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Both temporal and directional responses of a cavity inside a two-dimensional sonic crystal are

investigated. The size of the cavity is large compared to the lattice parameter and the wavelength

for the frequency range of interest. Hence, a hybrid method to compute the response is proposed,

combining multiscattering theory for the calculation of the reflective properties of the sonic crystal

with a modified ray-tracing algorithm for the sound propagation within the cavity. The response of

this enclosure displays resonances for certain frequency bands that depend on the geometry of the

lattice and the cavity. When a full band gap exists in the sonic crystal, rays cannot propagate

through the medium and total reflection occurs for all incidence angles, leading to strong resonan-

ces with an isotropic intensity field inside the cavity. When only some propagation directions are

forbidden, total reflection occurs for certain ranges of incidence angles, and resonances can also be

elicited but with a highly anisotropic intensity field. The spectrum of resonances of the cavity is

strongly affected by changes in the lattice geometry, suggesting that they can be tailored to some

extent, a feature that can lead to potential applications in architectural acoustics.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744946]
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I. INTRODUCTION

A two-dimensional sonic crystal is the simplest realiza-

tion of an acoustic metamaterial, consisting of an array of rigid

cylinders in air, that displays a large variation of its acoustical

properties by just changing its geometrical configuration. For

the past decade, sonic crystals (SCs) have been extensively

studied due to their singular transmission properties (acoustic

band gaps,1 negative refraction,2 negative bi-refraction,3 and

focusing4). Equally singular, though less studied,5 are the

reflective properties of SCs, and often with the only aim of

enhancing the transmission properties (for example, designing

anti-reflective acoustic coatings6). Most of the previous

research also was devoted to the stationary sound field and

only a few works studied the time dependent behavior.7

In this work we will focus on the reflective properties of

SCs for a particular geometrical configuration: a large rec-

tangular cavity inside a sonic crystal. We are interested in

the temporal and angular properties of the sound field inside

this enclosure and how they depend on the particular geo-

metrical configuration of the SC. If the typical length of the

cavity is much larger than the lattice constant we can think

of this enclosure as analogous to a two dimensional room,

with the walls replaced by sonic crystals. In contrast to what

happens in ordinary rooms, where the acoustical properties

of the walls are fixed, in this case the reflective properties of

the sonic crystal walls can be continuously modified by

changing their geometry, and consequently varying the

acoustical properties of the sound field of the enclosure.

The magnitude that completely characterizes sound field

is the spatial impulse response, which corresponds to the

sound pressure and particle velocity vector as a function of

time and position inside the room, after being initially

excited by an ideal pulse.8 In this article, we are interested in

obtaining a slightly less informative quantity: the intensity

vector as a function of time for a certain position of the

room, which we termed the Energetic Directional Impulse

Response (EDIR).

Several methods have been proposed so far to calculate

the scattered field of SCs, including the plane wave expan-

sion (PWE) method,9 multiple scattering theory (MST),10

variational methods,1 and finite difference time domain

(FDTD) methods.11 In theory, all of them can be used to

deal with SCs, but there are advantages and disadvantages to

each method. In order to account for the EDIR inside a large

cavity surrounded by SC walls, all these methods are either

impractical or computationally infeasible. Hence, we pro-

pose an hybrid method, combining the calculation of the re-

flective properties of the SC walls using standard methods,

with a geometrical acoustic approach for the sound field

inside the cavity (which is valid as long as the cavity is large

compared with the sound wavelength).12 In this way, we

incorporate the advantages of the two methods. For the cal-

culation of the reflective properties we use MST, which

allows the fast computation of the field scattered from the

walls using semianalytical calculations. While, for the sound

field inside the cavity, we employ a modified ray-tracing

method, incorporating diffraction.

This paper is organized as follows. We present the

hybrid method for obtaining the impulse response in Sec. II.

Numerical results for these quantities for different geome-

tries are given in Sec. III. The Sec. IV is devoted to the
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discussion of the results, and a brief summary concludes the

paper in the last section.

II. METHODS

In order to obtain the Energetic Directional Impulse

Response (EDIR) of the cavity, we propose a novel hybrid

method that combines multiscattering theory for the reflec-

tive properties of the walls and a ray tracing calculation for

the cavity. The MST is the most used method to solve the

scattered field of acoustic periodic structures and the ray

tracing method is a standard procedure for the calculation of

the Impulse Response in room acoustics. The hybrid method

was developed in order to reduce the computation time com-

pared to brute force time domain wave based methods (like

FDTD), making the study of parametric variations of the

cavity geometry and reflective properties computationally

feasible.

A. Multiple scattering theory

We begin by deriving the reflectivity index and the scat-

tered angle probability for an infinite sonic crystal slab. This

will allow us to use these magnitudes as an input for the ray

tracing method in the next section; due to the fact that in the

context of geometric acoustics, we can consider each ray as

a portion of a plane wave impinging an infinite wall.

In Fig. 1 we depict a portion of the SC wall for the case of

a square lattice. Rows of cylinders are infinite in the Ŷ direc-

tion, and the incident field is a plane wave with wave vector

k0 ¼ kðcos h0; sin h0Þ forming an angle h0 2 ½�p=2; p=2�
with the positive X̂ axis (normal to the wall). Unitary vectors

in capital letters are used for axes relatives to the wall, in order

to distinguish them from the axes for the cavity. The lattice

parameter is denoted by a and the cylinder radius by q.

