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Abstract

The study of multi-phase models is a field of great interest in industry

and academia. Multi-phase flows are present in hydraulics, petrochemical

industry, oceanography, siderurgy, atomic energy and many other human ac-

tivities. This field is far from being completely understood and the available

tools are still in a developing stage. Nowadays the only general model for

this kind of problems are either Direct Numerical Simulation or models based

in the physics of fluids. In this scenario, the aim of this work is to present

a new model based on the Volume of Fluid method and the Mixture Model

in order to solve multi-phase flows with different interface scales and the

transition among them. The interface scale is characterized by a measure of

the grid, which acts as a geometrical filter and is related with the accuracy

in the solution, in this sense the presented coupled model allows to reduce

the grid requirements for a given accuracy. With this objective in mind,

a generalization of the Algebraic Slip Mixture Model is proposed to solve

problems involving short and long scale interfaces in an unified framework.

This model is implemented using the OpenFOAMR© libraries to generate a

state-of-the-art solver capable of solving large problems on High Performance
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Computing facilities. The proposed examples serve as a validation for the

presented model and sum up in the community discussion about coupled

models.

Keywords: Multiphase Flow, Coupled Models, Mixture Models,

OpenFOAM

1. Introduction

The multi-fluid and multi-phase systems are often present in academia

and industry, setting generally a big challenge in their solution. The correct

representation and solution of this kind of systems is a key knowledge in the

car, atomic energy, petrochemical, naval and hydraulics, chemistry, and other

industries (Brennen, 2005; Prosperetti and Tryggvason, 2007; Kolev, 2010).

Throughout the years several models have been devised to simulate these

phenomena, within the most often used may be: the Direct Numerical Sim-

ulation (DNS) (Scardovelli and Zaleski, 1999), the Volume of Fluid Method

(VOF) (Hirt and Nichols, 1981), the Multi-fluid Method (Drew, 1983; Ishii

and Hibiki, 2010) and the Mixture Model (Manninen et al., 1996). In DNS

applied to multi-phase flow the model is able to represent all the geometrical

and turbulent scales for each phase. To do so, the complete set of momentum

and mass conservation equation is solved for each phase, setting the corre-

sponding interfacial and boundary conditions. It is clear that this technique

is only applicable to simple real cases or laboratory tests due to the great

computational resources that are required nowadays. This approach is then

more suitable for cases that belong to the physics of fluids.

In the VOF Method the geometrical analysis is similar to DNS, being the
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mesh size the parameter which determines the representation of the differ-

ent scales of the problem. The turbulence is generally solved using either

time filtering or spatial filtering. The time filtering is implemented by the

Reynolds Averaged Navier Stokes Methods (RANS), meanwhile the spatial

filtering is performed using Large Eddy Simulation (LES).

The Multi-fluid model represents the next level of simplification. In this

model the contact surface between phases is not explicitly tracked, consid-

ering all phases as interpenetrating continua. This approach is generally

used when the geometrical structures of the flux cannot be captured by the

available mesh and/or this is not an important part of the solution process.

With this aim, the mass and momentum conservation equations are solved

for each solid, liquid and gas phase. The representation of phases interac-

tion is included by means of interchange terms in the mass and momentum

conservation equations.

Finally, the Mixture Model has an additional simplification, it is that all

the interpenetrating phases can be considered as a mixture, solving only one

momentum equation, a mass conservation equation for the mixture and a

mass phase fraction equation for all but one phase. The physical properties

used in the mixture equations are given by a combination of the properties

of each phase, using the densities and/or volume fractions in the averag-

ing process. In the case of this work a particular Mixture Model is used

which known as the Algebraic Slip Mixture Model (ASMM) since the rel-

ative velocity needed is calculated algebraically. It is worthy to note that,

even though the Mixture Model represents a simplification respect to the

Multi-fluid model, the applicability of each model and the results’ quality

3



strongly relies on the nature of the problem, giving similar results in many

problems. In addition the Multi-fluid model has a great weakness due to

its ill-posedness (Zanotti et al., 2007) and the lack of closure laws for the

momentum transfer terms between phases (Manninen et al., 1996).

The VOF model is used in problems where surface capturing is crucial,

with an important incidence of the surface tension and adhesion phenomena

as in drop formation, capillarity and jet break-up, or where the free surface

position prediction is essential, such as nozzles, free-surface problems in hy-

draulics, naval industry, reservoirs and liquids separation. In all of these

cases the interfaces considered have long scale, taking as a reference some

measure of the mesh size.

In the case of Multi-fluid and Mixture models the interest is found in

the capacity of predicting the behavior of flows with small-scale interfaces

–dispersed interfaces –when is not possible or desirable a complete model-

ing. This kind of interfaces is often found in sedimentation tanks, cyclone

separators, annular flow in refineries and fine bubbles flow in heat exchangers.

As was presented, the DNS represents the only model which is capable

to afford general multi-phase/fluid problems (Scardovelli and Zaleski, 1999;

Tryggvason et al., 2006); nevertheless, the present computational resources

limitations turn impossible its direct application. On the other hand, due to

their lack of generality, the rest of the models work only in particular cases,

according to each model’s hypothesis.

This situation leaves an open discussion respect to the development of

new models capable to manage several interface scales and/or transitions

between them. So that, a new group of cases could be included such as the
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annular mist flow or droplet annular flow, the transition from churn flow to

bubbly flow (Ishii and Hibiki, 2010) citing cases from the nuclear and chemical

industry or the interaction of bubble plume with a free surface as is frequent

in oceanography (Friedl and Fanneløp, 2000; Cloete et al., 2009) or siderurgy

(Zanotti et al., 2007; Zanotti, 2007).

The state of the art in this topic shows that the study of the so called

coupled models for the treatment of short and long scale interfaces has been

in discussion in the last years. The main motivation has been the lack of

precision in the solutions using the known models and the solutions given

by DNS limited to low Reynolds number flows. The first work in the topic

seems to be that was presented by Černe et al. (Černe et al., 2001), where the

authors introduced a coupled method between VOF and Multi-fluid (Two-

fluids) model. A model switching parameter is given by a dispersion func-

tion, γ, related to the free-surface reconstruction method, so that, there is a

threshold value over which the interface is treated as having long scale and

captured by VOF and the opposite case with the Two-fluids model. Then,

some test cases are solved comparing the convergence of a pure VOF solution

against the coupled solver. Since each base model is written in its original

formulation there is not an unified solution framework and it is necessary to

switch between models with different number of equations. This issue has

particular importance in the treatment of the velocities, since the VOF model

has only one velocity field meanwhile the Two-Fluids model has one velocity

field per phase. The transition from two velocities to one is managed by the

definition of the velocity of center-of-volume, in the opposite case the same

velocity is assigned to each phase. This assumption implies some momentum
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equilibrium physically unrealistic and leads to lose the interface friction.

The solution of multiple scale interface problems with an unified frame-

work was presented by Masuda and Nagaoka (Masuda and Nagaoka, 2006),

who devised a coupled VOF/Multi-fluid method for the application in nozzle

flows. This method recognizes four fluids, the original two fluids and two

mixtures, one given by the first fluid as the dispersed phase and the other

one using the second fluid as the dispersed phase. The transition between the

models is governed by the dispersion function proposed by Černe et al.. In

the same line, Štrubelj and Tiselj (Štrubelj and Tiselj, 2011), gave an unified

framework for the Level-Set and the Multi-fluid method. In this approach all

the scales are solved by the Multi-fluid method and an additional interface

tracking term is implemented within it. The detection of the scale interfaces

is achieved by the cited dispersion function.

Another example of a model based on the unified VOF/Multi-fluid ap-

proach is that was given by Yan and Che (Yan and Che, 2010). It relies on a

division of the phases by their physical state and the interface lenght scale,

giving three new phases: the liquid (phase 1), the large-lenght-scale-interface

(LSI) with gas phase (phase 2) and the small-lenghtscale-interface (SSI) with

gas phase (phase 3). So that, a shared momentum equation is solved for the

mixture of phase 1 and phase 2 and a second momentum equation is solved

for phase 3. This second momentum equation gives the dynamics of the

particulated phase. The geometry of the interfaces is captured by a VOF

method for phase 1 and 2. Phase 3 is also governed by a mass conservation

equation but without interface capturing since it is considered a dispersed

phase.
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The concept of phase division by their physical state and lenght scale was

also developed by Bohorquez (Bohorquez R. de M., 2008) for the treatment

of air-water-sediments in hydraulics problems. Here, there are two principal

phases, the air (phase 1) and the water-sediments mixture (phase 2), the

third phase are the sediments which are dispersed within the water. Thus,

a VOF/ASMM model is derived in an unified framework where the LSI be-

tween phase 1 and phase 2 is solved by the VOF model. The geometry of

the dispersed phase (phase 3) is solved by an additional mass conservation

equation without interface capturing. Since the whole model is given in the

ASMM framework, only one momentum equation is solved for the air-water-

sediments mixture.

From the study of the presented references is also noticeable that the field

of coupled models for different interface length scales is still in development.

The advances on the description of this kind of problems require the de-

velopment and improvement of the models and the possibility of validation.

The validation plays a crucial role, requiring more experiments and getting

analytical or semi-analytical solutions. In this context the objective of this

work is to present a VOF/ASMM coupled model for two phase problems and

its application for academic and industrial problems. The derivation of the

model is motivated from the analysis of VOF solutions looking for a better

treatment of the unresolved interface scales.

