 

40×20-5-2 0.4947 1.527 0.6735 1.5401 0.5358 1.4688 

80×20-5-1 0.4412 1.3179 0.2889 1.2956 0.6115 1.4614 

80×20-5-2 0.6879 1.2242 0.8022 1.5385 0.4868 1.4336 
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As a graphic presentation of the general results, Figure 3 is introduced. In this Figure, the consolidated Pareto 

fronts are presented for three representative cases. In the case of the instance 80x20-20-1, the Pareto front 

computed by MOEA/D T = 3% dominates the results of the other two MOEAs. MOEA/D T = 1% presents 

a good distribution of solutions. In Figure 4 this is even more evident, having a larger distance between some 

of the solutions of the Pareto front of MOEA/D T = 3% and the solutions of the other two MOEAs, especially 

MOEA/D T = 1%. but SPEA2 was able to better sample solutions with the lowest values of the makespan 

objective. In 40x20-10-1, the performance among the MOEAs is more similar. This type of instance, i.e., 

40x20, is the type in which the worst distances to the ideal vector are achieved (Table 4). 
 

 
(a) Instance 80x20-20-1.                                             (b) Instance 150x30-10-2. 

 
(c) Instance 40x20-10-1. 

Figure 3. Pareto fronts of MOEA/Ds for representative problem instances. 

 

 

Comparison to baseline NSGAII and SPEA2 results. Tables 6-8 present the comparison with two state-

of-art metaheuristic NSGAII and SPEA2 on a subset of instances. The NSGAII and SPEA2 were developed 

in Rossit et al. (2021c) and are used as baseline for comparison, since they applied the same evolutionary 

operators as the proposed MOEA/Ds. Using the values in Rossit et al. (2021c) as a baseline, Table 6 and 7 

compare the RHV and spread respectively. Regarding RHV values of Table 6, no highest value was found 

to be significantly different to the rest of the values of RHV, applying the statistical tests. MOEA/D using 

T = 3% outperformed the rest of the algorithms in 12 out of 24 instances, whereas NSGAII outperforms the 

other four algorithms in 8 out of 24 instances. Finally, SPEA2 achieves the highest RHV in 4 out of 24 
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instances. MOEA/D T = 1%, MOEA/D T = 1.5% seem not to be competitive in terms of RHV.  The best 

RHV is 0.6968 and is obtained for instance 80×20-5-2 by NSGAII. 

 
Table 6. RHV comparison with baseline NSGAII and SPEA2. 

 

Instance Test 
MOEA/D T = 1% 

MOEA/D T = 

1.5% MOEA/D T = 3% NSGAII SPEA2 

Mean 

/median σ/IQR 

mean/ 

median σ/IQR 

mean/ 

median σ/IQR 

Mean 

/median σ/IQR 

mean/ 

median σ/IQR 

120×20-10-1 Kruskal-Wallis 0.3764 0.1510 0.4024 0.1169 0.4962 0.1802 0.5781 0.1315 0.4747 0.1831 

120×20-10-2 ANOVA 0.3726 0.0929 0.4049 0.1308 0.5204 0.1297 0.5727 0.1336 0.5109 0.1348 

120×30-10-1 ANOVA 0.4115 0.1007 0.4526 0.1228 0.568 0.1064 0.5688 0.1071 0.5814 0.1612 

120×30-10-2 ANOVA 0.4189 0.0863 0.3918 0.098 0.5749 0.1137 0.5214 0.1158 0.4988 0.1181 

150×30-10-1 ANOVA 0.3372 0.1013 0.3331 0.112 0.5537 0.1197 0.5118 0.1222 0.4879 0.1525 

150×30-10-2 ANOVA 0.3932 0.1102 0.414 0.1194 0.5872 0.1151 0.5838 0.1324 0.5812 0.1264 

80×20-10-1 Kruskal-Wallis 0.4803 0.1377 0.5012 0.1445 0.6244 0.2111 0.6540 0.1518 0.6042 0.1946 