The position vector for the ath cylinder of the lth row is

defined by

Rl
a ¼ Rl þ Ra ¼ xlx̂ þ ðyl þ aaÞ ŷ; (1)

where a goes from �1 to 1. The vector Rl ¼ ðxl; ylÞ
defines the position of the central cylinder in a row, while

the vector Ra ¼ ð0; aaÞ determines the position of the ath

cylinder relative to the central one. In Fig. 1 we also display

the position vector Rm
b for the bth cylinder of the mth row,

the difference vector Rlm
ab ¼ Rm

b � Rl
a, and the position vec-

tor of the evaluation point r relative to the origin and rela-

tive to the ath cylinder of the lth row rl
a. The angles

corresponding to these position vectors are denoted by the

greek letter h with the same sub and superindices. For exam-

ple, hl
a corresponds to the angle formed by Rl

a with the

positive X̂ axis.

We now turn on the MST formulation of the problem.

This theory solves the problem of multiple scattering of cyl-

inders by taking the exact solution of a single scatterer and

extending it to an array by means of the Graft’s addition the-

orem that allows a coordinate change to the scatterer’s coor-

dinate system.13

For the case of the infinite SC wall the scatterers are

indexed by the row number l and the cylinder order in the

row a. The total incident field on the ða; lÞ-cylinder in the

scatterer’s coordinate system P0
alðrl

aÞ can be expressed in

terms of Bessel functions of the first kind:

P0
alðrl

aÞ ¼
X

q

ðBl
aÞqJqðkrl

aÞeiqhl
a (2)

and the scattered field of the same cylinder in the central

coordinate system PSC
al ðrÞ can be expanded in terms of Han-

kel functions of the first kind:

PSC
al ðrÞ ¼

X
q

ðAl
aÞqHqðkrl

aÞeiqhl
a : (3)

The coefficients of the expansions of the incident and scat-

tered fields are related by means of the T-matrix of the

cylinder:

ðAl
aÞq ¼ TqðBl

aÞq (4)

that for the case of perfectly rigid cylinder is14 Tq

¼ �J0qðkqÞ=H0qðkqÞ.
Using the Graft’s addition theorem, the total incident

field on the ða; lÞ-cylinder can also be expressed as a sum of

the external incident field and the scattered field from the

other cylinders:

FIG. 1. Geometric definitions for the infinite rows of cylinders (Sonic Crys-

tal walls) with lattice parameter a, used for multiple scattering theory calcu-

lations. The position vector for the ath cylinder of the lth row is defined by

Rl
a ¼ Rl þ Ra, where Rl ¼ ðxl; ylÞ sets the position of the central cylinder

in a row while the vector Ra ¼ ð0; aaÞ determines the position of the ath

cylinder relative to the central one. The distance vector between the ða; lÞ -

cylinder and the ðb; mÞ-cylinder is determined by Rlm
ab ¼ Rm

b � Rl
a. The

position vector of the evaluation point Pðx; yÞ relative to the ða; lÞ-cylinder

is defined by rl
a ¼ r� Rl

a where r stands for its position relative to the ori-

gin. k0 represents the wave vector of the incident field.
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P0
alðrl

aÞ ¼ Pextðrl
aÞ þ

X
ðb;mÞ6¼ða; lÞ

PSC
bmðrl

aÞ; (5)

Pextðrl
aÞ ¼

X
q

A0
qeik0:R

l
aJqðkrl

aÞeiqhl
a ; (6)

PSC
bmðrl

aÞ ¼
X

q

ðAm
b ÞsHq�sðkRlm

abÞeiðs�qÞhlm
abJqðkrl

aÞeiqhl
a ;

(7)

where A0
q ¼ iqe�iqh0 are the Bessel expansion coefficients of

the external incident plane wave. The summation on the

right hand side of the Eq. (5) is over a finite number of rows

indexed by m, and over b going from �1 to 1 (with the

exception of ðb; mÞ ¼ ða; lÞ).
After multiplying Eqs. (2) and (5)–(7) by Tq, using

Eq. (4) and equating the coefficients of the expansions, the

MST equation for the infinite SC wall is obtained15,16:

ðAl
aÞq �

X
s

X
m

X
b

ðGlm
abÞqsðAm

b Þs ¼ TqA0
qeik0:Rl eik0:Ra ;

(8)

where ðGlm
abÞqs, the propagator from (b,m) to (a,l) is defined

by

ðGlm
abÞqs ¼ ð1� dabdlmÞTqHq�sðkRlm

abÞeiðs�qÞhlm
ab : (9)

As the external field is a plane wave, the problem becomes

symmetrical relative to a translation along the Ŷ direction,

then ðGlm
abÞqs ¼ ðGlm

0b�aÞqs and the scattering from the ath cyl-

inder of the lth row differs from the scattering of the central

cylinder of that row only by a phase factor:

eik0:Ra ¼ eiakasinh0 . We can get rid of this phase factor by mul-

tiplying both sides of Eq. (8) by e�iakasinh0 , writing down

each term of the multiple sum as:

e�iakasinh0ðGlm
abÞqsðAm

b Þs ¼ ðGlm
abÞqse

iðb�aÞkasinh0 e�ibkasinh0ðAm
b Þs
(10)

and changing the summation index to b� a. Then, new

terms independent of a can be defined as

ðAlÞq ¼ e�iakasinh0ðAl
aÞq; (11)