2. Motivation

The numerical motivation for the use of coupled models rises from the

careful observation of the solutions obtained with the basic models. For the
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present work, where a VOF/ASMM coupling is proposed, the analysis starts

by the VOF method which is able to capture of all the scales of the interface

with the appropriate mesh. Following the concept of different length-scale in

the interfaces the mesh works as a ”filter” for the interface and the long and

short scales can be determined. So that some results often obtained by the

VOF method could be re-examined to detect such interface scales and the

behavior of this method. Thus, the result of the Rayleigh-Taylor problem

for t = 5.4 is presented in Figure 1.a), in addition the result for a mesh four

times coarser is given in b) and then the solution is zoomed in c). Figure 2

shows a similar comparison starting from the solution for t = 1.6 in Figure

10 for the Dam Break problem, then a solution in a four times coarser mesh

and a zoomed area for the last solution are given (please check Sections 5.2

and 5.3 for a review of the Dam Break and Rayleigh-Taylor problems).

The physics of these two problems for the selected times have particular

differences. In the Rayleigh-Taylor case, the problem is dominated by the

falling of the more dense phase from top to bottom. Once the initial struc-

tures have been lost the flow continues as falling droplets which accumulates

at the bottom of the domain. In the case of the Dam Break problem after

the initial column has collapsed some droplets are ejected from the splash-

ing waves; however, the more important particulate physics is given by the

less dense phase trapped in the mixing process. These particles behave as

bubbles which rise by buoyancy forces.

Since the interface is resolved in about two or three cells (Trontin et al.,

2008) by the VOF method, a chunk (small fluid structure, see the structures
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Figure 1: Results for the Rayleigh-Taylor problem for t = 5.4. a) results in fine mesh,

b) results in coarse mesh, c) detail for the dashed line box in b) with superimposed mesh

(grayscale saturated to black at αq = 0.3). Selected unresolved chunks are indicated by

the arrows
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Figure 2: Results for the Dam Break problem for t = 1.6. a) results in fine mesh, b) results

in coarse mesh, c) detail for the dashed line box in b) with superimposed mesh (grayscale

saturated to black at αq = 0.3). Selected unresolved chunks are indicated by the arrows

marked by the arrows in the figures) needs around four to six cells in width to

be correctly resolved. In the case of bubbles and droplets, they should have

about ten cells in diameter for a correct curvature calculation. The practical

consequence on these small structures is the wrong re-agrupation and break-

up due to the surface tension terms since their effect is more numerical than

physical (Rider and Kothe, 1998). In addition, the development of unresolved

interface scale chunks has another important drawback: when the values of

the volume fraction, αq, of these chunks lay on intermediate values between 0

and 1 (grey zones in the figures) these structures loose their physical meaning.

The fluid present within them is then treated as a new fluid with density and

viscosity given by the value of the mixture properties. These properties do

not match the values of none of the original two fluids and then the buoyancy

forces and the drop falling will be incorrectly calculated.

The idea behind the model which will be presented is to treat the long

scale structures of the flux purely with the VOF method. When some struc-
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tures fall below the unresolved scale this zones have to be calculated using

the ASMM using appropriate closure laws.

3. Theoretical foundation

3.1. The Algebraic Slip Mixture Model

The Algebraic Slip Mixture Model is a multi-phase model for n interpen-

etrated phases based on the Multi-fluid model (Ishii, 1975; Ishii and Hibiki,

2010). In this model all the phases are treated as a mixture which exhibits

mean properties for density and viscosity. In the Multi-fluid, model a mass

and a momentum equations are solved for each phase; on the other hand,

the ASMM reduces the system to a mass and a momentum equations for

the whole mixture and one mass conservation equation for each of the n− 1

phases. Since the momentum equations for these n−1 phases are not solved,

additional algebraic relationships for each phase velocities with respect to

the mixture velocity are given. These algebraic relationships for the slip ve-

locities give the name to this mixture model. Finally, a closure law for all

phases volume fractions is also included. Even when ASMM is physically

more limited than Multi-fluid model, its results are in some particular cases

comparable to that model due to the lack of closure laws available for the

Multi-fluid model (Manninen et al., 1996).

The Mixture Model can be formulated using either the so called velocity

of center-of-mass, mixture velocity or mass averaged velocity, or in terms of

the velocity of center-of-volume. Starting from the Multi-fluid method, the

velocity of center-of-mass based formulation can be derived (Manninen et al.,

1996), which is given by Eqn. (1)
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

∂
∂t

(ρm) + ~∇ · (ρm~vm) = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇p+ ~∇ ·
[
µm

(
~∇~vm

+~∇~vT
m

)]
+ ρm~g − ~∇ · [ρmcp (1− cp)~vpq ⊗ ~vpq]

∂
∂t

(αp) + ~∇ · (αp~vm) = −~∇ · [αp (1− cp)~vpq]

(1)

where ρm =
∑n

k=1 αkρk is the mixture density; ~vm =
∑n
k=1 αkρk~vk

ρm
is the ve-

locity of center-of-mass, which is calculated from the phase velocities ~vk, the

fractions αk (which obey the closure law
∑n

k=1 αk = 1) and the densities

ρk; p is the pressure, which is common for all the phases; µm =
∑n

k=1 αkµk

is the dynamic viscosity of the mixture; ~g is the gravitational acceleration;

ck = αkρk
ρm

is the mass fraction for the phase k and ~vpq = ~vp−~vq is the relative

velocity for a given phase, p, with respect to another phase, q. This rela-

tive velocity can be calculated by algebraic expressions related to the physics

of the dispersed phase. For the sake of simplicity, it is convenient to set a

general constitutive law for the relative velocity, ~vpq, as it is shown in Eqn.

(2)

~vpq = ~vrc (1− αp)a (2)

where ~vrc and a are constants for the model. The ~vrc constant can be inter-

preted as the velocity of a single bubble or droplet moving in the continuum

phase. This expression is flexible and allows to match several other models,

for example the Schiller & Naumann drag law (Schiller and Naumann, 1935)
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can be fitted by selecting an appropriate value for vrc and with 0 6 a 6 1. In

addition, Ishii & Hibiki (Ishii and Hibiki, 2010) provide a complete reference

for drag laws in several industrial cases. Finally, the momentum equation

has an extra term accounting for the momentum exchanging between the

phases, which is calculated by the drift tensor, τD in Eqn. (3)

τD = ρmcp (1− cp)~vpq ⊗ ~vpq (3)

The resulting system is composed by the mass conservation equation for

the mixture, the momentum equation for the mixture velocity and the mass

conservation equation for the secondary phase p in a two-components mix-

ture (p and q), where the p phase is the dispersed one. This system of three

equations has three unknowns, which are: ~vm, p and αp. Respect to ρm it

is linked to αp via its constitutive equation. As it is usual in incompress-

ible problems the pressure has no evolution equation, so that it becomes a

Lagrange multiplier for the restriction given by the mixture density trans-

port equation. This characteristic leads to a pressure-velocity coupling that

can be treated in several ways, as the Fractional-Step or PISO/SIMPLE like

methods (Gastaldo et al., 2008) among others. This issue appears also in

reacting flows (Babik et al., 2005; Najm et al., 1998; Knio et al., 1999), the

Low-Mach solvers applied in that problems are also an inspiration for the

solution of ASMM problems. In addition αp has to be bounded in the [0,

1] interval to have physical meaning. Since vm is not divergence free and

that the momentum and mixture conservation equations depend on αp the

boundedness is not a direct consequence of the correct discretization of the

third equation in Eqn. (1), but of the whole system (Gastaldo et al., 2011).
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As was stated previously, another formulation can be devised for ASMM

in terms of the velocity of the center-of-volume or the volumetric flux. To

do so it is necessary to find a relationship between the velocity of center-of-

mass and this new velocity (Bohorquez, 2012; Márquez Damián, 2013). The

desired relationship is shown in Eqn. (4)

~vm = ~u+ αq (1− αq)
ρq − ρp
ρm

~vqp (4)

Now, starting from the Multi-fluid method it is possible to find a new

mass conservation equation for the mixture written in terms of the veloc-

ity of center-of-volume. Then, for a given phase k of the system the mass

conservation equation (without sources) reads as in Eqn. (5)

∂αkρk
∂t

+ ~∇ · (αkρk~vk) = 0 (5)

assuming constant densities for all phases, dividing each mass conservation

by its corresponding density and then summing over all phases and recalling

that
∑n

k=1 αk = 1, the final expression is given by Eqn. (6)

~∇ · ~u = 0 (6)

where ~u =
∑n

k=1 αk~vk is the velocity of center-of-volume. Now, taking a bi-

phasic system, the mass conservation equation for the primary (continuum)

phase can be obtained and the relationship given in Eqn. (7) can be derived,

~vq = ~u+ (1− αq) ~vqp (7)

Replacing this expression in Eqn. (5) for the q phase allows to write the

final expression for the mass conservation equation for the q phase, Eqn. (8),
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∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0 (8)

Finally, the mixture momentum equation can be rewritten in terms of the

primary phase void fraction αq and the relative velocity of the primary phase

with respect to the secondary one ~vqp. Starting from the expression of the

drift tensor in Eqn. (3), taking into account that ~vqp = −~vpq and αq = 1−αp
and doing some algebraic simplifications, it becomes which is shown in Eqn.

(9)

τD = ρmcp (1− cp)~vpq ⊗ ~vpq = αq (1− αq)
ρq ρp
ρm

~vqp ⊗ ~vqp (9)

In order to give stability to the solution and to simplify the definition

of the boundary conditions (Berberovic et al., 2009) the treatment of the

pressure terms can be performed using the modified pressure prgh defined in

Eqn. (10)

prgh = p− ρm~g · ~x (10)

where ~x is the position vector. Thus, the pressure gradient is then expressed

as in Eqn. (11)

− ~∇p = −~∇prgh − ~g · ~x~∇ρm − ρm ~g (11)

regrouping terms the Eqn. (12) is obtained

− ~∇p+ ρm ~g = −~∇prgh − ~g · ~x~∇ρm (12)
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which allows to replace the pressure gradient and gravity terms in the second

equation of Eqn. (13) by a function of the modified pressure.

