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Abstract

Objectives To investigate the molecular interaction between b-cyclodextrin (bCD)
or hydroxypropyl-b-cyclodextrin (HPbCD) and riboflavin (RF), and to test the
anticancer potential of these formulations.
Methods The physicochemical characterization of the association between RF and
CDs was performed by UV-vis absorption, fluorescence, differential scanning calo-
rimetry and NMR techniques. Molecular dynamics simulation was used to shed
light on the mechanism of interaction of RF and CDs. Additionally, in-vitro cell
culture tests were performed to evaluate the cytotoxicity of the RF–CD complexes
against prostate cancer cells.
Key findings Neither bCD nor HPbCD led to substantial changes in the phy-
sicochemical properties of RF (with the exception of solubility). Additionally, rotat-
ing frame Overhauser effect spectroscopy experiments detected no spatial correla-
tions between hydrogens from the internal cavity of CDs and RF, while molecular
dynamics simulations revealed ‘out-of-ring’ RF–CD interactions. Notwithstanding,
both RF–bCD and RF–HPbCD complexes were cytotoxic to PC3 prostate cancer
cells.
Conclusions The interaction between RF and either bCD or HPbCD, at low con-
centrations, seems to be made through hydrogen bonding between the flavonoid
and the external rim of both CDs. Regardless of the mechanism of complexation,
our findings indicate that RF–CD complexes significantly increase RF solubility and
potentiate its antitumour effect.

Introduction

Prostate cancer is a significant public health problem and
can be fatal in men.[1] Declines in prostate cancer mortality
are expected with improvements in early-stage detection.[2]

However, the clinical management of prostate cancer, with its
aggressive and highly metastatic phenotypes, continues to
be challenging and novel adjuvant strategies are urgently
required.[3]

Riboflavin (RF) is part of the vitamin B complex and is a
potent photosensitizer. RF photodegradation includes
intramolecular photoreduction and photoaddition, and its
major photoproducts are 7,8-dimethyl-10-(formylmethyl)
isoalloxazine (formylmethylflavin), lumichrome, 2′-
ketoriboflavin 4′-ketoriboflavin and lumiflavin. We have
shown that the photoproducts of RF diminish survival signal-

ling in both leukaemia and prostate cancer cells. Importantly,
the toxic effect was strictly dependent on the presence of
riboflavin photoproducts, since non-irradiated riboflavin
had no influence on tumour cell growth.[4,5] In addition, RF
and pyridoxal 5′-phosphate may inhibit colorectal tumou-
rigenesis in humans.[6] Thus, RF has great pharmacological
potential, taking into consideration its physiological role,
relative low cost and anticancer activity. However, the rela-
tively poor water solubility and photosensitivity of RF limit
its application.[7,8] We therefore decided to combine RF with
cyclodextrins (CDs), as these cyclic oligosaccharides have
been used extensively as successful drug delivery carriers.
The interaction of amphiphile compounds with CDs may
increase their water solubility, diminish their effective doses,
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decrease their toxic side-effects, and protect the compounds
against dehydration, hydrolysis, oxidation and photodegra-
dation. Such effects have improved the pharmaceutical pro-
perties of several drugs.[9]

Although inclusion complexes are the most common
and best described interaction between CDs and guest
molecules, a number of non-inclusion complexes have also
been described,[10–13] in which self-assembled nanoaggregates
(but not inclusion complexes) lead to solubilization of poorly
soluble compounds (for a review see Messner et al.[12]).

In this study, we have used different physicochemical
approaches to characterize the complexes formed between RF
and b-cyclodextrin (bCD) or hydroxypropyl-b-cyclodextrin
(HPbCD) at different molar ratios. Complexation increased
RF solubility and, most importantly, its antiproliferative
activity towards prostate cancer cells.

Materials and Methods

Riboflavin, bCD, benzocaine and RPMI 1640 cell culture
medium were obtained from Sigma Chemical Co.
(Taufkirchen, Germany). HPbCD (Kleptose HP) was
purchased from Roquette Serv. Tech. Lab. (Lestrem, Cedex,
France). All other chemicals used were of analytical grade.