ðglmÞqs ¼
X1

b¼�1
ðGlm

0bÞqse
ibkasinh0 ; (12)

and Eq. (8) can be rewritten as

ðAlÞq �
X

s

X
m

ðglmÞqsðAmÞs ¼ Tqek0:Rl iqe�iqh0 : (13)

Now the MST equation is expressed in terms of scattering of

infinite rows, instead of cylinders. The propagator matrix

ðglmÞqs can be calculated using Eqs. (12) and (9), but in order

to improve the convergence of the calculation, the infinite

sum in b can be alternatively expressed as summation over

the complex diffraction orders of the rows.16

We consider first the case when l 6¼ m and the propaga-

tor between rows can be rewritten as

ðglmÞqs ¼ Tqð�1Þq�s
X1

b¼�1
Hs�qðkRlm

0bÞeiðs�qÞhlm
0beibkasinh0 :

(14)

The lattice sum over b can be performed starting from the

following integral representation of the Hankel function:

Hs�qðkRlm
0bÞeiðs�qÞhlm

0b ¼ iq�s

p

ð
C

eikh:R
lm
0beiðs�qÞhdh; (15)

where kh ¼ kðcos h; sin hÞ and the integration path C is a

line from hi ¼ i1� p=2 (i1þ p=2) to hf ¼ �i1þ p=2

(�i1þ 3p=2) if m > l (m < l). The position vector can be

rewritten Rlm
0b ¼ Rm � Rl � baŷ, and the sum over b can be

commuted with the integral. Therefore, the propagator can

be expressed as

ðglmÞqs ¼ Tq
ð�iÞq�s

p

ð
C

eikh:ðRm�RlÞeiðs�qÞh

�
X1

b¼�1
eibkasinðh0�hÞdh: (16)

Now the infinite sum can be transformed to a Dirac comb:

X1
b¼�1

eibkasinðh0�hÞ ¼ 2p
ka

X1
�¼�1

d sin h0 � sin h� 2p�
ka

� �
:

(17)

After making the change t ¼ sin h and converting the inte-

gral over the path C into an integral over the interval

ð�1;1Þ, the Dirac comb can be integrated yielding the fol-

lowing expression for the propagator16:

ðglmÞqs ¼ Tq
2ð�iÞq�s

ka

X
�

eiðq�sÞh�

jcos h� j
eik6

� :ðRm�RlÞ; (18)

where the subindex � was added to the integrated values of k

and h. The wave vector k� and angle h� are defined from

sin h� ¼ sin h0 � ð2p�Þ=ðkaÞ; (19)

cos h� ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 h�

q
; (20)

k6
� ¼ kðcos h�; sin h�Þ; (21)

where and a plus (minus) sign in the superscripts corre-

sponds to the case l > m (m > l).
For the case l ¼ m in Eq. (12), the lattice sum over b

has to be taken excluding the case b ¼ 0 and the formula of

Eq. (17) cannot be applied. Since the position vector and
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angle are calculated within the same row, they take the fol-

lowing simple form: Rll
0b ¼ ba and hll

0b ¼ 6p=2, where the

sign is (positive) for b positive (negative). Then the diagonal

term of the propagator can be rewritten as

ðgllÞqs ¼ Tqð�1Þq�s
X
b6¼0

Hs�qðbkaÞis�qð�1Þb=jbjeibkasinh0 ;

(22)

¼Tqð�iÞs�q
X1
b¼1

Hs�qðbkaÞ

� ½eibkasinh0 þ ð�1Þs�qe�ibkasinh0 �: (23)

Applying the same integral form of Hankel function used in

Eq. (15) and after some algebraic manipulation Eq. (22)

becomes:

ðgllÞqs ¼ Tq½S�s�q þ ð�1Þs�qSþs�q�; (24)

where S6
s�q corresponds to the incomplete lattice sum:

S6
s�q ¼

e�ip=4

p
e6ikasinh0

�
ð1
�1

eika
ffiffiffiffiffiffiffiffi
1þit2
p

½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ it2
p

þ ite�ip=4�s�qffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ it2
p

½1� eika
ffiffiffiffiffiffiffiffi
1þit2
p

e6ikasinh0 �
dt (25)

that can be computed numerically.

Now the values of ðglmÞqs can be calculated using Eqs.

(18), (24), and (25) and truncating the summation over �,

due to the good convergence of the complex diffraction

modes. Also, the convergence of the series of Hankel func-

tion is good enough to allow the calculation of the scattering

coefficients ðAlÞq from Eq. (13) truncating the sum and using

standard algebra.