In summary, the continuity equation and the momentum balance for the

mixture and the mass conservation equation for the primary phase in center-

of-volume based formulation may be written as in Eqn. (13)



~∇ · ~u = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇prgh

+~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
− ~g · ~x~∇ρm

−~∇ ·
[
αq (1− αq) ρq ρp

ρm
~vqp ⊗ ~vqp

]
∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0

(13)

This formulation is often called the Drift-Flux Model (Manninen et al.,

1996) because it relies in the calculation of fluxes (center-of-volume veloci-

ties) instead of velocities (center-of-mass velocities) in the mass conservation

equation of the primary phase. The principal advantage of this method is

the possibility to use a divergence free velocity in the mass conservation

equation for the primary phase. In addition, it is then possible to avoid

solving a mass conservation equation for ρm which is no more an unknown

but a derived quantity from ρq, ρp and αq. On the other hand, this system

has a mixed formulation between center-of-volume and center-of-mass veloc-

ities which requires transformation formulas in order to solve the momentum
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equation and perform the PISO loop, these formulas are based in Eqn. (4).

3.2. The Volume of Fluid method as a Mixture Model

The VOF method can be classified as a interface capturing technique

which implies that the free-surface is not exactly tracked by the mesh like

in interface tracking methods, but its position is approximated by a phase

fraction function (Carrica et al., 2006). In this sense, the phase fraction

function plays the same role as in ASMM. This similarity can be exploited

in view of the unified framework needed for an extended mixture model.

So that, it would be valuable to find a derivation of the VOF method from

the ASMM. This sets a difference with respect to the original approach given

by Hirt & Nichols (Hirt and Nichols, 1981) in the presentation of the method.

This derivation allows to understand the similarities between both methods

and the potential for an unified framework and solver. The derivation of the

VOF method starts recalling the center-of-volume formulation of the ASMM,

as is presented in Eqn. (13). A principal difference between ASMM and the

VOF method is that the VOF method considers a continuous velocity field

along all the interfaces, which is consistent with the interface boundary con-

ditions given by the physics of fluids. This is possible since all the interfaces

are supposed to be resolved at DNS scale. This hypothesis implies that the

relative velocity between phases is null, ~vqp = 0. Thus, recalling the rela-

tionship between the center-of-mass velocity, ~vm and the center-of-volume

velocity, ~u given by Eqn. (4) the result is given by Eqn. (14)

17



~vm = ~u+ αq (1− αq) ρq−ρp
ρm

~vqp =

~u+ αq (1− αq) ρq−ρp
ρm

0 = ~u

(14)

which implies that the velocity of center-of-mass and the velocity of center-of-

volume are equivalent. By inspection of the momentum equation given in the

system of Eqn. (13) it is clear that the drift tensor τD = αq (1− αq) ρq ρp
ρm

~vqp⊗

~vqp is null. In addition, the possibility of capturing long-scale interfaces allows

to model the effects of the surface tension. This effect is modeled by the

Continuum Surface Model (CSF) (Brackbill et al., 1992) which adds to the

momentum equation the term given in Eqn. (15)

~Fσ = σκ~∇αq (15)

where κ is the mean curvature of the free surface which is given by Eqn. (16)

κ = ~∇ ·

 ~∇αq∣∣∣~∇αq∣∣∣
 (16)

Finally it is important to note that the third equation of Eqn. (13) can

be also simplified since the nonlinear term is zero due to the null relative

velocity ~vqp. This term is deliberately included in the formulation with the

aim to compress the interface. It is worthy to note that since in VOF method

αq is expected to be ever valued 0 or 1, except for the interfaces, this term

acts only on this place (Berberovic et al., 2009; Rusche, 2002; OpenCFD,

2005; Weller, 2008) and vanishes otherwise, so the original formulation for

VOF is recalled in general and the non-linear term is used only at interface

zones. Thus, the solved system reads as in Eqn. (17)

18





~∇ · ~u = 0

∂
∂t

(ρm~u) + ~∇ · (ρm~u⊗ ~u) = −~∇prgh

+~∇ ·
[
µm

(
~∇~u+ ~∇~uT

)]
− ~g · ~x~∇ρm + σκ~∇αq

∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · [αq (1− αq) ~vqp] = 0

(17)

This formulation will hereinafter referred as the Weller-VOF method.

3.3. A coupled model

From the comparison of the systems given in Eqn. (13) and Eqn. (17), it

becomes clear that both VOF and ASMM models can be written in a very

close formulation, and even more, the VOF model can be directly derived

from the ASMM. The basic differences between these approaches in the con-

text of the mixture models are the terms related to the different scales. So

that, since the interfaces are supposed to be completely captured, the VOF

model has a term in the momentum equation including the effects of the

surface tension. On the other hand, the ASMM does not include this term;

however, it takes into account the effect of the drift stresses, or the effect of

the small scale interfaces. In addition, the relative velocity between phases

has physical meaning in ASMM while in VOF it is only a numerical tool in

order to compress the interface. So that, using θ as a flag to activate or deac-

tivate certain terms according to the interface scale which is being resolved,

VOF (Weller-VOF) and ASMM can be coupled as in Eqn. (18)

19





~∇ · ~u = 0

∂
∂t

(ρm~vm) + ~∇ · (ρm~vm ⊗ ~vm) = −~∇prgh

+~∇ ·
[
µm

(
~∇~vm + ~∇~vT

m

)]
− ~g · ~x~∇ρm + θ σκ~∇αq

− (1− θ) ~∇ ·
[
αq (1− αq) ρq ρp

ρm
~vqp ⊗ ~vqp

]
∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · {αq (1− αq) [θ ~vqp,VOF

+ (1− θ)~vqp,ASMM]} = 0

(18)

where ~vqp,VOF and ~vqp,ASMM are the relative velocities calculated either nu-

merically or physically. The value of θ coefficient is θ = 1 for VOF and θ = 0

for ASMM. Two methodologies to calculate θ are studied, in order to select

the most convenient for the proposed algorithm.

3.3.1. Černe criterion

One of the available criteria for long and short scale models coupling,

used by several authors, was given by Cerne (Černe et al., 2001). It is based

on the analysis of the frame obtained taking into account a given cell and all

it neighbors by faces and edges, as it is shown in Figure 3. The switching

function γ is obtained finding the minimum of the function G as is shown in

Eqns. (19-20)
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Fluid 1

Fluid 2

Figure 3: Interface reconstruction using the Cerne criterion (Adapted from (Černe et al.,

2001))
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Gi,j (~n) =
1∑

l=−1

1∑
k=−1

(
αq,i+k,j+l − α′q,i+k,j+l (~n)

)2
(19)

γi,j = min (Gi,j (~n)) (20)

where α′q represents the volume fraction of the hatched area. The minimum

value of γ is zero and corresponds to the exact matching of the interface

with the boundary of the hatched zone. This value increases when the fluid

is located in the wrong side of the proposed interface, so that this function

is often called the ”dispersion function”. Finally, it is necessary to set a

threshold value for γ = γ0 such that the θ criterion could be calculated as in

Eqn. (21)

θ =


1, if γi,j < γ0 [VOF in cell (i, j)]

0, if γi,j > γ0 [Multi− fluid in cell (i, j)]

(21)

The threshold value is obtained by several cases study, such that the

recommended value is γ0
∼= 0.6 (Černe et al., 2001). This methodology is

attractive since it is based in the reconstruction of the interface (Puckett

et al., 1997), but requires the time consuming solution of a minimization

problem at each cell and time-step.

3.3.2. Face gradient criterion

Another criterion can be devised based on the gradient of the phase frac-

tion function αq calculated by the cell-centered Finite Volume Method (FVM)

(Jasak, 1996; Márquez Damián, 2013), which is shown in Eqn. (22)
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~∇α =
1

V

∑
f

(αq)f · ~Sf (22)

where V is the volume of a given cell, f is an index along all the faces

of the cell and ~Sf is the face area vector. As a next step, this gradient is

interpolated at faces obtaining ~∇αf . The gradient at the faces gives a general

idea of the variation of the phase fraction along the domain. Large gradients

are associated to big changes in α, and then a large scale interface is inferred.

This value is weighted with a measure of the mesh in order to normalize the

switching function. A clear local jump between two phases requires not only

a big gradient but also to be extended in few cells. So that, the gradient is

multiplied by the face’s neighboring cells center-to-center vector, ~dPN as is

shown in Eqns. (23)-(24) (See Figure 4)

~dPN = ~xP − ~xN ; (23)

γf = |~∇αf · ~dPN | (24)

Finally, the criterion to switch between VOF and ASMM is given by the

rules expressed in Eqn. (25). It states that VOF will be used in high relative

gradient zones (large scale interfaces) and in regions with α ∼= 1 or α ∼= 1,

indicating pure phases; in all other cases, ASMM will be used. This criterion

requires the selection of γ0, the threshold for small gradients and ε, which is

a magnitude that controls the maximum deviation from α = 1 or α = 0 to

be considered as a pure phase.
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Figure 4: Face gradient criterion

θf =



1, if αf < 0 + ε o αf > 1− ε [VOF in face f ]

1, if γf > γ0 [VOF in face f ]

0, if γf < γ0 [ASMM in face f ]

(25)

The values for γ0 and ε have to be adjusted according to the problem.