Preparation of RF–bCD and
RF–HPbCD complexes

We have combined RF (300 mm) and equivalent molar frac-
tions of CDs (bCD or HPbCD) in water for 3 h to ensure
equilibrium. The samples were freeze-dried and stored at
-20°C for further use.

Pure RF samples were also submitted to the freeze-drying
process, to be used as a control in biological tests.All technical
procedures were conducted in darkness to avoid RF
photodegradation.

Kinetics of RF–CD complexation

The kinetics of association were determined by following the
RF absorption at 444 nm after addition of different molar
ratios of bCD (up to 1 : 15) or HPbCD (up to 1 : 120) under
agitation as a function of time (8 h). The experiments were
done at 25°C, in duplicate.

Phase solubility isotherms

Solubility studies were performed according to the method-
ology described by Higuchi and Connors.[14] Briefly, an excess
amount of solid RF (to give a final 1 mM concentration) was
added to different bCD (0, 1, 2, 4, 8, 12 and 16 mm) or
HPbCD (0, 10, 20, 40, 80, 120 and 160 mm) solutions.
Samples were kept under agitation until equilibrium (for 3 h
as determined in the kinetics experiments). Samples were
filtered through 0.22-mm membranes and RF quantifi-

cation was spectrophotometrically performed at 444 nm,
accordingly to a previously determined analytic curve
(absorbance = 0.012 ¥ concentration (M), r = 0.999). The
experiments were carried out in triplicate.

Fluorescence experiments

Emission spectra were recorded in a F-4500 fluorimeter
(Hitachi, Tokyo, Japan). Samples of RF in the presence or
absence of CDs were excited at 374 nm and the emission was
followed from 450 nm to 650 nm. The experiments were
carried out in triplicate at 25°C.

Differential scanning calorimetry

Differential scanning calorimetry was performed using a
Universal V2.3D TA instrument (New Castle, DE, USA).
Samples of 5–10 mg were placed at aluminium crimped cells
and submitted to a graduated increase in temperature (10°C/
min) from 30°C to 260°C under an inert atmosphere. The
following lyophilized samples were analysed: pure com-
pounds (RF, bCD, HPbCD), non-inclusion complexes
(RF–bCD and RF–HPbCD) and their physical mixture
(RF–bCD and RF–HPbCD) in equivalent molar fractions.
The experiments were carried out in duplicate.

Nuclear magnetic resonance

One- and two-dimensional 1H-NMR spectra were recorded
on Varian Inova 500 MHz (11.75 T) equipment at the Brazil-
ian Synchrotron Light Laboratory (LNLS, Campinas, SP,
Brazil). Samples of an equivalent concentration (150 mm) of
RF and bCD or HPbCD were prepared in D2O, homogenized
for 3 h and transferred to 5-mm tubes for spectrum acquisi-
tion. The residual water peak (4.87 ppm) was used as a refer-
ence. No external references were used to avoid possible
interactions with CDs.[15] and at least two different experi-
ments were conducted at 20°C with different samples in
different days.

Diffusion ordered spectroscopy experiments were carried
out using the BPPSTE (bipolar pulse pairs stimulated echo)
sequence.[16] The duration of the total diffusion-phase encod-
ing the gradient pulse was 2 ms, the diffusion delay was 0.05 s,
and the minimum gradient strength was set to 0.3 G/cm. The
diffusion coefficients were measured for the pure compounds
(RF, bCD, HPbCD) and for the RF–CD complexes (1 : 1
molar ratio).

Longitudinal relaxation times (T1) were obtained by the
conventional inversion-recovery technique[17] in RF and 1 : 1
RF–bCD samples. Typical acquisition parameters consisted
of 10–15-ms 90° pulses, 16 scans and 16 recovering time inter-
vals in a 12-ppm window; the recycling time was set to 5 times
the largest T1 (those of the aromatic hydrogens of RF).
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Rotating frame Overhauser effect spectroscopy experiments
were carried out using the standard pulse sequence of the
equipment.[17] The acquisition parameters used were a mag-
netic field strength of 11.75 T,a mixing time of 300 ms,spectral
window of 10 ppm, 2048 k in F2 and 324 increments. Data
processing was conducted using NMRView and NMRpipe
software (One Moon Scientific, Westfield, NJ, USA).