80×20-10-2 ANOVA 0.4646 0.0865 0.475 0.1097 0.5694 0.1394 0.5612 0.0938 0.5246 0.1322 

120×20-20-1 ANOVA 0.4392 0.1409 0.4082 0.1427 0.5251 0.1036 0.5440 0.129 0.5517 0.0958 

120×20-20-2 Kruskal-Wallis 0.4329 0.1961 0.5133 0.1373 0.6717 0.1675 0.6281 0.1697 0.6138 0.1828 

120×30-20-1 ANOVA 0.3603 0.0903 0.408 0.0947 0.5108 0.1044 0.4516 0.117 0.4707 0.1515 

120×30-20-2 Kruskal-Wallis 0.417 0.1195 0.4343 0.0826 0.5193 0.1488 0.5691 0.165 0.5427 0.1384 

150×30-20-1 ANOVA 0.413 0.1061 0.4752 0.1591 0.5884 0.1386 0.5728 0.1181 0.5495 0.1027 

150×30-20-2 ANOVA 0.3521 0.0927 0.4223 0.1145 0.5525 0.1382 0.5129 0.1167 0.512 0.1281 

80×20-20-1 ANOVA 0.482 0.0713 0.4711 0.0972 0.568 0.0904 0.5876 0.1133 0.6027 0.1016 

80×20-20-2 ANOVA 0.4566 0.1083 0.4958 0.1461 0.5988 0.1062 0.5904 0.1355 0.5767 0.1458 

120×20-5-1 ANOVA 0.4426 0.0943 0.4511 0.113 0.5648 0.1269 0.6065 0.1441 0.5262 0.1257 

120×20-5-2 ANOVA 0.4224 0.0827 0.424 0.0882 0.5493 0.1071 0.5467 0.1167 0.5147 0.0997 

120×30-5-1 Kruskal-Wallis 0.331 0.1281 0.3618 0.1432 0.4810 0.1491 0.4855 0.2275 0.4959 0.2124 

120×30-5-2 ANOVA 0.4221 0.115 0.4531 0.1026 0.5485 0.136 0.5108 0.1032 0.5241 0.1265 

150×30-5-1 ANOVA 0.3116 0.1363 0.3331 0.1156 0.4878 0.1524 0.4197 0.1271 0.4332 0.119 

150×30-5-2 ANOVA 0.4518 0.1127 0.4592 0.1307 0.5908 0.1578 0.6006 0.1329 0.5285 0.1048 

80×20-5-1 ANOVA 0.4223 0.0892 0.4984 0.0813 0.5718 0.1163 0.607 0.1318 0.5821 0.1369 

80×20-5-2 ANOVA 0.5547 0.0801 0.5622 0.097 0.6386 0.1101 0.6968 0.0914 0.6745 0.1122 

 

 

Concerning spread values, results in Table 7 indicate that the best algorithms are MOEA/D using T=1% 

and T=1.5%. Using T=1% outperformed the other four MOEAs in 12 out of 24 instances and using T=1.5% 

in 10 out of 24 instances. Finally, SPEA2 achieves the best value in 2 instances. The overall smallest value 

is 1.1717 and is obtained by MOEA/D T=1% in instance 150×30-5-1. Only the value of MOEA/D T=1.5% 

in instance 80×20-20-2 was found to be statistically different. 