Since in VOF the interface is resolved in about three cells a reference value

is γ0 = 0.33. Respect to ε, a typical value is ε = 5 × 10−3. The principal

advantages of this indicator function are its intrinsic 3D formulation and its

simplicity and low demanding calculation. This method will be then used

for model switching.
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4. Solver implementation

The implementation of the solver for the coupled model or extended mix-

ture model given by Eqn. (18) is based on the FVM using the OpenFOAMR©

libraries (Weller et al., 1998). The starting point is the discretization of the

Navier-Stokes system, which is presented in Eqn. (26)


∂~v
∂t

+ ~∇ · (~v ⊗ ~v) = −~∇p+ ~∇ ·
(
ν ~∇~v

)
~∇ · ~v = 0

(26)

here, the momentum equation is presented with the continuity equation

which corresponds to the case of constant density in space and time, thus,

it is a case of incompressible flow. This system deals with three principal

issues: first, the incompressibility which leads to a lack of pressure evolution

equation and requires an special treatment for pressure-velocity coupling;

the left two other issues are related to the convective term which requires

stabilization for the advection and a particular treatment of its non-linearity.

The stabilization is treated by High Resolution Methods as is usual in the

FVM (Hirsch, 2007). With respect to the non-linearity, it can be solved by

using a non-linear system or by linearization which is the chosen option. So

that, the advective term is linearized using the assumption of small Courant

numbers (Co < 1) and then ~v0 ∼= ~v, as is presented in Eqn. (27)
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∫
Γ
~∇ · (~v ⊗ ~v0) · d~Γ =

∑
f ~vf ~v

0
f · ~Sf

=
∑

f F
0 ~vf

= aP~v +
∑

f aN~vN

(27)

where ~v0 is the velocity at the previous time-step, aP are the diagonal coeffi-

cients of the discretization matrix, aN the off-diagonal ones and F 0 the face

flux at the previous time-step. All these quantities are a function of ~v0, it

is important to note that the pressure is discretized at cell centres and the

velocities are calculated at faces in the form of fluxes, so that the flux F 0 is

only calculated from ~v0 eventually at the first time-step. In the rest of the

simulation this flux is taken from the previous time-step pressure-velocity

loop, which assures the satisfaction of the continuity equation (conservative

flux). Regarding the incompressibility restriction it is treated in this work

by the PISO (Pressure Implicit Split of Operators) procedure (Issa, 1986),

as is implemented in OpenFOAMR© (Jasak, 1996; Peng Karrholm, 2008).

4.1. Derivation of an equation for the pressure

Since no evolution equation is given for the pressure it is necessary to

derive a method to obtain at least a discretized equation which allow to

solve the pressure. Writing the momentum equation in a semi-discretized

form as in Eqn. (28) it is possible to start its derivation

aP~vP = ~H (~v)− ~∇p (28)
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This equation is obtained by the integral form of the momentum equation

using the FVM. The pressure gradient is not discretized at this time, which

following the Rhie and Chow interpolation procedure (Rhie and Chow, 1983).

It is important to note that in order to allow future face interpolations of

matrix’s coefficients, the discretization has been divided by the volume of

each cell.

The ~H (~v) operator accounts for the advective and diffusive terms, as well

as all the source terms, including the source part of the transient term, so

that it results to be which is shown in Eqn. (29)

~H (~v) = −
∑
f

aN~vN +
~v0

∆t
(29)

Then, the velocity at cell-centers can be isolated from the discretized

version of momentum equation [Eqn. (28)] as in Eqn. (30)

~vP =
~H (~v)

aP
− 1

aP
~∇p (30)

In addition these velocities can be interpolated at faces as in Eqn. (31):

~vf =

(
~H (~v)

aP

)
f

−
(

1

aP

)
f

(
~∇p
)
f

(31)

which gives a base for face flux calculation. On the other hand, the continuity

equation can be discretized as in Eqn. (32)

~∇ · ~v =
∑
f

~vf · ~Sf = 0 (32)

Now, the obtained expression for the velocity at faces can be substituted

in Eqn. (32) to find an equation for the pressure [Eqn. ( 33)]
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~∇ ·
(

1

aP
~∇p
)

= ~∇ ·

(
~H (~v)

aP

)
(33)

Finally, the new set of discrete equations for the Navier-Stokes system

results to be which is shown in Eqn. (34)


aP~vP = ~H (~v)− ~∇p∑

f

[(
1
aP

)
f

(
~∇p
)
f

]
· ~Sf =

∑
f

(
~H(~v)
aP

)
f
· ~Sf

(34)

In addition, it is necessary a way to assemble the face flux F , see Eqn. (35)

F = ~vf · ~Sf =

( ~H (~v)

aP

)
f

−
(

1

aP

)
f

(
~∇p
)
f

 · ~Sf (35)

4.2. A PISO solver for the Extended Model

The derivation of a solver for the Extended Model is based on the solver

for the Weller-VOF method given in the OpenFOAMR© suite, which is called

interFoam. It relies on a pressure-velocity coupling loop based on PISO, and

is basically a derivation of the method presented in the previous section. In

addition it is necessary to solve the αq equation which is achieved by means

of the Multidimensional Universal Limiter for Explicit Solution (MULES)

an explicit solver based on the Flux Corrected Transport (FCT) technique

(Zalesak, 1979; Rudman, 1997; Márquez Damián, 2013). The use of the

MULES integrator gives a bounded value for αn+1
q and returns a limited

version of the flux used in the integration, which is needed to assemble the

momentum equation.

So that, the general method for the solution of αq equation is based in its

discretized form given in Eqn. (36)
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∂αq
∂t

+ ~∇ · (αq~u) + ~∇ · {αq (1− αq) [θ ~vqp,VOF

+ (1− θ)~vqp,ASMM]} = 0

(36)

This equation can be rewritten in terms of face fluxes and using an explicit

integration scheme as in Eqn. (37)

αn+ν+1
q −αnq

∆t
V +

∑
f Fαq =

αn+ν+1
q −αnq

∆t
V +

∑
f

{(
αn+ν
q

)
f
F n+ν

+
[
αn+ν
q

(
1− αn+ν

q

) ]
f
FNL,n+ν

}
= 0

(37)

where Fαq represents the whole flux of the αq equation. This equation is

solved using a fixed-point iteration in order to circumvent the issue of the

non-linearity of the fluxes, where ν is the number of the present iteration.

The loop is done nAlphaCorrectors times. The flux Fαq is calculated from

F n = ~uf · ~Sf which is a linear flux due to the center-of-volume velocity and

FNL,n, the non-linear flux due to the combination of the artificial compressive

velocity and the physical relative velocity at the interfaces. This is calculated

as in Eqn. (38)

FNL,n =
[
(1− θf )~vrc

(
αnq
)a]

f
· ~Sf

+θf nf min

[
Cα
|Fn|
|~Sf | ,max

(
|Fn|
|~Sf |

)] (38)

where the first term corresponds to the flux due to the physical relative

velocity calculated by Eqn. (2), and the second one corresponds to the effect
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of the artificial compressive velocity. There, Cα (cAlpha) is an adjustment

constant, nf =
(∇αq)f
|(∇αq)f+δn| ·

~Sf is the face unit normal flux with δn = ε(∑
N Vi
N

)1/3

as a stabilization factor to avoid division by zero, with ε = 1 × 10−8. The

direction of the compressive velocity is given by the gradient of αq and ensures

the application of the compression on the normal of the interface. The values

of
(
αnq
)
f

are calculated by a selectable High Resolution Scheme, particularly

in the non-linear term they can be discretized by the interfaceCompression

scheme, which has been devised specially for its use in equation (37). This

scheme doesn’t obey to an TVD/NVD analysis; however it was selected in

order to guarantee the use of upwind differencing when αq is near the extrema,

or central differencing otherwise being a good combination of boundedness

and accuracy (Peng Karrholm, 2008; Weller, 2008) (see (Gastaldo et al., 2011)

for an example of this kind of method in ASMM solving under a different

solution methodology). Once the flux Fαq is assembled it is used by MULES

to perform the integration given by Eqn. (36). Here it is important to note

that MULES use a limited version of Fαq in the integration which is then

returned with the new value of αq for further use.

In addition, the solution method of the system given in Eqn. (17) in-

cludes an adaptive time-step control and the sub-cycling in the solution of

αq equation. The adaptive time-step control is performed calculating the

time-step by means of Eqn. (39)

∆tn =

min
{

Comax
Co

∆t0,
(
1 + λ1

Comax
Co

)
∆t0, λ2∆t0,∆tmax

} (39)
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where Co =
|~uf ·~Sf ·|
~dPN ·~Sf

∆t is the face-calculated Courant number, Comax, ∆tmax

are user-defined parameters and λ1 = 0.1 and λ2 = 1.2 are two hard-coded

factors in order to reduce immediately the time-step and to increase it grad-

ually to avoid unstable oscillations. Regarding to Comax, Gopala and van

Wachem (Gopala and van Wachem, 2008) recommend a value lesser than 0.3

and Berberovic et al. (Berberovic et al., 2009) a value of approximately 0.2.

By the author’s experience, the last value results successful, but some run-

nings have been performed using Comax = 0.1 to reach the expected results.

It is important to note another observed behavior of the adaptive time-step

method. Since it is Courant number based, the time-step can go to excessive

high values at the beginning of the simulation if no high velocity values are

present in the simulated problem, which can can play against the physics of

the phenomenon giving inaccurate values. This issue can be circumvented us-

ing the ∆tmax parameter or using a fixed time-step in the first steps. Similar

conclusions were informed by Berberovic et al.