Once the scattering coefficients for the rows ðAlÞq are

determined, the total scattered pressure field can be

expressed as a sum of the scattered fields over all (a; l) cylin-

ders given by Eq. (3), with the coefficients ðAl
aÞq obtained

from Eq. (11):

PSCðrÞ ¼
X

q

X
a

X
l

ðAl
aÞqHqðkrl

aÞeiqhl
a : (26)

Again, the infinite sum over a can be replaced with a sum-

mation over the Bragg order numbers �, following the same

derivation of Eqs. (15)–(18),16 and the total scattered field

can be written down as

PSCðrÞ ¼
X
�

C6
� eik6

� :r; (27)

where now a plus (minus) sign correspond to x > xl (x < xl)

and C6
� is the amplitude of the �th scattered mode:

C6
� ¼

X
q

X
l

ðAlÞq
2ð�iÞ�q

ka

eiqh�

jcos h�j
e�ik6

� :Rl : (28)

In general k� and h� are complex, but for � belonging to

the interval between �� ¼ ðka=2pÞðsin h0 � 1Þ and �þ ¼
ðka=2pÞðsin h0 þ 1Þ those values are real and correspond to

the wave vector and diffraction angle of the �th Bragg order,

respectively. Since in the following we will be only interested

in the propagating reflected modes, we will take � within the

interval ½��; �þ� and use the minus sign in Eq. (28).

From the amplitudes of the scattered modes, we can cal-

culate the reflectivity matrix (R), that represents the inten-

sity for every reflected angle (ar) for a given plane wave of

angle of incidence (ai) and frequency (f ).

Rðf ;ai;arÞ ¼
jcosarj
cosai

jC�� ð f ; aiÞj2 if ar ¼ h�ð f ; aiÞ
0 if ar 6¼ h�ð f ; aiÞ

;

8<
:

(29)

where only the C�� are used for the reflective properties of

the slab, and h� is given by Eq. (19) with h0 ¼ ai. Also, we

make explicit the dependence of these coefficients on the fre-

quency of the incident ray f and the incidence angle ai.

B. Ray tracing method

The Ray tracing method describes the sound propaga-

tion under the approximation of geometrical acoustics, using

rays corresponding to small portions of plane waves of a cer-

tain frequency emanating from a source (R). This approxi-

mation is valid as long as the wavelength is small compared

with the typical length of the cavity.12 Rays propagate with

constant energy and direction inside the cavity, and after hit-

ting a wall they change their energy and direction according

to the reflectivity properties of the boundary. They are traced

around until the energy decay below some fixed value Emin.

A number of acoustical parameters and the energetic

impulse response can be calculated for any point inside the

cavity from this calculation, provided that a sufficient num-

ber of rays (typically severals tens of thousands) are used.

Standard ray tracing methods in acoustics incorporate

specular and diffuse reflection but no diffraction. In our

method, we incorporate the Bragg diffraction at the walls

using the results derived in the previous section.

Each ray segment (between reflections) is characterized

by its direction, energy and the frequency of the associated

wave. After a reflection, a new energy and direction is deter-

mined. The energy is multiplied by a factor equal to the total

reflectivity index, that can be calculated integrating R over

all reflected angles ar, or equivalently summing Eq. (29)

over the possible reflection angles h� . The new direction is

selected among the possible Bragg orders � using probabil-

ities determined from the amplitudes jC�� j from Eq. (28). In

order to make the computations of reflection faster, we pre-

calculate two quantities that can be stored in matrix form:

(a) the Reflectivity index Rðf ; aiÞ, and (b) the scattered angle

probability density Sðf ; ai; arÞ, which are defined as

follows:

Rð f ; aiÞ ¼
X
h�

jcos h�j
cos h�

jC�� ð f ; aiÞj2; (30)
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Sðf ; ai;arÞ ¼
1X

ar
C�� ðf ; aiÞ

if ar ¼ h�ðf ; aiÞ

0 if ar 6¼ h�ðf ; aiÞ
:

8<
: (31)

Once all ray segments are calculated for a particular fre-

quency (f ), an arbitrary position of the receiver D is selected,

taking a finite size disk (detector) of radius d. All ray seg-

ments crossing the detector are extracted, storing their time

of arrival tnðf Þ, energy Enðf Þ and direction anðf Þ. Hence, an

energetic directional impulse response (H) can be calculated

for the chosen source/receiver pair:

HRDðt; f ; aÞ ¼
X

n

dðt� tnðf ÞÞdða� anðf ÞÞEnðf Þ; (32)

note that in this equation the angle a runs from �p to p and

is taken as the angle with the x̂ direction. This energetic

directional impulse response completely characterizes the

temporal, spectral and angular behavior of the instantaneous

intensity vector for the particular positions of the source and

the receiver. For the sake of clarity, we derive from this

response two different magnitudes: (a) the Remaining

Energy Density RED, and (b) the Angular Energy Density

AED; the first containing the temporal information and the

second the directional information of H as a function of

frequency. The REDðf ; tÞ corresponds to the energy remain-

ing in the cavity at time t for a particular frequency f and it

is obtained by integrating over all arrival angles (a),

and integrating backwards in time (a method due to

Schroeder17):

REDðf ; tÞ ¼
ð1

s¼t

ðp

a¼�p
Hðs; f ; aÞdads: (33)

The AEDðf ; tÞ, in turn, corresponds to the intensity inte-

grated for all times as a function of the arrival angle a and

frequency f , and is calculated by direct time integration:

AEDðf ; aÞ ¼
ð1

t¼0

Hðt; f ; aÞdt: (34)

These two quantities will be studied for a rectangular cavity

in the following section for different SC geometries.

