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a b s t r a c t

In this paper, we present the development of a rigid-flexible multibody model which,

coupledwith an existing aerodynamicmodel, is used to numerically simulate the non-linear

aeroelastic behavior of large horizontal-axis wind turbines. The model is rather general,

different configurations could be easily simulated though it is primarily intended to be used

as a research tool to investigate influences of different dynamic aspects. It includes: i)

a supporting tower; ii) a nacelle which contains the electricity generator, the power elec-

tronics and the control systems; iii) a hub, where the blades are fixed, connected to the

generator rotating shaft; and, iv) three blades which extract energy from the airstream.

The blades are considered flexible, and their equations of motion are discretized in

space domain by using beam finite elements capable of taking into account the non-

linearities coming from the kinematics. The tower is also considered flexible, but its

equations of motion are discretized by using the method of assumed-modes. The nacelle

and hub are considered rigid, and their equations of motion take into account the effects of

the kinematic non-linearities.

Due to the system complexity, the tower, nacelle and hub are modeled as a single

kinematic chain and each blade is modeled separately. Constraint equations are used to

connect the blades to the hub. The resulting governing equations are differential-algebraic,

and these are numerically and interactively solved in the time domain by using a fourth

order predictor-corrector scheme.

The results help to understand the wind speed influence on: i) the rotor angular speed;

ii) the after-forward and side-to-side displacements of the tower; and, iii) the flap- and

edge-wise displacements of the blades.

Copyright ª 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
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target, several authors have been developing structural

models to study the dynamic behavior of Large Horizontal-

Axis Wind Turbines (LHAWTs) and very different

approaches have been explored.

Petersen [1] presented a time domain model for simulating

the dynamic response of a horizontal-axis wind turbine. A

general kinematic analysis was used to derive the local iner-

tial loads. The wind turbine is subdivided into three sub-

structures: the tower, the nacelle-shaft and the rotor-blades.

The model is discretized using the finite element technique.

Lee et al. [2] developed a methodology representing the wind

turbine as a multi-flexible-body system with both, rigid and

flexible body sub-systems. Rigid body sub-systems (nacelle

and hub) are modeled using Kane’s equations, and flexible

body sub-systems (tower and blades), using geometrically

exact, non-linear beam finite elements. Jonkman and Buhl [3]

developed FAST code which is a comprehensive aeroelastic

simulator. FAST model employs a combined modal and mul-

tibody dynamics formulation. Blades and tower are charac-

terized using a linear modal representation while the

remaining components are modeled as rigid bodies. Zhao

et al. [4] developed a methodology based on hybrid multibody

systems composed of rigid, flexible bodies, force elements and

joints. Using a cardanic joint beamelement, the flexible bodies

are modeled as sets of rigid bodies connected by cardanic

joints; thus a wholewind turbine structure can be represented

by a discrete system of rigid bodies, springs, and dampers. A

very detailed study focused on the rotor blade was developed

by Kallesøe [5], who proposed an extension of Hodges-Dow-

ell’s Partial Differential Equations (PDEs) of blademotion [6] by

including the effects of gravity, pitch action and rotor speed

variations. The PDEs of motion are approximated by Ordinary

Differential Equations (ODEs) of motion using an assumed-

modes method.

In this paper, we present a reduced order structural model

of a three-bladed LHAWT. The blades are considered flexible,

and their Equations of Motion (EoMs) are discretized in space

domain by using beam finite elements capable of taking into

account the non-linearities coming from the kinematics. The

tower is also considered flexible, but its EoMs are discretized

using themethod of assumed-modes. The nacelle and hub are

considered rigid, and are represented by a geometric formu-

lation which allows taking into account the effects of the

kinematic non-linearities [7,8]. The presented model involves

different modeling approaches; in addition, the combination

of different techniques for modeling the LHAWT components

renders a very precise reduced order model. For solving the

LHAWT-EoMs in the time domain, a scheme based on

a modified version of the fourth order Hamming’s predictor-

corrector method is used [9].
2. Dynamic model

2.1. Tower, nacelle and hub

In this work, the tower, nacelle and hub are considered

members of a single kinematic chain. It means that the posi-

tion and orientation of any given point belonging to the

nacelle is related to the tower, whereas the position and
Please cite this article in press as: Gebhardt CG, et al., Non-linear
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orientation of any given point belonging to the hub is related

to the nacelle.

The tower is modeled as a straight prismatic, linearly

elastic, undamped beam. The root of the tower is rigidly

attached to the ground and the nacelle is mounted at its top.