Molecular dynamics simulation setup

The interaction between RF and bCD was investigated
using molecular dynamic simulations performed by the
GROMACS 4.0 software package (Uppsala, Sweden).[18–21]

The GROMOS-96 53a6 force field[22] was used for both RF
and bCD molecules. The electrostatic interactions were
handled with the SPME version of the Ewald sum.[23,24]

The settings for the SPME method were a real space cut-off
of 1.4 nm, a grid spacing of 0.12 nm and a cubic interpola-
tion. In all the simulations, the van der Waals interactions
were cut off at 1.4 nm. The simulations were carried out in the
NVT ensemble using the Berendsen thermostat.[25] The whole
system was coupled to a temperature bath with a reference
temperature of 300 K and a relaxation constant of 0.1 ps. No
constraints were used for the bonds. The time step for the
integration of the equation of motion was 1 fs. The non-
bonded list was updated every 10 steps. To release steric
clashes, we performed 1 000 000 steepest descent cycles and
1 000 000 steps of the conjugated gradient algorithm. Prior to
the production run, a series of four equilibration steps of
100 ps each was performed, upgrading the temperature
progressively.

The simulated system consisted in eight pairs of RF and
bCD. Each pair was built in a cubic box, using the Packmol
package (Campinas, Brazil)[26] sampling different orienta-
tions of the RF molecule with respect to the bCD and 12 000
SPC water molecules.[27] These boxes were assembled as the
eight quadrants of the simulation cubic box and molecular
dynamics simulations were carried out up to the 50-ns pro-
duction run. The images ware made with VMD software.
VMD was developed with NIH support by the Theoretical
and Computational Biophysics group at the Beckman
Institute, University of Illinois at Urbana-Champaign, USA.

Cell culture

The PC3 cell line was purchased from the American Type
Culture Collection (Rockville, MD, USA) and grown accord-
ing to their guidelines. Cells were cultured in RPMI 1640
media containing 10% fetal bovine serum, 100 U/ml penicil-
lin and 100 mg/ml streptomycin, in a humidified incubator at
37°C with 5% CO2.

Cells (104 per well) were incubated in 96-well plates until
semiconfluence. They were then treated for 24 h with the
pure compounds (RF, bCD, HPbCD) or with the complexes

(RF–bCD or RF–HPbCD, in a 1 : 1 molar ratio). Experiments
were conducted in triplicate for each treatment and cell
viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl tetrazolium bromide (MTT) reduction assay.

MTT reduction assay

After 24 h of treatment, the medium was replaced with a
MTT solution (100 ml, 0.5 mg/ml of media) and incubated
for 4 h at 37°C. The medium was then removed and DMSO
(100 ml) was added to dissolve the formazan crystals. The
plates were agitated for 5 min and the formazan absorbance
was measured at 570 nm using a microplate reader (Model
7530; Cambridge Technology Inc., Lexington, MA, USA).
Cell viability was plotted as a percentage of the control.[28]

Statistical analysis

Cytotoxic assay data were analysed by one-way analysis
of variance with the Tukey-Kramer post-hoc test. Statistical
significance was defined as P < 0.05.

Results and Discussion

Physicochemical characterization of the
RF–CD interaction

Initially, the kinetics of association was followed for 8 h
through changes in RF absorbance at 444 nm. Changes in RF
absorbance were not registered after the first hour, suggesting
a fast interaction between RF and both CDs (data not shown).

Phase solubility[14] studies revealed that RF solubility
(Figure 1) was increased 1.6 times by 16 mM bCD and
4.2 times by 150 mM HPbCD. The limited water solubility
of bCD did not allow the experiments to be conducted at
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Figure 1 Phase solubility diagrams of riboflavin in b-cyclodextrin and
hydroxypropyl-b-cyclodextrin at 25°C (n = 3).
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concentrations higher than 16 mM.[29] The linear increase in
RF solubility in the presence of CDs (Figure 1) suggested a
first-order complex and a 1 : 1 stoichiometry of complex-
ation. Assuming that, the association constants were calcu-
lated[14] for RF either with bCD (39.7/M � 0.31) or HPbCD
(20.6/M � 0.22). These values denote a very weak interaction
between RF and CDs, and they are in good agreement with
previously reported values.[30,31] It is worth noting that solu-
bility isotherms do not establish conclusively if real complex-
ation takes place once CDs are able to form non-inclusion
complexes which can solubilize guest molecules in aggregate
structures.[12,32]