 

Table 8 presents the distance to the ideal vector similarly to Table 4. In terms of total tardiness, MOEA/D 

T=1% is able to compute the solution with the smallest difference in 2 out of 24 instances, MOEA/D T=3%  

in 12 out of 24 instances, NSGAII in 7 out of 24 instances and finally SPEA2 in 3 out of 24 instances. In 

terms of makespan the results are more balanced among MOEA/D T=3%, NSGAII and SPEA2 obtaining 

6, 9 and 8 out of 24 instances respectively. The overall distance best results are also mostly concentrated 
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between MOEA/D T=3%, NSGAII and SPEA2 achieving the best result in 12, 6 and 4 out of 24 instances 

respectively. The minimum distance for total tardiness is 0.15% and is achieved by MOEA/D T=3% for 

instance 150×30-20-1. Regarding makespan the smallest value is 0.23% and is reached by NSGAII for 

instance 120×20-5-2. Finally, the overall distance smallest value is 0.41% obtained by MOEA/D T=3% for 

instance 150×30-20-1. 

 

 
Table 7. Spread comparison with baseline NSGAII and SPEA2. 

 

Instance Test 

MOEA/D T = 1% 
MOEA/D T = 

1.5% 
MOEA/D T = 3% NSGAII SPEA2 

mean/ 

median 
σ/IQR 

mean 

/median 
σ/IQR 

mean 

/median 
σ/IQR 

mean/ 

median 
σ/IQR 

mean/ 

median 
σ/IQR 

120×20-10-1 ANOVA 1.2054 0.0871 1.2379 0.0928 1.3122 0.0824 1.3777 0.1009 1.3005 0.0742 

120×20-10-2 Kruskal-Wallis 1.2150 0.1063 1.2195 0.0800 1.2811 0.1764 1.3434 0.1298 1.2620 0.0643 

120×30-10-1 ANOVA 1.2256 0.0861 1.2492 0.0982 1.2637 0.1099 1.3423 0.0993 1.2745 0.0940 

120×30-10-2 ANOVA 1.2663 0.0802 1.2487 0.0755 1.3248 0.0712 1.3769 0.0977 1.2653 0.0674 

150×30-10-1 Kruskal-Wallis 1.2131 0.1495 1.2101 0.1086 1.3153 0.0984 1.3051 0.0683 1.2453 0.0771 

150×30-10-2 ANOVA 1.1879 0.0696 1.1817 0.0775 1.2431 0.1065 1.2956 0.0981 1.2184 0.0800 

80×20-10-1 Kruskal-Wallis 1.2775 0.1431 1.2440 0.1422 1.3489 0.1433 1.4500 0.1305 1.2674 0.1075 

80×20-10-2 Kruskal-Wallis 1.2982 0.0919 1.2766 0.1582 1.3420 0.1011 1.3855 0.1016 1.2725 0.1113 

120×20-20-1 ANOVA 1.2464 0.1049 1.2268 0.1159 1.2608 0.1122 1.3635 0.0945 1.2960 0.0959 

120×20-20-2 ANOVA 1.2288 0.0808 1.2282 0.0939 1.3161 0.1076 1.3341 0.0929 1.2686 0.0805 

120×30-20-1 Kruskal-Wallis 1.2003 0.1135 1.2442 0.0932 1.2897 0.1014 1.2770 0.1184 1.2347 0.0605 

120×30-20-2 Kruskal-Wallis 1.2539 0.0853 1.2573 0.1029 1.2712 0.1451 1.3694 0.0913 1.2736 0.0944 

150×30-20-1 ANOVA 1.1867 0.0797 1.2180 0.0995 1.2689 0.0973 1.2914 0.0641 1.2180 0.0505 

150×30-20-2 ANOVA 1.1867 0.0797 1.2180 0.0995 1.2689 0.0973 1.2914 0.0641 1.2180 0.0505 

80×20-20-1 ANOVA 1.2928 0.1072 1.2796 0.0869 1.3123 0.1175 1.3530 0.0983 1.3024 0.0701 

80×20-20-2 ANOVA 1.2852 0.0952 *1.2328 0.0883 1.2829 0.1027 1.3702 0.1181 1.2847 0.0835 

120×20-5-1 Kruskal-Wallis 1.2349 0.0893 1.2438 0.1264 1.3188 0.1216 1.3367 0.1402 1.2402 0.1037 