The assumed-modes method [10,11] is used to obtain a tower

model with few Degrees of Freedom (DoFs). We consider

a mode for the after-forward bending, a mode for the side-to-

side bending and another one for torsion about the longitu-

dinal axis.

The nacelle and hub are modeled as rigid bodies. The

nacelle can rotate respect to the tower in a yaw angle, which is

commanded by the control system. The hub can freely rotate

respect to the nacelle in an azimuth angle. Both rotations are

represented by a sequence of Euler’s angles.

The EoMs for the tower, nacelle and hub as a single kine-

matic chain can be expressed in the form

½Mtnh�
�
€qtnh

�þ ½Ktnh�
�
qtnh

� ¼ fFg
tnh þ Fk

tnh þ Fc
tnhg; (1)

where qtnh is the vector of generalized coordinates, Mtnh and

Ktnh are the mass and stiffness matrices, respectively. Fg
tnh is

the vector of generalized forces accounting the contributions

coming from the gravitational field, the control systems and

the electricity generator. Fk
tnh is a vector of kinematic forces

accounting for the centrifugal and Coriolis’ effects on the

nacelle and hub and Fc
tnh is the constraint forces vector due to

effects of the blades, which is computed as

Fc
tnh ¼ �

X3

i¼1

�
v4i

vqtnh

�T
flig; (2)

where 4i is the set of constraint equations corresponding to

the i-th blade and li is its vector of Lagrange’s multipliers

[12,13].

At this level, it is important to remark that the aero-

dynamic loads do not appear explicitly, since these forces

directly act over the blades, and their actions on the kinematic

chain are implicitly transferred by mean of the Lagrange’s

multipliers.
2.2. Blades

Each blade is modeled as a non-straight, linearly elastic,

undamped beam. We consider, separately, large displace-

ments and rotations due to the motion of the blade as a rigid

body, and small displacements and small rotations due to the

elastic deformation. The motion of the blade as a whole is

called primary motion and its elastic motion is called secondary

motion.

The primary motion gives us the position and orientation

of the blades. The position is described by using three

generalized coordinates and the orientation, by a unit

quaternion [8,12], i.e. four constrained generalized coordi-

nates since the addition of their squares must be always

equal to one.

The secondary motion leads us to a set of PDEs for a contin-

uous elastic medium. To obtain a finite set of ODEs, the blades

are discretized using two-noded beam finite elements along

the elastic axis, with six DoFs per node. In this work, the

structural mesh of each blade has twenty-two nodes.
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The EoMs for primary motion of the blade number one can

be expressed as
(3)
where q1 and p1 are the generalized coordinates for primary

and secondary motions, respectively. M1 is the mass matrix for

primary motion and is the mass matrix which couples

primary and secondarymotions. Fg
1 and Fk

1 are vectors accounting

for the generalized and kinematic forces, respectively, and Fc
1

is the constraint forces vector due to the blade-hub attach-

ment, which is computed by

Fc
1 ¼ �

�
v41

vq1

�T
fl1g: (4)

The EoMs for secondary motion of the blade number one can

be expressed as
(5)
where m1 and k1 are the mass and stiffness matrices, and fg1
and fk1 are vectors accounting for the generalized and kine-

matic forces, respectively. These EoMs are reduced in size at

every time step by using amodal projection scheme. The EoMs

of the blades number two and three are obtained using the

same procedure.

2.3. Constraints

The roots of the blades are attached to the hub. Each blade can

rotate respect to the hub in a pitch angle, which is com-

manded by the control system. Six constraint equations

establish the linkage between the hub and each blade, three of

them to specify position and the other three to specify

orientation. An extra constraint equation is required to

specify the unit quaternion condition.

The set of algebraic constraint equations for the blade

number one can be expressed as [12,13]

41

�
qtnh;q1

� ¼ 0; (6)

where only holonomic constraints are considered.

Constraint equations for the blades number two and three

are obtained following the same procedure.