III. RESULTS

In this section we present the results of the averaged

EDIR quantities [REDðf ; tÞ and AEDðf ; aÞ] using the hybrid

method developed before. Since we are interested on how

the EDIR of the cavity can be modified by changing the lat-

tice geometry of the sonic crystal walls, we explore three dif-

ferent configurations: (a) a square lattice sonic crystal, (b) a

hexagonal lattice sonic crystal, and (c) a perturbed hexago-

nal lattice sonic crystal. For all three cases the SCs walls are

eight infinite rows of rigid cylinders with radius q ¼ 0:08 m

embedded on air, and the rectangular cavity has the follow-

ing arbitrary dimensions: Lx ¼ 7:61 m x̂ and Ly ¼ 4:63 m ŷ.

Since we will discuss the analogy with a real room, we keep

the numerical values for the geometrical parameters and fre-

quency, instead of using non-dimensional magnitudes.

A. Square lattice

For the first configuration to be analyzed, the walls of

the cavity are square lattice sonic crystals with lattice param-

eter a ¼ 0:1861 m. As the cavity is rectangular and the

square lattice is symmetric with respect to a right angle rota-

tion, the scattering properties of the cavity are the same for

all walls.

The first step of the hybrid method presented here is to

perform the MST calculation in order to derive the scattering

properties of the sonic crystal walls. A frequency range

between 0:1 and 4 kHz, in steps of 20 Hz was explored. For

this configuration, the position of the central cylinder for the

line l is given by Rl ¼ laX̂ and the position of cylinder a of

line l by Ra ¼ aaŶ (Fig. 1).

In Fig. 2(a) we display the Reflectivity index matrix

obtained using MST for the square lattice with the parame-

ters given above. As a reference, in Fig. 2(b), we also display

the acoustic band structure diagram in the first Brillouin

zone of the lattice, calculated using the PWE method. For

the reflectivity index matrix Rðf ; aiÞ two features are appa-

rent: the existence of regions with reflectivity equal to one

(total reflection) and the presence of fringes next to these

regions. The total reflection regions can occupy a full fre-

quency band, for all possible incidence angles (as occurs

between 0.865 and 1.25 kHz) or form patterns with typical

“M” shapes, where total reflection happens only for certain

FIG. 2. (Color online) (a) Reflectivity

index matrix, Rðf ; aiÞ, for a square

lattice (a ¼ 0:1816 m, q ¼ 0:08 m)

sonic crystal infinite slab obtained

using MST. This matrix gives the re-

flectance coefficient for each fre-

quency (f ) and angle of incidence

(ai). The superimposed dashed gray

line corresponds to the beginning of

one of the first Bragg orders given by

ðka=2pÞðsin ai � 1Þ ¼ �1. (b) As a

reference we display the band struc-

ture diagram for the same lattice cal-

culated using PWE. The horizontal

axis correspond to the path C, X, M,

C in the first Brillouin zone (inset).
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incidence angles. When comparing these regions with the

band diagram, it arrives that the full reflection frequency

regions correspond to full band gaps of the sonic crystal. The

“M” shape patterns, in turn, correspond to regions where the

sonic crystal has partial band gaps. As the fringes are related

with Fabry-Perot Resonances the number of them is directly

proportional to the number of rows of the sonic crystal.

The scattered angle probability density Sðf ; ai; arÞ, is

displayed in Fig. 3(a) for a particular value of frequency

f ¼ 2:5 kHz. This matrix represents, for a given ray with

angle of incidence ai, the probability of being reflected at an

angle ar. For an infinite SC slab the only possible values of

ar correspond to the Bragg angles, as displayed in Fig. 3(b).

The analysis of Sðf ; ai; arÞ is more complex, since a

scattered angle probability matrix is obtained for each fre-

quency. In Fig. 3 the matrix for f ¼ 2:5kHz is displayed as

an example. As it can be expected, the matrix has nonzero

values only for the angles corresponding to the different

Bragg orders, from � ¼ 0 corresponding to the anti-diagonal

(specular reflection) to ascending orders corresponding to

subsequent concentric arches. However, for a given angle of

incidence, the probability of being diffracted to a certain

Bragg order is far from trivial.

Once the quantities R and S are obtained, the ray tracing

simulation can be performed using these matrices as inputs.

The source R was located at the center of the cavity and a

circular detector of radius d ¼ a=2 was put at an arbitrary

position: Dx ¼ 1:17 m x̂ and Dy ¼ 0:58 m ŷ, relative to the

center of the cavity. The number of rays used for the calcula-

tion was N¼ 100 000. Short runs (with N¼ 20 000) were

performed in order to check the influence of the source/re-

ceiver position on the averaged EDIR quantities. Air absorp-

tion as a function of frequency was incorporated into the

model using standard data from tables.8 Rays were traced

until their energy decayed 60 dB.

Figure 4 illustrates the averaged EDIR for the cavity.

The RED [Fig. 4(a)] exhibits resonances for certain fre-

quency bands (the energy remains within the cavity for long

periods of time). The longest and widest resonance corre-

sponds to the total band gap of the lattice (0.865 to

1.25 kHz), while other shorter resonances occur for narrower

frequency bands within the regions where the lattice has par-

tial band gaps.

The Angular Energy Density is displayed in Fig. 4(b). A

feature that is immediately apparent is the localization of the

energy over certain angular regions for the resonances that

corresponds to the partial band gaps. This corresponds to a

highly anisotropic intensity field within the cavity. By con-

trast, for the full band gap frequency band an almost iso-

tropic energy density is found. These results are independent

of the source/receiver position.