120×20-5-2 Kruskal-Wallis 1.2091 0.0719 1.2075 0.0805 1.2601 0.0985 1.2883 0.0872 1.2199 0.0676 

120×30-5-1 ANOVA 1.2343 0.0827 1.2509 0.0825 1.2980 0.1014 1.3809 0.0901 1.2878 0.1004 

120×30-5-2 Kruskal-Wallis 1.2558 0.1649 1.2308 0.0861 1.2877 0.1037 1.3459 0.1224 1.2519 0.1053 

150×30-5-1 Kruskal-Wallis 1.1717 0.0724 1.1867 0.1168 1.2542 0.1872 1.2537 0.0952 1.1867 0.0576 

150×30-5-2 ANOVA 1.2338 0.0717 1.2416 0.0772 1.2850 0.0921 1.3492 0.0928 1.2502 0.0833 

80×20-5-1 ANOVA 1.2635 0.0888 1.3121 0.1113 1.3571 0.1115 1.4289 0.1055 1.3088 0.0798 

80×20-5-2 Kruskal-Wallis 1.2899 0.1080 1.2637 0.0967 1.3554 0.1459 1.3836 0.0827 1.3006 0.1044 

 

 

Table 8. Distance of the best trade-off solution to the ideal vector with baseline NSGAII and SPEA2. 
 

Instance MOEA/D T = 1% MOEA/D T = 1.5% MOEA/D T = 3% NSGAII SPEA2 

𝛿𝑇 𝛿𝐶𝑚𝑎𝑥
 ∆ 𝛿𝑇 𝛿𝐶𝑚𝑎𝑥

 ∆ 𝛿𝑇 𝛿𝐶𝑚𝑎𝑥
 ∆ 𝛿𝑇 𝛿𝐶𝑚𝑎𝑥

 ∆ 𝛿𝑇 𝛿𝐶𝑚𝑎𝑥
 ∆ 

120×20-10-1 4.53% 1.51% 4.77% 4.68% 1.77% 5.01% 1.76% 1.06% 2.05% 1.37% 0.74% 1.55% 1.82% 0.89% 2.02% 

120×20-10-2 3.45% 2.41% 4.21% 1.60% 2.28% 2.78% 1.46% 1.55% 2.13% 0.74% 0.73% 1.04% 1.77% 0.83% 1.96% 

120×30-10-1 2.88% 1.56% 3.28% 3.20% 1.40% 3.49% 2.60% 0.54% 2.66% 2.53% 0.91% 2.69% 1.68% 0.58% 1.78% 
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Table 8. Continued. 
 

120×30-10-2 6.74% 1.65% 6.94% 3.13% 1.45% 3.46% 1.25% 1.25% 1.77% 5.76% 0.75% 5.81% 3.37% 0.70% 3.44% 

150×30-10-1 1.78% 2.25% 2.87% 4.27% 1.47% 4.52% 1.27% 0.77% 1.48% 1.67% 1.09% 2.00% 1.12% 0.72% 1.33% 

150×30-10-2 3.83% 1.87% 4.26% 3.55% 0.83% 3.65% 1.87% 0.79% 2.03% 2.79% 0.61% 2.85% 2.55% 0.53% 2.60% 

80×20-10-1 3.36% 1.34% 3.62% 2.74% 0.72% 2.83% 2.25% 0.76% 2.38% 2.03% 1.86% 2.75% 4.19% 1.08% 4.33% 

80×20-10-2 5.52% 2.52% 6.07% 5.94% 1.83% 6.21% 0.82% 1.06% 1.34% 4.14% 1.65% 4.45% 2.59% 0.98% 2.78% 

120×20-20-1 1.42% 2.57% 2.94% 3.51% 0.64% 3.57% 3.83% 1.14% 4.00% 1.32% 1.70% 2.15% 3.89% 1.53% 4.18% 