The sub-cycling is performed in order to give stability to the solution of

the αq equation, so that choosing a number of sub-cycles nsc (nAlphaSubCycles)

the sub-step is defined as in Eqn. (40)

∆tsc =
∆t

nsc
(40)

Since the flux used in the integration of the αq equation is based on a

center-of-volume velocity, it is necessary to give a center-of-mass velocity flux

of mass flux in order to be able to assemble the momentum equation. This

mass flux has to be calculated carefully within each sub-cycle. The basic

assembling of this flux is given by the relationship between the center-of-
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mass velocity and the center-of-volume velocity and is necessary since the

αq equation modifies the mass distribution, so that recalling Eqn. (4) and

assembling a mass face flux, it becomes as is shown in Eqn. (41)

Fρm = (ρm~vm)f · ~Sf = (ρm~u)f · ~Sf

+ [αq (1− αq) (ρq − ρp) ~vqp]f · ~Sf

(41)

which can be re-written as in Eqn. (42)

Fρm = ρm F + αq (1− αq) (ρq − ρp) FNL (42)

where FNL is the face flux given by Eqn. (38). On the other hand the

discretization of αq requires the assembling of the flux given in Eqn. (43)

[see Eqn. (37)]

Fαq = (αq)f F + [αq (1− αq) ]f F
NL (43)

Now, doing some simple algebraic manipulations, it is easy to reach what

is shown in Eqn. (44)

Fρm,sc,i = Fαq (ρq − ρp) + F ρp (44)

So that, in each sub-cycle a partial mass flux is assembled as Fρm,sc,i. The

mass flux for the complete time-step is obtained by the discrete integral form

of the mean value theorem as in Eqn. (45)

Fρm =
nsc∑
i=1

∆tsc
∆t

Fρm,sc,i (45)
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Once the αq is solved it is necessary to assemble and solve the dis-

cretized version of the momentum equation in order to obtain a prediction

of the center-of-mass velocity; this step is called the momentum predictor

(momentumPredictor). This equation is shown in Eqn. (46)

ρn+1
m ~̃vm−ρnm~vnm

∆t
V +

∑
f F

n+1
ρm ~vm · ~Sf =

∑
f (µn+1

m )f

(
~∇~vm

)
f
· ~Sf +

(
~∇~vnm · ~∇µn+1

m

)
V

−
∑

f (1− θf )
[
αn+1
q

(
1− αn+1

q

) ρq ρp
ρn+1
m
~vnqp ⊗ ~vnqp

]
f
· ~Sf

+R
{
θf (σκ)f

(
~∇αn+1

q

)
f

−
[
(~g · ~x)f

(
~∇ρn+1

m

)
f
−
(
~∇pnrgh

)
f

] ∣∣∣~Sf ∣∣∣}

(46)

where Fρm is the mass face flux given by Fρm = (ρm~vm)f · ~Sf and ~a =

R
(
~a · ~Sf

)
is an operator to reconstruct cell-centered fields from fields given

as fluxes at faces.

In order to be able to obtain a PISO loop for the correction of the pre-

dicted center-of-mass velocity and the calculation of the modified pressure

prgh it is necessary to have a flux relationship between the velocity of center-

of-mass and the velocity of center-of-volume and to define a pressure equa-

tion. So that, starting from Eqn. (4), isolating ~u and multiplying by the face

area vector the desired flux relationship is obtained in Eqn. (47)
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F = ~uf · ~Sf = (~vm)f · ~Sf −
[
αq (1− αq)

ρq − ρp
ρm

]
f

(~vqp)f · ~Sf (47)

From the derivation of the pressure equation in section 4.1 [Eqn. (31)] the

velocity of center-of-mass can be expressed at faces (in terms of the modified

pressure here) as in Eqn. (48)

(~vm)f =

(
~H (~vm)

aP

)
f

−
(

1

aP

)
f

(
~∇prgh

)
f

(48)

then, the flux relationship can be re-written as in Eqn. (49)

~uf · ~Sf =

[(
~H( ~vm)
aP

)
f
−
(

1
aP

)
f

(
~∇prgh

)
f

]
· ~Sf

−
[
αq (1− αq) ρq−ρp

ρm

]
f

(~vqp)f · ~Sf

(49)

Using this expression in the discretized version of the incompressibility

restriction for ~u,
∑

f ~uf · ~Sf = 0 and re-arranging, Eqn. (50) is obtained

∑
f

[(
1
aP

)
f

(
~∇pν+1

rgh

)
f

]
· ~Sf =

∑
f

(
~H( ~vm)
aP

)
f
· ~Sf

−
∑

f

[
αq (1− αq) ρq−ρp

ρm

]
f

(~vqp)f · ~Sf

(50)

Finally, adding the effect of the gravitational acceleration and the surface

tension, the pressure equation is obtained in Eqn. (51)

34



∑
f

[(
1
aP

)
f

(
~∇pν+1

rgh

)
f

]
· ~Sf =

∑
f

[(
~H( ~vm)
aP

)
f

+θf (σκ)f

(
~∇αn+1

q

)
f
− (~g · ~x)f

(
~∇ρn+1

m

)
f

]
· ~Sf

−
∑

f

[
αq (1− αq) ρq−ρp

ρm

]
f

(~vqp)f · ~Sf

(51)

In addition, the relationship given by Eqn. (47) allows to solve the phase

fraction transport equation, the third equation in Eqn. (18), using a con-

servative flux for ~u assembled from the flux of ~vm given by the last PISO

loop.

Given the formulation of the coupled model and the auxiliary equations

needed for the pressure-velocity coupling is now possible to describe the solver

algorithm for the extended model, which is as follows:

1. Solve the mass conservation equation for the primary phase for αqn+1, assemble the mass face

flux Fρmn+1 and get the new mixture density ρmn+1 by a loop of nAlphaSubCycles cycles where:

a) The relative velocity at faces is calculated as a flux using Eqn. (38). The calculation of this

flux requires to precompute the indicator function θf at faces

FNL,n =
[(

1− θf
)
~vrc (αqn)a

]
f
· ~Sf+

θf nf min

[
Cα
|ΦL|
|~Sf |

,max

(
|ΦL|
|~Sf |

)]
b) The αq equation [Eqn. (37)] is solved 0 < ν < nAlphaCorrectors times by the MULES

integrator which also returns the limited flux Fαq . This flux is computed using TVD reconstruction

and the interfaceCompression scheme for the compressive term.

αq
n,ν+1−αqn

∆t
V +

∑
f Fαq =

αq
n,ν+1−αqn

∆t
V +

∑
f

{
(αqn,ν)f F

n+

[αqn,ν (1− αqn,ν) ]f F
NL,n,ν

}
= 0
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c) The new mass face flux for the present sub-cycle is calculated by Eqn. (44). At the end of the

loop the final mass face flux is calculated by Eqn. (45) and the density is updated

Fρm,sc,i = Fαq (ρq − ρp) + F ρp Fρm =
∑
i=1

nsc
∆tsc

∆t
Fρm,sc,i

ρm
n+1 = αq ρq + (1− αq) ρp

2. Solve the momentum predictor [discretized version of the second equation in Eqn. (18)] for ~̃vm if

the momentumPredictor flag is set to yes

ρm
n+1~̃vm−ρmn~vmn

∆t
V +

∑
f Fρm

n+1 ~̃vm · ~Sf =

∑
f

(
µmn+1

)
f

(
~∇~̃vm

)
f
· ~Sf +

(
~∇~vmn · ~∇µmn+1

)
V

−
∑
f

(
1− θf

) [
αqn+1

(
1− αqn+1

) ρq ρp
ρmn+1 ~vqp

n ⊗ ~vqpn
]
f
· ~Sf

+R
{
θf (σκ)f

(
~∇αqn+1

)
f
−
[
(~g · ~x)f

(
~∇ρmn+1

)
f

−
(
~∇prghn

)
f

] ∣∣∣~Sf ∣∣∣}
3. Do the PISO loop 0 < ν < nCorrectors times, where:

a) A face flux is calculated using theH(~vm) operator with ~̃vm obtained in the momentum predictor.

This face flux doesn’t take into account the effects of the gravity

Fmu
ν+1

f =

H
(
~̃uν
)

aP


f

· ~Sf + ddtPhiCorr(1/aP , ρm, ~vm
ν , Fm

ν)

The flux is then adjusted to obey continuity, via adjustPhi(Fmuν+1, H(~vmν)/aP , prgh
ν) method

b) The final proposed flux is found adding the effects of of the gravity and the surface tension

Fmν+1
f = Fmuν+1 + θf (σκ)f

(
~∇αqn+1

)
f

− (~g · ~x)f

(
~∇ρmn+1

)
f

|~Sf |
(aP )f

c) The pressure equation is assembled and solved nNonOrthogonalCorrectors times for prgh
ν+1

in order to circumvent the problem of the gradient calculation in non-orthogonal meshes

∑
f

[(
1
aP

)
f

(
~∇prghν+1

)
f

]
· ~Sf =

∑
f Fm

ν+1
f

−
∑
f

[
αq (1− αq)

ρq−ρp
ρm

]
f

(~vqp)f · ~Sf
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d) The proposed flux is adjusted by the effect of the pressure and the center-of-volume velocity at

the cell centers is adjusted as well

Fm
ν+1

f = Fm
ν+1

f −
[(

1

aP

)
f

(
~∇prgh

)
f

]
· ~Sf

~vm
ν+1 = ~vm

ν+1 +
1

aP
R
[(
Fm

ν+1
f − Fmuν+1

f

)
(aP )f

]
e) Finally, the static pressure is reconstructed p from the modified prgh as p = prgh + ρm ~g · ~x

4. The face flux for the velocity of center-of-volume is recovered from the flux using Eqn. (47)

Fn+1 = Fm
n+1

f −
[
αq (1− αq)

ρq − ρp
ρm

]
f

(~vqp)f · ~Sf

5. Return to step 1 until finish.

In the first step the αq is solved. In this stage the MULES integrator is

used in order to guarantee the boundedness of αq and returns the limited

value of Falphaq needed to assemble the mass face flux Fρm used in the mo-

mentum equation. Next, the momentum predictor is solved in step 2 and the

PISO loop is performed in step 3. Each iteration of the PISO loop includes

certain number of non-orthogonal corrections to circumvent the issue of im-

plicit gradient calculation in non-orthogonal meshes (Jasak, 1996; Versteeg

and Malalasekera, 2007). Finally, in step 4, the flux for the velocity of center-

of-volume is recovered in order to be used for the integration of αq in the next

time-step. Thus, the relationship between the velocity of center-of-mass, ~vm,

and the velocity of center-of-volume, ~u, needed in the system given in Eqn.