B. Hexagonal lattice

Next, we calculate the impulse response of the same

cavity as before but using hexagonal lattice sonic crystals as

walls, with lattice parameter a ¼ 0:3 m. For the hexagonal

lattice, the scattering properties of each wall (x̂ and ŷ direc-

tion) are different due to the lack of symmetry of the struc-

ture relative to a right angle rotation. Then, it is needed to

perform two MST calculations with different position vec-

tors for the cylinders. For the wall oriented along the x̂ direc-

tion, the position vectors are given by: Rlx̂ ¼ l
ffiffiffi
3
p

=2aX̂
þa=2½l is even�Ŷ and Rax̂ ¼ aaŶ . While for the wall oriented

along the ŷ direction the vectors are: Rlŷ ¼ la=2X̂ þffiffiffi
3
p

=2a½l is even�Ŷ and Raŷ ¼ a
ffiffiffi
3
p

aŶ .

All the simulation parameters are the same as in the

square lattice with the only exception of the source position

that is displaced Lx=4 in the positive x̂ direction.

Figures 5(a) and 5(b) illustrate the Reflectivity Index

matrices (R) for the walls oriented along the x̂ and ŷ direc-

tions, respectively. In order to easily compare the results

with the ones obtained for the square lattice we keep the ra-

tio k=a constant by setting the maximum frequency of the

simulation in 2.5 kHz. In this case, there are no full band

gaps, and all the total reflection regions occur for certain

incidence angle ranges. These regions are apparently differ-

ent comparing the R matrices for the two orientations. A

more intricate pattern is observed for the wall oriented along

the ŷ direction, especially for frequencies above 1 kHz. This

is reasonable since this wall is not oriented along any primi-

tive crystal axis.

FIG. 3. Scattered angle probability density S for a square lattice sonic crystal infinite slab obtained using MST. (a) The scattered angle probability density

Sðf ; ai; arÞ gives the probability for a ray of incidence angle ai and associated frequency f of being reflected with an angle ar . We display a matrix S corre-

sponding to a frequency of 2.5 kHz. (b) Schematic representation of a ray impinging a sonic crystal infinite slab with incidence angle ai ¼ p=4 and the

reflected rays with the corresponding Bragg orders: specular (� ¼ 0) and higher order reflections (� ¼ �1;�2). As a reference, this incidence angle is traced

on the S matrix, showing the intersection with the Bragg reflections.
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As a final case, we introduce a perturbation on the hex-

agonal lattice by displacing the even rows a distance a=4 in

the positive x̂ direction. After the displacement, the position

vectors of the cylinders for the wall oriented along the x̂
direction are given by: Rlx̂ ¼ l

ffiffiffi
3
p

=2aX̂ þ 3a=4½l is even�Ŷ
and Rax̂ ¼ aaŶ . And for the wall oriented along the ŷ direc-

tion the vectors are: Rlŷ ¼ a=2ðlþ ½l is even�=2Þ X̂ þ
ffiffiffi
3
p

=2a
½l is even�Ŷ and Raŷ ¼ a

ffiffiffi
3
p

aŶ . The ray tracing calculation

parameters remains the same as in the unperturbed hexago-

nal array.

Figures 5(c) and 5(d) depict the Reflectivity Index mat-

rices (R) for the walls of the perturbed hexagonal lattice, ori-

ented along the x̂ and ŷ directions, respectively. By

comparing these matrices with the corresponding matrices

for the unperturbed case, it can be noticed that the main

effect of the perturbation is to reduce the size of the regions

of total reflection above 1 kHz. Thus, as the lattice becomes

less symmetric, the complexity of R increases.

Figure 6 shows the RED of the cavity for the case of

hexagonal [Fig. 6(a)] and perturbed hexagonal [Fig. 6(b)]

FIG. 5. (Color online) Reflectivity

index matrices R for (a and b) a hex-

agonal lattice and (c and d) a dis-

placed hexagonal lattice sonic

crystal infinite slabs obtained using

MST. The lattice constant is a ¼ 0:3
m and the radius of the cylinders q
¼ 0:08 m. The displaced lattice was

obtained by shifting the even rows a

distance of a=4 in the x̂ direction.

Left plots [Figs. 5(a) and 5(c)] corre-

sponds to the walls oriented in the x̂
direction and right plots [Figs. 5(b)

and 5(d)] corresponds to the perpen-

dicular walls.

FIG. 4. (Color online) Averaged EDIR quanti-

ties for a cavity with square lattice sonic crys-

tals walls with the same parameters as Fig. 2.

(a) Remaining Energy Density [REDðf ; tÞ, see

Eq. (33)], which shows the temporal evolution

of the energy remaining in the cavity at the re-

ceiver position as a function of frequency. (b)

Angular Energy Density [AEDðf ; tÞ, see Eq.

(34)], which shows the time-averaged angular

distribution for the energy of the rays arriving

at the receiver position (in dB/Hz) as a function

of frequency.
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sonic crystal walls. As with the square sonic crystal walls,

the strongest resonance is observed for the first band gap

(between 0.5 and 0.7 kHz), and shorter resonances occur for

subsequent partial band gaps. The main effect of the pertur-

bation is to spread and reduce the duration of the strongest

resonance, and to break down the higher resonances into

smaller peaks, generating a more spectrally distributed ener-

getic impulse response.