We investigated the interaction of RF with both CDs
through changes in the UV-vis absorption spectrum
(Figure 2a), which could provide information about the
transfer of guest molecules from water to the hydrophobic
cavity of CD.[33] A slight decrease in RF absorption was
observed for the peaks at 266, 374 and 444 nm, in agreement
with the previous observation by Wang and Chen.[34] Those
authors also found that the RF absorption properties in the
presence of CDs were comparable with those of RF in ethanol
solution, based on a hypsochromic shift in the 374-nm peak.
Our results, however, did not show such change in the RF

absorption spectrum, either in the presence of bCD or
HPbCD (Figure 2a).

Differential scanning calorimetry has been used to charac-
terize the solid-state of inclusion complexes formed by CDs
(data not shown). The characteristic endothermic broad peak
of pure bCD was observed near 160°C,which is assigned to the
loss of water from the bCD cavity[35,36] during the heating
process. The RF–bCD physical mixture thermogram still
presented this residual water peak, which was expected if
no inclusion complex was formed. Surprisingly, a residual
peak was also observed near 160°C for the RF–bCD complex
sample, suggesting that even after co-solubilization of RF
and CD, the water molecules inside the CD were not replaced
by the guest (RF) molecule.[36] Similar results were observed
for HPbCD; thermograms of pure HPbCD, its physical
mixture with RF and the RF–HPbCD complex were indistin-
guishable and there was no evidence of inclusion complex-
ation. This lack of evidence is compatible with a weak RF–CD
interaction (low association constants) and also with CDs
‘out-of-ring’complexation.

We also investigated the fluorescence of RF in the presence
of bCD (Figure 2b) and HPbCD (Figure 2c). CDs cavities
could affect the intrinsic fluorescence of guest compounds
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Figure 2 (a) UV-vis absorption spectra of riboflavin (RF) in the presence of equivalent b-cyclodextrin (bCD) or hydroxypropyl-b-cyclodextrin (HPbCD)
concentrations. (b),(c) Fluorescence emission spectra of RF in the absence and presence of increasing bCD (up to 1 : 100 mole%) or HPbCD (1 : 10 000
mole%). Riboflavin concentration = 10 mM, n = 3.
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that are sensitive to solvent polarity or dielectric proper-
ties.[37] Nevertheless, even at a high molar ratio of RF to
HPbCD (1 : 10 000), only a slight change was observed in RF
fluorescence.Again, no evidence of inclusion complex forma-
tion was obtained. It is worth noting that RF fluorescence
does show significant hyper and hypsochromic shifts when
exposed to hydrophobic environments such as methanol.

The absence of changes in the differential scanning calo-
rimetry thermograms, UV-vis (Figure 2a) or fluorescence
(Figure 2b and 2c) spectra of RF in the presence of CDs led
us to consider that RF did not form an inclusion complex
with any CD tested. This hypothesis required us to conduct a
deeper investigation into the RF–CD interaction using NMR
and molecular dynamics approaches.

The non-inclusion hypothesis

Different NMR approaches were used to achieve details on
the molecular interaction between RF and CDs.[38–41] The
1H-NMR assignment of RF peaks (see Table 1 and the inset
of Figure 3) are in good agreement with the literature.[42–44]

In the presence of bCD and HPbCD, no significant changes
in the chemical shifts of RF or bCD hydrogens were detected
(Table 1), in accordance with the reported UV-vis and fluo-
rescence results. The lack of changes in 1H-NMR chemical
shifts (Table 1) of H3 and H5 peaks of CDs provides strong
evidence that RF does not form any inclusion complex with
the CDs. These hydrogens are known to monitor the CD
cavity interior.[41,45,46] Accordingly, Zielenkiewicz et al.[31]

found no changes in the HPbCD spectra in the presence
of RF, and attributed this to the low RF solubility. These
authors have also reported slight changes (0.05–0.08 ppm) in
1H-NMR chemical shifts of the H6 and H9 aromatic hydro-
gens of RF in the presence of a high HPbCD concentration.[31]

However, our NOE (Figure 4) and molecular dynamics
(Figure 6) results indicate that these changes can be assigned
to p–p stacking of RF.