(18) is expressed in terms of face fluxes. From these steps, it is clear that the

correct calculation of the flux and its treatment along the solving algorithm

plays a central role in the successful implementation of the solver.

The algorithm also includes two methods in the PISO loop: ddtPhiCorr

(1/aP , ρm, ~uν , F
ν) is a flux adjustment due to the time-step needed by the

Rhie-Chow interpolation (Choi, 1999), meanwhile adjustPhi(F ν+1
u , H(~uν)/aP , p

ν
rgh)
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adjusts the flux in free boundaries to obey the continuity equation for ~u.

Since the presented algorithm is not available in the OpenFOAMR© suite it

was programmed starting from VOF solver and using the gdbOF debugging

tools (Márquez Damián et al., 2012).

5. Examples

In order to validate the proposed method, a series of examples will be

solved with both the VOF and the extended methods. The first example

corresponds to a bubble plume in laboratory conditions and the objective

is to correctly predict the deformation of the free-surface due to the plume

and the dynamics of the dispersed phase. This kind of problems is often

solved using the Mixture Model; however, the prediction of the free-surface

dynamics is not possible since it would be completely smeared. The shape

of the free-surface is compared to laboratory experiments and the dynamics

of the dispersed phase is qualitatively analyzed. The last two examples have

already been presented in the literature, nevertheless, a new insight is given

proposing new ways to evaluate the convergence to the DNS solution. So

that, the Dam Break problem is revisited comparing the overall behavior of

the solutions for both VOF and extended methods. In addition, a measure of

the correct dynamics of the dispersed phase is given, allowing the estimation

of an improvement factor of the extended model with respect to the VOF

model. Finally, the Rayleigh-Taylor instability is calculated using the ex-

tended model and the results are compared to VOF solutions. A qualitative

comparison of the solutions is made and the dynamics of the dispersed phase

in each case is compared using an integrated measure.
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5.1. Interaction of a bubble plume with the water surface

The first example gives a semi-quantitative validation from the phe-

nomenon of interaction of a bubble plume and the water surface. This

phenomenon appears in blowouts in offshore drilling, broken gas pipelines

and natural undersea gas releases forming big bubble plumes. In addition,

bubble plumes of small extension are used for mixing process in reservoirs or

waste water treatment, chemical reactors and metallurgical processes (Friedl

and Fanneløp, 2000; Zanotti, 2007).

The example is taken from the work of Friedl and Fanneløp (Friedl and

Fanneløp, 2000) and consists of the generation of a bubble plume in labo-

ratory conditions released from the bottom of a water pool, as is shown in

Figure 5. The pool has a square cross-section of 11 of side and 0.95 in height.

The free surface is set at Hv = 0.66. The air is released from the bottom

of the tank through a square duct of area Ai = 0.0005067 and lenght of

hi = 0.04502 with a release velocity of vi = 2.6 which corresponds to the

case a4 of the reference. The physical properties of the fluids are as follows:

the density of the water, ρq = 1000, the kinematic viscosity of the water

νq = 1 × 10−6, the density of the air ρp = 1, the kinematic viscosity of the

air νq = 1.48 × 10−5 and the surface tension σ = 0.07. The gravitational

acceleration is ~g = (0, 0,−9.81).

As is expected, when the bubble plume reaches the free surface it is

disturbed forming a fountain with different shapes but having in common

1All the magnitudes are expressed in the International System of Units
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Figure 5: Geometry for the a4 case of bubble plume in (Friedl and Fanneløp, 2000). Ai

and hi are the cross section and height of the inlet duct. The shaded zone indicates the

original free surface position and the bell-shaped curve of the mean free surface for the

x− z plane

Figure 6: Mean shape of the fountain presented in Figure 5 (adapted from (Friedl and

Fanneløp, 2000))
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a greater disturbance near the center of the fountain, and then decaying to

the sides of the pool, as is shown in Figure 5. The results reported in the

reference are an average of the experimental results which can be fitted by a

bell-shaped function as in Figure 6. The expression of the mean free surface

shape on a given vertical plane (x− z in the figure) is presented in Eqn. (52)

h(r) = hf e−r
2/b2f (52)

where h is the height of the mean free surface for a given radius r (the fountain

is considered to be circular), hf is the maximum height of the fountain and

bf is the semi-diameter of the fountain.

So that, two series of simulations were performed, the first one with the

standard VOF solver (interFoam2) and the second one with the extended

model. Each series had three cases with similar settings but with different

size hexahedral meshes: a) meshed with blockMesh with 364,000 elements;

b) meshed in GambitR© with 574,975 elements, with local mesh refinement

for a better capturing of the plume and the free surface; c) a mesh resulting

of the subdivision by two in the three directions of the previous mesh using

the tool refineMesh, giving a mesh with 4,599,800 elements and the same

refinement properties of the original mesh.

With respect to the boundary conditions for αq, a zero gradient (zeroGradient)

was set at all walls except for the top and the inlet. On the top, a mixed

boundary condition (inletOutlet) was set using a fixed value of zero if the

flux is ingoing, and zero gradient for αq if the flux is outgoing. At the inlet, the

2The words in courier font corresponds to OpenFOAMR©’s utilities or commands
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value of αq was fixed as αq = 0 (fixedValue) to ensure a pure air inlet. The

boundary conditions for the modified pressure they were set as ~∇prgh · ~Sf =

−~∇ρ |~g| · ~Sf (buoyantPressure) for all the walls and the inlet. At the top

the boundary condition was set with a total pressure (totalPressure) of

zero. Finally, for the center-of-volume velocity the non-slip boundary con-

dition was set for all walls except for the top and the inlet. At the top the

velocity gradient was set as zero for outgoing flows and the value of the ve-

locity as zero for ingoing flows (pressureInletOutletVelocity). The inlet

was set with a fixed velocity ~u = (0, 0, 2.6) (fixedValue). The relative ve-

locity law needed by the zones solved with ASMM in the coupled model was

set with a = 0, see Eqn. (2), giving a constant velocity. The value for this

constant velocity was reported in the reference as vqp = 0.35. The parame-

ters for model coupling were set as γ0 = 0.025 and ε = 5× 10−3 after a brief

optimization of the results.

The solver was set with the following parameters: momentumPredictor=no,

nCorrectors=3, nNonOrthogonalCorrectors=0, nAlphaCorr=1, nAlphaSub

Cycles=2, cAlpha=1. The maximum Courant number for this running was

set as 0.5, which was larger than the recommended (0.2); in spite of that, it

was stable. The first case (VOF with coarse mesh) was run until t = 10 in

order to reach the full development of the bubble plume; then, it was run

to t = 20. The left runnings were done mapping the coarse mesh solution

for t = 10 into the finer meshes and then running until t = 20. For all

the calculation of the mean values reported for the experiments the interval

t = 10− 20 was used.

The general results are reported in Figure 7 for VOF, and in Figure 8 for
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the extended model. From the first figure, it is clear that the coarse mesh cap-

tures few details of the surface mesh; in addition, the pool has non-physical

chunks spread at the sides of the plume (the grayscale has been saturated to

white at αq = 0.8 in order to easily see the gas zones). The refinement of the

mesh in b) and c) improves the surface capturing but at the same time the

VOF method increases its ability to capture the break-up of the big bubbles.

The break-up gives small chunks and bubbles which are not correctly removed

by buoyancy and then stay in the pool advected by the lateral flow from the

plume to the sides. It is expected that successive mesh refinements allow

capturing the fine bubbles dynamics, as will be presented for the Dam Break

case. The observation of the pictures from the experimental work confirms

that the bubbles concentrate around the plume and there is no recirculation

(see Figure 3.3 in (Friedl, 1998)). On the other hand, Figure 8 represents the

solution for the three meshes with the extended model, where the effect of

the mesh refinement is clear again. At the same time, the fragmented chunks

are properly removed by the activation of the ASMM giving a clear plume

and keeping the pool free of zones without physical meaning.