IV. DISCUSSION

In this section, we analyze the results obtained with the

hybrid method and derive approximations from geometrical

acoustics for the distribution of total reflection regions on

the reflectivity index matrix and the structure of the resonan-

ces inside the cavity.

A. Total reflection condition

We begin by considering the reflectivity index matrix

Rðf ; aiÞ, defined by Eq. (30) and depicted in Fig. 2 (Fig. 5)

for the square (hexagonal) lattice. A common feature that

emerges from these plots is their structure of arches, corre-

sponding to the consecutive Bragg orders. As a reference, a

curve for the beginning of the first order ðka=2pÞðsin ai � 1Þ
¼ �1 is displayed in Fig. 2(a). The subsequent orders are

obtained from this curve as integer multiples and reflections

along the normal-incidence axis. This structure is a direct

consequence of the periodicity of the cylinders along the tan-

gent direction of the slab that acts as a diffraction grid, and

can be obtained even with a single row. As more rows are

added, total reflection areas (R ¼ 1) develop at both sides of

the curves limiting the Bragg orders. Also, fringes corre-

sponding to the Fabry-P�erot interference of the slab, appear

flanking the total reflection areas.18 Note that for the hexago-

nal lattice cleaved along the ŷ direction [Fig. 5(b)] the num-

ber of Bragg orders is higher, and the spacing between them

is smaller by a factor of 1=
ffiffiffi
3
p

, because the periodicity of the

surface is larger by a factor of
ffiffiffi
3
p

.

Since the sonic crystal is two-dimensional (or, equiva-

lently the cylinders are infinite) it is expected that for the

forbidden bands (band gap) the energy of the incident waves

cannot propagate inside the sonic crystal, being reflected

back and forming the total reflection regions in the R matrix.

This explains the total reflection band for all angles between

0.865 and 1.25 kHz for the square lattice, corresponding to

the total band gap of the SC.

For the partial band gaps of the SC total reflection occurs

only for certain ranges of incidence angles. The prediction of

these bands requires more elaborated calculations. A fairly

good approximation can be obtained using the PWE method

and the Snell’s law. Even when both approaches are valid

only for a semi-infinite medium, the results obtained are

pretty similar to those gained from MST using a sufficient

number of rows, at least for the first frequency bands. We

proceeded as follows. From the dispersion relation obtained

using PWE we derive the group velocity as the gradient of

the frequency surfaces in the reciprocal space and the effec-

tive group refraction index (nef f ) as a function of the wave

vector (k0) inside the SC. Then, for a fixed frequency and

using the Snell’s law with nef f ðk0Þ, we derived all the possi-

ble incident wave vectors (k) corresponding to the allowed

values of k0 for that frequency. The obtained angles of inci-

dence corresponds to modes that can propagate inside the

SC, and for which total reflection do not occur. In other

words, total reflection regions are formed by those wave vec-

tors k which cannot excite any propagation mode inside the

SC. For SC slabs with a finite number of rows these regions

are thinner because even when propagation modes are absent,

the energy can cross the slab due to tunneling effects.

In Fig. 7(a) we display the results for the boundary of

the first band with total reflection for the R matrix of a semi-

infinite square lattice calculated using PWE (dashed line),

and 16 infinite rows using MST (solid line). The difference

between the two curves for oblique incidence angles is due

to the finite width of the wall. As more rows are added, the

boundary obtained using MST approaches the curve calcu-

lated using PWE. A feature that is immediately apparent for

both curves is the lack of symmetry with respect to an inci-

dence angle of p=4, even when this is a symmetry axis of the

crystal. This can be easily explained using geometrical

acoustics. For this particular frequency band, the forbidden

propagation directions are close to the normal and tangent

FIG. 6. (Color online) Time evolution of

the remaining energy REDðf ; tÞ inside the

cavity with (a) hexagonal lattice sonic crys-

tal walls, and (b) displaced hexagonal lattice

sonic crystal walls, using the same parame-

ter values as Fig. 5.
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incidence angles [vector pointing to X in the primitive cell,

see Fig. 2(b)], and the allowed propagation directions are

close to 6p=4 incidence angles (vector pointing to M in the

primitive cell). The lack of symmetry arises because nef f is

always greater than one, then rays with small incidence

angles are refracted towards the forbidden normal direction,

while very oblique rays are refracted away from the forbid-

den tangent direction. This is illustrated in Fig. 7(b) using

two rays with angles of incidence a1 and a2, that are sym-

metric with respect to the p=4 direction and have an associ-

ated frequency such that the first (second) ray corresponds to

a forbidden (allowed) k0 propagation vector inside the SC.

B. Resonances of the cavity

Next we turn on analyzing the resonances observed in

the Remaining Energy Densities displayed in Figs. 4 and 6.

These resonances corresponds to rays that persist within the

cavity for several seconds, undergoing up to a few hundreds

of reflections. Only rays with combinations of frequency and

incidence angles that give a reflectivity index very close to

one will survive after such a number of reflections. More-

over, since the cavity is rectangular, we require that total

reflection occurs for certain incidence angles and their com-

plementary angles as well, because rays can bounce between

walls oriented along the x̂ and ŷ directions.