Longitudinal relaxation times (T1) are known to be
strongly affected by the local environment of the 1H nucleus,
decreasing as it interacts with the molecular net around it.[47]

In this way, T1 values measured from the 1H-NMR spectrum
of guest compounds are expected to decrease upon complex-
ation with CDs.[41,48] The T1 values of the RF aromatic hydro-
gens 6–9, measured in the presence and absence of bCD are
presented in Figure 3; unfortunately, superposition of peaks
did not allow precise measurement of the T1 value for the
ribityl RF hydrogens. No changes were detected in the T1

values of hydrogens belonging to the methyl groups of the
aromatic carbons 7 and 8 (Figure 3) or adjacent aromatic
hydrogens, at carbons 6 and 9 of RF. Similar results were
observed for HPbCD (not shown). Overall, the T1 results
indicated that RF hydrogens were in fast exchange (in the
NMR timescale), since no changes in the dynamic properties
of the molecule were observed in the presence of CDs that
could be assigned to the formation of an inclusion complex.
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Table 1 1H-NMR chemical shift of riboflavin hydrogens, b-cyclodextrin and hydroxypropyl-b-cyclodextrin in D2O, at 20°C, 500 MHz

RF (0.15 mM) bCD (0.15 mM) HPbCD (0.15 mM)

1H In D2O With bCD D (ppm) With HPbCD D (ppm) 1H In D2O With RF D (ppm) 1H In D2O With RF D (ppm)

7-CH3 2.41 2.43 –0.02 2.43 –0.02 H4 3.56 3.55 0.01 H4 3.46 3.45 0.01
8-CH3 2.52 2.53 –0.01 2.53 –0.01 H2 3.62 3.61 0.01 H2 3.57 3.56 0.01
5b′ 3.69 nd nd nd nd H5 3.84 3.84 0.00 H5 3.81 3.81 0.00
5a′ 3.84 nd nd nd nd H6 3.85 3.85 0.00 H6 3.84 3.84 0.00
4′ 3.89 nd nd nd nd H3 3.94 3.93 0.01 H3 3.92 3.92 0.00
3′ 3.94 nd nd nd nd H1 5.05 5.04 0.01 H1 5.04 5.02 0.02
2′ 4.40 4.39 0.01 4.39 0.01 -CH3 1.11 1.10 0.01
1′ 5.09 5.06 0.03 nd nd
6 7.93 7.92 0.01 7.90 0.03
9 7.94 7.92 0.02 7.91 0.03
N-H 8.11 nd nd nd nd

Assignments of RF and CDs according to Grillo et al. and Pinto et al.[41,45]. RF, riboflavin; RF–bCD, riboflavin–b-cyclodextrin complex; RF–HPbCD,
riboflavin–hydroxypropyl-b-cyclodextrin complex; nd, not determined due to peak overlapping in this region of the spectra.
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Diffusion ordered spectroscopy is another useful NMR
technique to detect CD guest–host complex formation.[39,49]

The diffusion coefficient determined through diffu-
sion ordered spectroscopy experiments for pure RF
(3.23 � 0.16 ¥ 10-10 m2/s) showed only minor changes
when RF interacted with bCD (3.13 � 0.14 ¥ 10-10 m2/s) or
HPbCD (3.15 � 0.14 ¥ 10-10 m2/s). This result suggests weak
RF–CD interactions, as in the case of non-inclusion inter-
molecular complexation. Moreover, the small changes in
diffusion coefficient did not allow the determination of the
RF fraction bound to the CDs or the association constant,
in clear opposition with the results obtained when guest–host
inclusion complexes are formed.[38,39]