In addition to this qualitative analysis the shape of the free surface can be

compared with the expression given in Eqn. (52). To do so, the void fraction

αq is sampled in 200 points in the interval 0.6 6 z 6 0.8 on 99 equi-spaced

vertical lines in the interval −0.49 6 x 6 0.49 on the x− z plane. Then, the

transition from zero to one (gas to liquid) is detected giving the position of

the free surface (strictly speaking it could capture some droplets from wave

splashing, this effect is supposed to be non-determinant). This sampling is
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Figure 7: Solution for the bubble plume with VOF for three different meshes, a) coarse,

b) fine, c) finest. The grayscale is saturated to white at αq = 0.8

Figure 8: Solution for the bubble plume with the extended model for three different

meshes, a) coarse, b) fine, c) finest. The grayscale is saturated to white at αq = 0.8
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made with ∆t = 0.05 and then the mean for z values is obtained for each

point in x. Finally, the values are referred to the experiments as r̃ = xf/bf

and z̃f = (zf − hoffset) /hf , where hoffset allows the adjustment of the offset of

profiles respect to the quiescent water level (see Figure 6). The same is made

for the bell-shaped function as r̃ = r/bf and z̃f = h(r)/hf , with hf and bf

are, hf = 0.038 and bf = 0.101. The results are presented in Figure 9, where

it is possible to appreciate the effect of the refinement. The reconstruction

of the free surface is similar in both of the models showing that the extended

method retains the surface capturing capabilities of the VOF model. In

addition, comparing the numerical solutions to the experimental fitted curve

it is clear that the fountain width is underestimated in both of the models.

This effect is attributable to the lack of turbulent dispersion modeling. Here

is important to note that the VOF model includes the effects of the turbulence

only in the momentum equation in order to model the non-resolved scales

of eddies. The scales of the interface are supposed to be captured by the

mesh, so no diffusion term is added in the conservation equation of the void

fraction.

5.2. Dam Break with degassing

The second example is the Dam Break problem, which is widely used

as test problem for multi-phase solvers (Martin and Moyce, 1952; Cruchaga

et al., 2007). In this case, a cavity is filled by the less dense fluid and a

column of the more dense fluid is formed in a corner. This column suddenly

collapses evolving within the cavity with waves and splashing which causes

mixing between the fluids. In this case an obstacle has been added in order to
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Figure 9: Mean surfaces for the bubble plume with a) VOF, b) Extended Model.

free surface theoretical model; coarse mesh; fine mesh; finest mesh
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assure stronger agitation and mixing. The final state is logically a quiescent

pool with the more dense fluid at the bottom and the less dense fluid at the

top.

The Dam Break is solved first by the VOF method in the domain [0, 0]×

[0.584, 0.584] with an hexahedral mesh of approximately 720× 688 (495360)

elements, meshed with blockMesh, see Figure 10). The physical parameters

for the fluids are ρq = 1000, νq = 1 × 10−6 and ρp = 1, νp = 1.48 × 10−5

with a surface tension σ = 0.07. The gravity is set as ~g = (0,−9.81, 0). The

solution domain is filled with the less dense fluid except for the area given by

[0, 0] × [0.1461, 0.438] where the more dense fluid is located. This rectangle

gives the initial condition of the water column that collapses at the beginning

of the simulation.

With respect to the boundary conditions for αq, a zero flux was set in all

the walls except for the top where the inletOutlet boundary condition was

used. In the case of the boundary conditions for the modified pressure, these

were set as buoyantPressure for all the walls except for the top, where the

total pressure boundary condition was set. Finally, for the center-of-volume

velocity, the non-slip boundary condition was set for all walls except for

the top wall where the pressureInletOutletVelocity was used. As the

mesh has a dummy third dimension, z, front and back boundaries were set

as empty, which implies to set as null all the corresponding terms and the

derivatives.

The solver was set with the following parameters: momentumPredictor=no,

nCorrectors=3, nNonOrthogonalCorrectors=0, nAlphaCorr=1, nAlphaSub

Cycles=2, cAlpha=1. The maximum Courant number for this running was
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set as 0.5, which is greater that the recommended but resulted to be stable.

Figure 10: Evolution of the Dam Break problem

The numerical solution for the Dam Break problem is shown in Figure

10. At the beginning, the more dense fluid column collapses and pass over

the obstacle until reach the right wall in a very ordered flow (up to t = 0.7,

approximately). Once the more dense fluid reaches the right wall, it splashes

forming chunks and droplets. The flow oscillates and the interface breaks in

several other small interfaces trapping the less dense fluid ( t = 1.6). The

oscillation continues as a liquid pendulum which is damped by the wall and

internal friction due to the viscosity (t > 3.4). Finally, the system starts a

quiescent stage forming a pool with the more dense fluid at the bottom layer

and the less dense fluid trapped in bubbles, which are removed by buoyancy

reaching a complete segregated and hydrostatic state (not shown).
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It is clear that, after a first stage of mixing, the more dense fluid traps

bubbles of the less dense fluid, which are lately removed by buoyancy. At the

same time, droplets are formed from the splashing of the waves which fall by

the gravity effects. The capacity of the VOF model to capture the physics of

these particulated phases is directly related with the mesh refinement, as is

shown in Figure 11. In this figure, the solution for the Dam Break problem

at t = 4 is shown for six different meshes. The first picture (1×) shows

the coarsest mesh and then it is successively refined dividing the mesh step

by two in both dimensions. The expected effect is observed, as the mesh

is refined the reconstruction of the trapped bubbles is improved and the

buoyancy is consequently better modeled, so that, the final state as a clean

pool is reached more quickly. The improvement in the surface capturing

accuracy is also represented. The idea behind the mesh refinement is also to

obtain a reference mesh (whenever is possible) which could be considered as

a DNS solution of the problem. Since the characteristic size of the bubble

population is related to the surface tension this allows to estimate a mean

bubble size in order to give a relative velocity law to the ASMM. In addition

this size allows to determine from which mesh size is possible to capture

the bubbles individually. If the diameter of the bubbles for the Dam Break

problem is estimated in 1×10−3 the first mesh to start capturing them would

be between the 1/32× and 1/64× meshes.

The same analysis can be made for the extended model. It requires the

selection of a relative velocity law for the particulated phase. As was stated,

the Dam Break problem presents two particulated phases, droplets of the

more dense phase and bubbles of the less dense phase. The selection of the
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dispersed phase model depends on the detection of which phase is continuous

and which phase is dispersed. This is not a trivial problem and is not treated

in the available methods. The dispersed phase model is then selected based

on a prescribed behavior either as bubbles or droplets. Another option is

to use a symmetric law for the dispersed phase model (Černe et al., 2001;

Štrubelj and Tiselj, 2011), this approach has validity for αq ∼ 0.5 since the

drag laws have similar values, but is not completely correct reaching pure

phases. From the figures, it is clear that is particularly necessary to give

the proper physics to the trapped phase, so that, a bubble model is selected

for the relative velocity law with a = 1 and ~vrc = (0, 0.4422, 0). Then, the

extended model is run with γ0 = 0.1 and ε = 5× 10−3 as the parameters for

model coupling. The results are shown in Figure 12 where the effect of the

ASMM applied to the dispersed phase is clear, the bubbles are removed giving

a clear pool. The mesh refinement effect is also noted in the improvement of

the free surface capturing.

The solution for the Dam Break problem is also presented as a validation

for the coupled model of Masuda and Nagaoka (Masuda and Nagaoka, 2006)

(classic Dam Break, without obstacle). The authors also note the lack of

capacity of VOF model to capture the bubbles and droplets and use the

Two-Fluid method to give the dynamics for the particulated phase, but no

quantitative validation is given with respect to this effect. A possible measure

of the bubble removal is to track the inventory of the trapped phase along

the time. To this end the solution for each time-step is filtered by prgh

selecting only the cells with prgh > 500. This threshold was selected in order
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Figure 11: VOF solution for the Dam Break problem at t = 4 for different meshes. The

grayscale is saturated to white at αq = 0.8
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Figure 12: Extended model solution for the Dam Break problem at t = 4 for different

meshes. The grayscale is saturated to white at αq = 0.8
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to capture big extensions of the more dense fluid containing either captured

or non captured short scale interfaces with the less dense fluid. This subset

of the whole domain is denoted C. So that, the inventory of the less dense

fluid is given by Vp =
∑
C (1− α1). The results are shown in Figure 13 in

linear and semi-logarithmic scale. The semi logarithmic scale in sub-figure b)

is given in order to have a better insight of the degassing period from t ∼ 1.

From the figure is possible to assure that the extended model has better

convergence than VOF model, reaching a better degassing without increas-

ing the refinement. It becomes clear comparing the 1/4× solution for the

extended model against the 1/32× solution for VOF model. They show sim-

ilar evolution and close level of degassing at the end of the run, giving an

improvement factor of 8. Here it is important to note that the VOF mesh

is 64 times larger. Following the argue the 1/8× solution presented for the

extended model could only be compared with a 1/256× VOF solution. It

implies to go from a problem of 2,008,352 cells (1/32× case) to another one

with 128,534,528 cells, which is only affordable today by large HPC facilities.

5.3. Rayleigh-Taylor instability

The final example corresponds to the Rayleigh-Taylor instability (Štrubelj

and Tiselj, 2011), which consists of the evolution of two layers of fluids (see

Figure 14). The top layer is more dense than the one placed at the bottom.

Due to a little disturbance in the contact surface the more dense fluid goes

down and the less dense fluid does the opposite. In the intermediate state,

a mixture is created, which is lately segregated. The final state reaches a

stable equilibrium with the more dense fluid at the bottom layer and the less
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1E-5

1E-6

Figure 13: Evolution of the trapped phase volume, Vp, along the time for different meshes

and models. a) linear scale, b) semi logarithmic scale. 1× VOF; 1/16×

VOF; 1/32× VOF; 1× extended; 1/4× extended; 1/8×

extended
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dense fluid on the top. The problem is solved in the domain [0, 0]× [1, 5] with

an hexahedral mesh of 128× 640 (81920) elements (see Figure 14), which is

created using the blockMesh utility. The physical parameters for the fluids

are ρq = 3, νq = 0.01 and ρp = 1, νp = 0.01, without surface tension. The

gravity is set as ~g = (0,−10, 0) and the expression for initial disturbance in

the free surface is given by the expression in Eqn. (53), with δ0 = 0.001

δ = −δ0

[
cos

(
2πx

L
− π

)
+ 1

]
+ 4.5 (53)

The shape of the initial disturbance is followed by the mesh on the in-

terface zone since the size of the deformation is smaller than the mesh step.