2.4. Governing equations

The governing equations for the whole system are

Differential-Algebraic Equations (DAEs), since ODEs and

algebraic constraint equations are involved. After deriving the

constraint equations twice respect to the time, the governing

equations can be expressed as

�
M BT

B 0

��
€x
l

	
¼

�
F

� _B _x

	
; (7)
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where
is the system (or global) mass matrix,

½B� ¼

2
66666664

v41

vqtnh

v41

vq1

0 0 0 0 0

v42

vqtnh

0 0
v42

vq2

0 0 0

v43

vqtnh

0 0 0 0
v43

vq3

0

3
77777775

(9)

is the system (or global) constraint jacobian matrix,

x ¼ fqtnh q1 p1 q2 p2 q3 p3 gT (10)

is the generalized coordinates vector, and

l[fl1 l2 l3 gT (11)

is the Lagrange’s multipliers vector, and

Ftnh ¼

8>>>>>>>><
>>>>>>>>:

�Ktnhqtnh þ Fg
tnh þ Fk

tnh

Fg
1 þ Fk

1

�k1p1 þ fg1 þ fk1
Fg
2 þ Fk

2

�k2p2 þ fg2 þ fk2
Fg
3 þ Fk

3

�k3p3 þ fg3 þ fk3

9>>>>>>>>=
>>>>>>>>;

(12)

is the forces vector which contains all the contributions

explained in previous subsections.
3. Aerodynamic loads

Let us consider a body immersed in a fluid stream. When the

Reynolds’ number is large, the viscous effects can be confined

to those regions close to the solid surface; these vorticity-

dominated regions are called boundary layers. Part of the

vorticity contained in the boundary layers is shed down-

stream into the flow field, where it can only be transported by

the fluid particles, but neither created nor destroyed. This

transported vorticity forms the wakes behind the body.

The thickness of the boundary layers and wakes tends to

zero when the Reynolds’ number tends to infinity. Under this

condition, the boundary layers and wakes can be represented

as continuous bounded and free sheets of vorticity,

respectively.

In the Unsteady Vortex-Lattice Method (UVLM), the

continuous bounded vortex sheets of the boundary layers are

discretized into a lattice of short, straight vortex segments of

constant circulation. These segments divide the surface of the
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body into a finite number of area elements. The model is

completed by joining free vortex lines, representing the

continuous free vortex sheets of the wakes, to the bounded

vortex lattice along the separation sharp edges where the

separation takes place. In our study case, the separation edges

are the trailing edges and tips of the blades.

Each area element in the lattice is enclosed by a loop of

vortex segments. To reduce the size of the problem, each

element is considered to be enclosed by a closed loop of vortex

segments having the same circulation, i.e. vortex rings of

constant circulation. Then the spatial conservation of circu-

lation is automatically satisfied.

The circulation of the vortex rings are determined by using

a discrete version of the non-penetration boundary condition;

the fluid cannot penetrate the solid surface, taking into

account the contribution of the free stream, thewakes and the

velocity of the solid surface. At each time step, after deter-

mining the rings circulations, vortex segments are shed into

the flow field and become part of the grids that approximate

the free vortex sheets of the wakes.

By using an extended version of the UVLM developed by

Gebhardt et al. [14], we estimate the magnitude and evolution

of the aerodynamic loads in the time domain. This version

allows considering the presence of both, the tower and the

land-surface boundary layer. The capability to capture these

phenomena is a novel aspect of our aerodynamic model.
Fig. 1 e Rotor angular speed.
4. Numerical integration scheme

The second-order governing differential equations have to be

re-written as a first order system and integrated in time

domain as follows:

1. At t ¼ 0 the initial conditions are known.

2. At t ¼ Dt the solution is predicted by the explicit Euler’s

method, and then corrected iteratively by the modified

Euler’s method.

3. At t ¼ 2Dt the solution is predicted by the two-step Adams-

Bashfort method, and then corrected iteratively by the two-

steps Adams-Moulton method.

4. At t¼ 3Dt the solution is predicted by the three-step Adams-

Bashfort method, and then corrected iteratively by the

three-step Adams-Moulton method.

5. At t ¼ nDt, n � 4 for the solution is predicted and corrected

by the fourth order modified Hamming’s method [9].

It is important to remark that, Lagrange’s multipliers are

obtained at every time step as part of the solution.

Due to the constraints, this kind of systems usually shows

some instabilities which can be easily suppressed by using the

Baumgarte’s stabilization scheme [15].

This integration methodology allows solving problems in

which acceleration terms are present on both sides of the

governing equations. This is a requirement since the aero-

dynamic loads depend on acceleration, velocity, position and

orientation of the blades, and the estimation of these forces

must be carried out at integer multiples of the time steps. In

general the aerodynamic loads computation represents the
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steps would be very expensive.
5. Results

In this section, we present the results obtained with the

computational tool based on the developed model. Simula-

tions were carried out for a standard three-bladed LHAWT

with 45 m blades and a 68 m tower, which is virtually erected

in a flat terrain with very low building density as any rural

zone. The structural model has a total of thirteen DoFs, which

includes three for the tower, one for the rotor and three for

each blade.