As a final NMR approach, we used nuclear Overhauser
(rotating frame Overhauser effect spectroscopy; NOE)
experiments to check the dipolar–dipolar (through the
space) interactions[38,45] between RF and CDs (Figure 4).
Intramolecular NOEs were just detected between the aro-
matic (H6, H9) and H2′ or between (H6, H9) and H1′ ribityl
hydrogens of RF and in between ribityl hydrogens of RF
(Figure 4), revealing the dynamics of the riboflavin molecule
in the presence of both CDs. Peak superposition at 4.05 ppm
(Table 1) did not allow us to conclude if the other NOE peaks
observed in Figure 4 involving H6 and H9 aromatic hydrogens
of RF were due to inter (RF–CD) or intra (RF–RF) molecular
interaction. The RF : RF NOE peaks observed between H6/H9
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Figure 4 Expansion of the bidimensional 1H-NMR ROESY spectra of riboflavin–b-cyclodextrin complex (1 : 1 molar ratio, 150 mM; a) and riboflavin–
hydroxypropyl-b-cyclodextrin complex (1 : 1 molar ratio, 150 mM; b) at 500 MHz, 20°C, mixing time = 250 ms.
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and H1 or H2′ of RF are consistent with stacking or riboflavin
p-dimer formation, as discussed below. Notably, no inter-
molecular correlation peaks were observed between RF and
hydrogens from the CD internal cavity (H3 and H5, the hydro-
gens usually implied in the case of molecule inclusion inside
the cavity) of bCD or HPbCD to sustain the RF–CD inclusion
complex formation.

The lack of NOE effect on the hydrogens in the inner cavity
of CDs strongly suggests the formation of non-inclusion
complexes. To shed light on the intermolecular interactions
between RF and CDs we carried out extensive molecular
dynamics simulations.

RF–CD complex topology

The initial condition for molecular simulations comprised
eight pairs of RF and bCD. Each pair was set in one of the
quadrants of the simulation box, having different (and repre-
sentative) RF/bCD relative orientations. These orientations
were chosen to provide a good sampling of the possible com-
plexes formation.

In Figure 5 we show four snapshots of the eight RF–bCD
pairs at four different times of simulation. The four snapshots
correspond to the initial time (a), 5 ns (b), 25 ns (c) and 45 ns
(d) of simulation. After 5 ns, we could see the nucleation of a
cluster involving both bCD and RF molecules (see additional
supporting information: Movies S1 and S2). With time, the
cluster grew up to a regimen where all the RF molecules and
six of the eight bCDs were involved. The tendency of CD to
form clusters is well known, the cluster tending to increase
with higher CD concentration and with the formation of
guest–host inclusion complexes (for a review see Messner
et al.[12]). In our case, most RF was not found inside the bCD
cavity. In fact, just one RF molecule (initially placed inside the
bCD) remained there, probably due to entropic reasons. Fur-
thermore, by means of radial pair distribution function and
angle analysis, we have found that RF can stack, forming
p-dimers. These could explain the NOE peaks observed
between H6/H9 and H1′ of RF (Figure 4).

Overall, the experimental (differential scanning calorim-
etry and spectroscopic) results strongly suggest that in the
presence of CDs the increase in RF water solubility is a result

(a) (b)

(c) (d)

Figure 5 Snapshots of the eight riboflavin-b-cyclodextrin pairs at different times in the molecular dynamics simulation run. (a) t = 0 ns. (b) t = 5 ns. (c)
t = 25 ns. (d) t = 45 ns.
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of non-inclusion complex formation. We studied the host–
guest interactions between RF and bCD to describe the topol-
ogy of the non-inclusion complex based on our simulation
results. To that end, we divided the oxygen atoms of bCD into
three types (Figure 6a): (1) the secondary hydroxyl groups,
situated at the wider edge of the molecule; (2) the primary
hydroxyl groups, situated at the narrow edge of the molecule;
and (3) the glycosidic oxygen bridges, which are directed
toward the inside of the cavity, which produce a high electron
density, giving it some Lewis base characteristics.[29] Addi-
tionally, it has been reported that the ribityl substituent pre-
vents deeper insertion of RF into the CD cavity.[31] We
calculated the number of hydrogen bonds formed during the
simulation run, between the eight RF molecules and the three
different types of oxygen atoms of the eight bCD molecules.
In Figure 6b we show the number of hydrogen bonds as a
function of the time for all oxygen groups (I), the secondary
hydroxyl groups (II), the primary hydroxyl groups (III) and
the ether oxygen atoms (IV). Hydrogen bond interactions
were essentially observed between RF and primary and sec-
ondary hydroxyl groups. We have estimated the number of
hydrogen bond formations per step, per molecule of bCD.
This number was around ~0.35 for both primary and second-

ary hydroxyl bCD groups with RFs. However, no significant
hydrogen bond values (<0.01) were found between RF and
the ether oxygen atoms.