This small size impedes to set the initial disturbance only by cell initializa-

tion. With respect to the boundary conditions for αq, zeroGradient was set

at the top and bottom boundaries of the domain and symmetry conditions

at both sides. The same boundary conditions were set for the modified pres-

sure and a pressure reference point was set at (0.4999, 0.00078125, 0) with

p = 0. Finally, the boundary conditions for the velocity were set as non-slip

for top and bottom boundaries and symmetry conditions at both sides. As

the mesh has a dummy third dimension, z, front and back boundaries were

set as empty.

The solver was set with the following parameters: momentumPredictor=yes,

nCorrectors=3, nNonOrthogonalCorrectors=1, nAlphaCorr=1, nAlphaSub

Cycles=2, cAlpha=0.25. The value of cAlpha was selected in order not to

form spurious ripple in the free surface when the big structures of the flow

are being stretched. The time-step was set as ∆t = 0.0001 which assured a

Courant number below 0.1 in all the run and was proper for the development
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of the mushroom-like structure at the beginning.

The results for the VOF method are presented in Figure 14 for several

times. The evolution starts with the development of a mushroom-like struc-

ture, until approximately t = 1.8. After this time the structure is stretched

and filaments start to detach forming isolated chunks (see Figure 14 at

t = 2.7, t = 3.6). The detaching continues keeping only chunks and fila-

ments, some of these chunks are fragmentated in a size not trackable by the

VOF method. At the end, a sedimentation process starts where the more

dense chunks fall as droplets, and the less dense fluid trapped in the bot-

tom layer escapes by buoyancy as bubbles. The final state (not shown) is

clearly a layered solution with the more dense fluid forming the bottom layer.

So that, after a first stage when the solution evolves with a mushroom-like

structure (t < 1.8) the problem turns into the stretching of these structures

(t < 4.5) and eventually the formation of droplets (t ∼= 1.8). The dynamics

of this particulate phase can be correctly modeled by the VOF method with

greater or lesser detail depending on the mesh size. So that, the principal

idea behind the use of an extended model is to give the proper physics to

the particulate phase in order to have a better prediction, using the same

meshes.

In order to evaluate the behavior of the extended model with respect to

VOF, the Rayleigh-Taylor problem was run with VOF in a reference mesh

of 256 × 1280 (327,680) elements. This mesh is a refined version of the base

mesh presented as the VOF example, dividing each cell by two in both x and

y directions. So that, the base is called 1×, and the reference is called 1/2×.

The series is completed with coarser meshes, which are called 2× and 4×.
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Figure 14: Evolution of the Rayleigh-Taylor instability

57



The problem is then run for VOF and extended models for all the meshes

using the boundary conditions selected for the original VOF example. In

the extended model, the parameters for the indicator function are γ0 = 0.1

and ε = 5 × 10−3. The relative velocity law needed for the ASMM module

in the extended model is adjusted to ~vrc = (0,−0.1, 0) and a = 1 from the

results in the reference mesh. The results are shown in Figure 15 for three

different times t = 1.8, t = 3.6 and t = 9. In each time row the results for

all meshes are shown comparing each VOF (n×) solution with this extended

model pair (n× e). The first row corresponds to the end of the linear period,

the second shows the stretching of the original structures and the presence

of fluid chunks; finally the third row shows the falling droplets stage and the

formation of the bottom pool. From the figure, it is clear that the linear

period is well represented by both methods in all of the meshes, since the

mushroom-like structure is formed by long-scale interfaces. The stretching

of the original structures shows the deficiencies of the coarser meshes where

non-physical fluid chunks start to appear. Finally, in the droplets/pool stage

it is clear that the VOF method tries to agglomerate the chunks meanwhile

the extended model, which is working in ASMM regime, treats the chunks

without taking into account the mesh resolution.

In order to compare the solution quantitatively, the quadratic mean error

is calculated for the 4×, 2× and 1× respect to the 1/2× reference mesh for

both methods. In order to do so, all the results are mapped to the coarsest

mesh. The error is calculated as is shown in Eqn. (54) (Černe et al., 2001).
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Figure 15: Extended model solution for the Dam Break problem at t = 4 for different

meshes and methods. The grayscale is saturated to black at αq = 0.16
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δcell(t) =
1

VR

n∑
i=1

[αq(t)− αq,REF (t)]2i (54)

where i is the index for the cells, n is the total number of cells in the mesh and

VR =
∑n

i=1 αq,REF (t). The results are presented in Figure 16 and show that

the effects of the mesh refinement are clear until t ∼ 4.5. In this period, as

the meshes are finer the solution is more accurate. This behavior is similar

for both VOF and extended models. In addition, each VOF solution is

followed by its extended model pair showing the capacity of extended model

to capture the long-scale interfaces, while the mesh remains fine with respect

to the interface scale. Once the big structures are stretched and the droplets

are formed, the convergence in not completely clear.

Figure 16: Quadratic mean error for VOF and extended model solutions respect to VOF

reference for the Rayleigh-Taylor problem. 1× VOF , 2× VOF, 4×

VOF, 1× extended , 2× extended, 4× extended
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Another quantitative validation is given by the accumulation of the more

dense phase in the bottom of the domain. It gives a measure of the correct

capturing of the falling droplets physics. So that, the integral of αq is calcu-

lated in a box with its upper boundary located at y = 0.5 for all of the times.

The results shown in Figure 17 allow to conclude again that the VOF and

extended model behave similarly; nevertheless, the extended model seems

to converge better in a factor of 2, since the results for 2× in the extended

model are comparable to the results for 1× in VOF. The same conclusion is

obtained comparing the results in 1× in the extended model and the results

for 1/2× in VOF.

Figure 17: Accumulation of the more dense phase at the bottom of the domain for the

Rayleigh-Taylor problem. ◦ 1/2× VOF, × 1× VOF, � 2× VOF, 4 4× VOF,

1/2× extended, 1× extended, 2× extended, 4× extended
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6. Conclusions

In this work, an extended mixture model was presented and a high per-

formance solver was implemented and tested in order to solve problems with

different scales in the interface based on the ASMM and VOF models. To

derive such model, a discussion was set about the similarities between ASMM

and VOF, showing that the later can be completely derived from the first.

This characteristic allowed to obtain an unified solving framework with strong

coupling between the base methods and to preserve the original character-

istics in the treatment of the interfaces. So that, the large scale interfaces

continued to be properly captured by means of the VOF method and the

short scale interfaces dynamics were treated by the ASMM. The implemen-

tation by the FVM required a careful treatment of the face fluxes in order

to obtain a conservative method, this topic was explained in the theory fun-

damentals and was used as a key concept to devise the solver algorithm. In

addition, an indicator function was presented to allow the correct coupling

of both ASMM and VOF methods with a low demanding technique.

As a part of the discussion, a description of the state of the art was given

in order to have a better understanding of the scope and limitations of the

known coupled solvers, including the development of new theoretical and

experimental solutions which allow the validation of the models.

The model was applied to three examples. The first one was an exper-

imental bubble plume taken from the literature, giving place to a new test

case. The solution of this case allowed to have a semi-quantitative validation

based on the inspection of the solution and the comparison of the shape of

the free-surface. This last comparison was made against fitting curves based
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on experimental results. The results allowed to affirm that the coupled model

could correctly capture the large scale interfaces given by the pool’s water

surface and the fountain. The diameter of the fountain was slightly un-

derestimated, which is attributable to the lack of turbulent diffusion in the

dispersed phase. Here it is important to note that the coupled model can

easily be updated including turbulent diffusion in the secondary phase mass

conservation equation, which cannot be made in the VOF method since all

interface scales are supposed to be solved. In addition, the trapped bub-

bles present in the pool, which couldn’t be removed by buoyancy forces by

the VOF method, were properly removed adding the correct physics by the

ASMM. This effect allowed to match the observed experimental results.

The second example relied on the Dam Break problem, it was solved with

the extended method and a comparison was done against the VOF model

which is the typical method used to solve it. An eight times improvement was

found related to mesh requirements based on a novel quantitative comparison

based on the mass of the trapped phase. The final example was the Rayleigh-

Taylor instability where the extended model was compared to VOF, showing

again the capacity of correctly capture the big structures giving the same

performance than VOF. In a second stage, where the problem evolves as

particulated phases, the extended model gave an improvement factor of two.

As a measure of the improvement, the accumulation of the primary phase

at the bottom of the domain was tracked. These last two examples have

been solved by other authors being a part of the typical test for coupled

model. In both cases, the proposed method showed comparable results to

other methods and the utilization of improved measures allows to have more
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tools to evaluate the convenience of the coupled models.

As is usual, the examination of the benefits and deficiencies of this kind

of methods leave some open questions to the community. An open question

which deserves much attention and which has not been discussed is related

to the interaction of the short scale interfaces (SSI) and the large scale in-

terfaces (LSI). From the given examples, it is clear that the dynamics of the

SSI is improved, now is necessary to know how the LSI simulation is im-

proved due to the better calculation of the SSI. This question is not so trivial

to answer since requires very accurate validation data either theoretical or

experimental.
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Gastaldo, L., Herbin, R., Latché, J.. An entropy preserving finite-

element/finite-volume pressure correction scheme for the drift-flux model.

Arxiv preprint arXiv:08032469 2008;.
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