120×20-20-2 0.53% 0.72% 0.90% 3.24% 0.77% 3.33% 1.46% 0.28% 1.49% 2.28% 0.45% 2.33% 2.41% 0.68% 2.51% 

120×30-20-1 1.65% 2.58% 3.06% 3.42% 1.76% 3.84% 1.61% 1.74% 2.37% 3.56% 0.73% 3.63% 1.17% 1.56% 1.95% 

120×30-20-2 3.60% 2.85% 4.59% 6.03% 2.00% 6.35% 3.79% 1.50% 4.08% 3.01% 1.66% 3.44% 3.80% 1.11% 3.96% 

150×30-20-1 1.98% 1.75% 2.65% 1.65% 0.53% 1.73% 0.15% 0.38% 0.41% 1.98% 0.84% 2.15% 0.86% 0.92% 1.26% 

150×30-20-2 4.01% 2.37% 4.66% 3.50% 1.22% 3.71% 2.36% 1.02% 2.57% 3.31% 1.34% 3.57% 3.96% 0.40% 3.99% 

80×20-20-1 7.65% 3.18% 8.28% 6.28% 3.62% 7.25% 4.54% 3.00% 5.44% 1.77% 2.82% 3.33% 2.08% 2.82% 3.51% 

80×20-20-2 4.41% 2.64% 5.14% 3.18% 1.69% 3.60% 1.43% 2.26% 2.68% 4.37% 1.95% 4.78% 3.45% 1.13% 3.63% 

120×20-5-1 2.37% 1.95% 3.07% 1.78% 1.31% 2.21% 1.46% 1.10% 1.82% 2.00% 0.55% 2.07% 2.51% 1.31% 2.83% 

120×20-5-2 3.37% 1.83% 3.84% 3.91% 1.38% 4.15% 0.18% 1.05% 1.06% 2.44% 0.23% 2.45% 2.06% 1.79% 2.73% 

120×30-5-1 5.22% 1.15% 5.35% 3.98% 1.61% 4.29% 1.92% 0.31% 1.94% 3.32% 0.94% 3.45% 2.91% 0.88% 3.04% 

120×30-5-2 4.63% 1.36% 4.83% 3.71% 1.36% 3.95% 2.07% 1.45% 2.53% 4.23% 1.14% 4.38% 2.02% 0.64% 2.12% 

150×30-5-1 1.86% 1.23% 2.23% 2.49% 0.91% 2.65% 2.34% 0.45% 2.38% 2.68% 0.60% 2.75% 2.76% 1.02% 2.95% 

150×30-5-2 3.44% 1.32% 3.68% 1.56% 1.16% 1.95% 0.76% 0.44% 0.88% 1.57% 0.76% 1.75% 2.57% 0.88% 2.72% 

80×20-5-1 4.18% 2.38% 4.81% 3.37% 1.91% 3.88% 1.99% 2.08% 2.88% 3.20% 0.70% 3.28% 3.18% 1.23% 3.41% 

80×20-5-2 4.31% 2.34% 4.90% 3.00% 1.78% 3.49% 3.59% 1.04% 3.74% 2.16% 1.03% 2.39% 3.07% 1.23% 3.31% 

Average 3.61% 1.97% 4.21% 3.49% 1.48% 3.83% 1.95% 1.13% 2.34% 2.68% 1.07% 2.96% 2.58% 1.06% 2.85% 

 

 

Figure 3 presents examples of the Pareto fronts computed for two representative instances solved in the 

experimental evaluation. In Figure 3-(a) the distance among the Pareto front is quite short while in Figure 

3-(b), the Pareto front of the MOEA/D clearly outstrips the other MOEAs. 

 

 
(a) Instance 150x30-5-1.                                                             (b) Instance 120x30-5-1. 