These results support the experimental data and show that
RF did not reach the bCD hydrophobic cavity, under the
tested conditions. Furthermore, the formation of non-
inclusion complexes can be inferred from the experimental
and theoretical analysis. Finally, regardless of the type inter-
action detected between RF and CDs, we examined the effect
of RF and RF–CD complexes on prostate cancer (PC3) cells.

RF–CD complexes improve RF
antitumour activity

PC3 is a fast growing cell type remarkably resistant to chemo-
therapeutic intervention. We tested the effect of RF alone
and combined with bCD or HPbCD on the survival of these
cancer cells (Figure 7). Neither bCD nor HPbCD in equiva-
lent concentrations (0–100 mm) presented any toxic effects
on PC3 cells.

The greatest effect of RF on prostate cancer cells was
observed at 100 mm (Figure 7). Interestingly, PC3 cells were
more sensitive to RF when the vitamin formed non-inclusion
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complexes with bCD or RF–HPbCD (P < 0.001% at con-
centrations of 40–100 mm). The improved cytotoxic profile
observed for the RF–CD complexes could be explained by the
increased solubility of riboflavin, justifying also the slightly
better performance of RF–HPbCD over RF–bCD at concen-
trations of 30–50 mm (P < 0.001%; Figure 7).As for the classic
inclusion complexation, RF and CD interactions are weak
and do not curb the vitamin association with the cell mem-
brane. Therefore, the interaction with CDs might favour RF
uptake by prostate cancer cells via endocytosis. Bareford
et al.[50] published an elegant study about RF absorption by
breast cancer cells showing that the concentration of RF can
be crucial to determine the mechanism of transport, as well as
to maintain the cellular homeostasis of this micronutrient
as a dynamic and controlled process.

Conclusions

Molecular level knowledge of the interaction between
drugs and CDs is crucial in the development of new

formulations.[51] Here we characterized the interaction
between RF and CDs, where the contribution of inclusion
complexation was negligible. We based this conclusion on
the low association constants and the absence or almost
undetectable changes in the physicochemical properties
of RF (with the exception of solubility) in the presence of
CDs.

The interaction between RF and bCD or HPbCD and CDs,
at low concentrations, seems to be mostly through non-
inclusion complex formation. In fact, rotating frame Over-
hauser effect spectroscopy experiments detected no spatial
correlations between hydrogens of RF and H3 and H5 hydro-
gens (from the internal cavity of bCD and HPbCD), and
molecular dynamics simulations confirmed this ‘out-of-ring’
RF interaction.

The solubility of RF increased as an result of its association
with both CDs, and the cytotoxicity of RF against PC3 pros-
tate cancer cells also increased. This work describes in detail
the formation of complexes between RF and bCD or HPbCD
that are not based on the inclusion of RF into the CD cavity
but still present a significant effect on the biological role of
riboflavin. Non-inclusion complexation is an alternative
mechanism of guest–CD interaction that could lead to physi-
cochemical and pharmaceutical improvement of compound
properties.
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Supporting Information
Additional supporting information may be
found in the online version of this article.

Movie S1 Representative movie from the
molecular simulations of b-cyclodextrin
and riboflavin from 5 to 15 ns. We

represented the x and y periodic boundary
condition molecules in transparent yellow.
The z pbc molecules are not represented
because they obscure the overall
visualization. The hydrogen bonds are
represented in orange.
Movie S2 Representative movie from the
molecular simulations of b-cyclodextrin
and riboflavin from 35 to 45 ns. We
represented the x and y periodic boundary
condition molecules in transparent yellow.
The z pbc molecules are not represented
because they obscure the overall
visualization. The hydrogen bonds are
represented in orange.
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