We consider three possibilities for these long-term rays:

(a) rays with associated frequencies for which total reflection

occurs for every angle of incidence, (b) rays undergoing

specular reflections with associated frequencies for which

total reflection occurs for complementary angles, and (c)

rays reflecting in one or more higher Bragg orders with asso-

ciated frequencies for which total reflection occurs for the

Bragg angles and their complementary ones. Here, for the

sake of clarity, we discuss in detail only the two firsts cases,

but the same arguments can be extended to higher Bragg

orders.

The first case occurs for the full band gap regions, where

trivially all rays are trapped inside the cavity, loosing energy

only due to air absorption. This explains the first, longer, and

broad resonance in Fig. 4.

For the second case, we compute the probability of

remaining with a non-vanishing energy value, after many

wall reflections, as a function of the angle of incidence of the

ray, using the information contained in the R matrix and geo-

metrical considerations. Since we are only dealing with spec-

ular reflections, a ray impinging a front wall with angle a0,

will undergo n1 reflections with angle of incidence a0 on the

front and rear walls, and n2 reflections with angle of inci-

dence p=2� a0 on the sidewalls, where n1 depends on the

initial angle and the aspect ratio of the room, and n1 þ n2 is

equal to the total number of reflections. The ray energy after

such a number of reflections is multiplied by a factor

Rðf ; a0Þn1 Rðf ; p=2� a0Þn2 . As the number of reflections

grows, this factor does not vanish only if Rðf ; a0Þ and

Rðf ; p=2� a0Þ are very close to one.

In Fig. 8(b) we display the matrix obtained from of this

calculation. In order to compare this result with the probabil-

ity obtained using the hybrid method [see Fig. 8(a)], we also

multiply the matrix by the probability for the initial angle a0,

that depends on the source position (as the source is well

apart from the walls the probability vanishes toward the tan-

gent directions 6p=2). This explains why the resonances

corresponding to partial band gaps occur only for certain

narrow frequency bands, and why there is always a highly

anisotropic intensity field associated to that resonance [see

Fig. 4(b)].

These resonances are of a completely different nature

than the usual resonances (modes) for enclosures, since they

are not wave related and they just depend on the geometry of

the sonic crystal and the cavity. Furthermore, they produce

highly anisotropic intensity fields, where the sound only

propagates along certain restricted directions. This last fea-

ture is absent in conventional rooms (with the possible

exception of having concave walls, but even in this case the

direction and frequency are fixed). Furthermore, what is

most interesting is that the resonances can be modified by

changing the internal geometry of the walls, as was illus-

trated with the perturbed hexagonal lattice.

We close by discussing some possible applications for

the system studied here. In principle, a physical realization

FIG. 7. Prediction of total reflection zones for a semi-infinite medium using the PWE method and the Snell’s law. (a) Boundary of the first band with total

reflection for the R matrix of a semi-infinite square lattice calculated using PWE (dashed line), and 16 infinite rows using MST (solid line). (b) Schematic rep-

resentation of two rays impinging a semi-infinite square lattice SC with angles a1 and a2, that are symmetric with respect to the p=4 direction. The ray with

incidence angle a1 is refracted towards the forbidden normal direction (and cannot propagate inside the SC), while the other ray is refracted towards the

allowed direction p=4.
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of this two-dimensional “Sonic Crystal Room” could be pos-

sible, provided that long enough cylinders and cylindrical

sound sources are used. The unconventional characteristics

of such a room could be incorporated, for example, into ven-

ues for contemporary music19 (where sound spatialization is

a major concern). A minimal version of the SC walls, prob-

ably with fewer rows and correspondingly with weaker and

more subtle resonances, can also be used to modify the

acoustics of existing rooms. The main advantage of the SC

walls when compared to conventional walls is the possibility

of adjusting their resonances by changing their internal ge-

ometry. Therefore, it is also possible to think of an “acoustic

coating” for walls made by SCs that can be adjusted to equal-

ize the room for a particular purpose. In this way, rooms

with variable acoustics can be obtained with minimal effort.

V. CONCLUSIONS

We have proposed a successful hybrid method, com-

bining MST and geometric acoustics, for calculating the

energetic directional impulse response of a large cavity

inside a two dimensional sonic crystal made by rigid cylin-

ders in air. A reflectivity index matrix and a scattering

probability density were derived from MST calculations.

These magnitudes were analyzed for three different sonic

crystal geometries: square lattice, hexagonal lattice, and a

perturbed hexagonal lattice. The structure observed in the

reflectivity index matrix was related to the Bragg modes

and, for the first frequency band, predicted by a simple cal-

culation using PWE and the Snell’s law. Afterward, these

matrices were used for a modified ray-tracing algorithm

that incorporates Bragg diffraction. The temporal and

directional energy densities obtained with this method dis-

played strong resonances for certain frequency bands and,

in some cases, a highly anisotropic intensity field. A simple

calculation was used to show that these resonances corre-

spond to the existence of regions of total reflection for cer-

tain frequency bands and complementary angles on the

reflectivity index matrix.
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FIG. 8. (Color online) Comparison between

the density of incidence angles ai on the

walls of the cavity inside a square lattice SC

(a) calculated by using the hybrid method,

and (b) estimated for rays undergoing spec-

ular reflections by using the reflectivity

index matrix and geometrical data.
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