 

Figure 4. Sample Pareto fronts computed by MOEA/Ds and baseline NSGAII and SPEA2 for representative 

instances. 
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4.4 Managerial Implications 

Decision-making problems associated with production planning often incorporate different interests, so 

multi-objective approaches are appropriate to capture the full complexity of the process. In this case, the 

possibility of studying the impact that the fourth industrial revolution and personalized production will have, 

was explored. In this situation, the decision processes must adapt to this situation, and this is where the 

problem of missing operations gains preponderance. Given this situation, the results obtained in this work 

allow the identification of effective optimization methods to address the problem. In this particular case, a 

problem was addressed that seeks solutions to ensure a trade-off between the level of service provided to the 

client (seeking to minimize the delay in deliveries), and the use of productive resources (makespan). 

 

In turn, it is interesting to note that the optimization approaches used in this case allow addressing problems 

where the production process is not static, since the different jobs have different numbers of operations. 

Therefore, the production environments addressed in this work are more general cases than those where all 

the jobs have the same set of operations (the latter is a particular case of the problem addressed here). A 

similar analysis could be extended to other variations between jobs, such as when jobs have different order 

arrival or release dates. These situations would imply considering problems of dynamic environments 

where the orders arrive on different dates. These types of problems, as well as the one studied here, allow 

us to contribute to generating efficient decisions, and facilitate the task of managers of productive 

operations. 

 

5. Conclusions 

Customized productions, driven by Industry 4.0 technologies, are generating new challenges for scheduling 

problems, as addressed in this case in a flow shop configuration. Among these new challenges, one of key 

importance is customer's order processing, since they are not all the same. Then, all jobs do not follow the 

complete route of operations of the flow shop, but rather some operations are not required. Even more, as 

it is a customer-oriented production system, the level of service provided must be considered within the 

planning of operations, which is why Total Tardiness was considered as an objective function. However, 

these market strategies must be provided within a framework of industrial efficiency, which allows 

obtaining the highest revenue from the production lines, which is why the makespan was also 

simultaneously considered as an objective function. 

 

These missing operations and multi objective features add difficulty to an already NP-Hard problem. Thus, 

to achieve high quality solutions in reasonable times for industrial practice, an optimization approach based 

on metaheuristics was proposed in this work, particularly using MOEA/D.  

 

This work proposed three variants of MOEA/D with different size for the neighborhoods for solving this 

combinatorial problem. Results show the validity of the proposed approaches. The RHV and spread multi 

objective optimization metrics were applied to analyze the results. Overall MOEA/D T =3% was able to 

obtain the best results of RHV, achieving accurate values (up to 0.9965). In terms of spread, MOEA/D 

T=1% was also able to obtain the accurate distributed solutions. The best trade-off solutions computed by 

the proposed MOEAs were compared with the ideal vector, showing a remarkable accuracy, with small 

deviations. In terms of the problem objectives, the MOEAs had small differences in makespan (1.03% on 

average for the MOEA/D T=3%). Additionally, the MOEA/D was compared with baseline NSGAII and 

SPEA2 which were previously developed for the same optimization problem. MOEA/D T=3% was able to 

obtain competitive results, being able to outperform NSGAII and SPEA2 in several instances. On the other 

hand, MOEA/D T=1% and T=1.5% show a good distribution of the solutions, outstripping NSGAII and 

SPEA2 in terms of spread in several instances. 
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Therefore, considering the results shown, MOEA/D approaches can be considered effective in addressing 

the problems of digitalized industries proposed by Industry 4.0. Moreover, these algorithms showed to be 

competitive when compared to other state-of-the-art metaheuristics. 

As future lines of work, it would be interesting to propose some strategies that could take advantage of the 

decomposition structure of the MOEA/D, which allows a very good diversity in the population, but adding 

greater search depth. For this, the design and development of local search methods that favor convergence 

towards the Pareto front is proposed as a line of research. Likewise, another line of research could be to 

consider new objective functions that represent other interests of decision makers. 
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