In the present effort, the cases of study focus on the

response of the LHAWTunder different wind conditionswhile

keeping the yaw and pitch configurations fixed. To reach this

goal we consider two different wind speeds, 15 and 20 m/s, at

which the responses of the tower, rotor and blades are

investigated. It is important to remark that these are reference

values for the land-surface boundary layer, since the wind

profile is not constant since the velocity of the wind varies

with height.

5.1. Case: vwind ¼ 15 m/s

In Fig. 1, the rotor angular speed is plotted as a function of

revolutions. The rotor speed increases gradually until it rea-

ches the steady state after one and half revolutions. This is

due to the power rate of the generator and the aerodynamic

damping. In the steady state, the angular speed is approxi-

mately 7.2 RPM and the mean produced power is 1.14 MW.

In Fig. 2, the after-forward displacement of the tower top is

plotted. The tower bends forward and vibrates with small

amplitude around an equilibrium position. This behavior is

dominated by the gravitational loads due to the heavymasses,

hub, nacelle and blades, located in the front part of the tower.

These actions predominate over the aerodynamic loadswhich

push the tower backwards.

In Fig. 3, the side-to-side displacement at the tower top is

plotted. The tower bends to the left because the generator

produces a reacting moment when it takes energy from the

rotor (power rate) which rotates clock-wise. The tower

vibrates around an equilibrium position, but the amplitude is

higher than that of the after-forward displacement.

In Fig. 4, the flap-wise displacements of the blade tips are

plotted. The blades bend up and vibrate; the mean value

depends on the aerodynamic loads but the amplitude of the
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Fig. 3 e Side-to-side displacement of the tower.

Fig. 4 e Flap-wise displacement of the blades.

Fig. 6 e Rotor angular velocity.

Fig. 7 e After-forward displacement of the tower.

Fig. 2 e After-forward displacement of the tower.
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vibration is primary governed by gravitational loads. It is very

important to remark that the responses of the blades present

a phase shift of a one third of a revolution among them; this

fact shows coherence respect to the geometric configuration

of the rotor.

In Fig. 5, the edge-wise displacements of the blades tips are

plotted. The blades vibrate in the edge direction with a mean
Fig. 5 e Edge-wise displacement of the blades.
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value close to the undeformed position, because the gravita-

tional forces prevail, so when the blades are climbing or

falling, they encounter almost the same load distribution but

with opposite sign.
5.2. Case: vwind ¼ 20 m/s

In Fig. 6, the rotor angular speed is plotted. The rotor speed

shows the same trend of the previous case but in the steady

state, the angular speed is approximately 11.2 RPM and the

mean produced power is 2.75 MW. Despite the 33% increase in

wind speed, the angular speed and mean produced power

increase 55% and 141%, respectively. This fact shows the non-

linear characteristic of the current problem.
Fig. 8 e Side-to-side displacement of the tower.

aeroelastic behavior of large horizontal-axis wind turbines: A
nergy (2012), doi:10.1016/j.ijhydene.2011.12.090

http://dx.doi.org/10.1016/j.ijhydene.2011.12.090
http://dx.doi.org/10.1016/j.ijhydene.2011.12.090


Fig. 9 e Flap-wise displacement of the blades.

Fig. 10 e Edge-wise displacement of the blades.
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In Fig. 7, the after-forward displacement of the tower top is

plotted. The tower bends backwards and returns close to the

undeformed position with a positive mean value. From this

point, the tower vibrates with small amplitude because the

aerodynamic loads do not longer prevail; after some time,

only gravitational loads remain important even aerodynamic

damping, which is essentially proportional to the squared

wind velocity, can still be observed. Note that this behavior is

different from the one observed in Fig. 2.

In Fig. 8, the side-to-side displacement of the tower top is

plotted. As in the previous case, the tower bends to the left

and vibrates but this time the mean value increase 63%.

In Fig. 9, the flap-wise displacements of the blade tips are

plotted. As in the previous case, the blades bend up showing

the same trend, but the mean value increases 79% and the

amplitude does changes significantly.

In Fig. 10, the edge-wise displacements of the blades tips

are plotted. As in the previous case, the blades vibrate.

Although the mean value and the amplitude increase a little,

changes are no relevant since gravitational forces

predominate.
6. Concluding remarks

It can be concluded that, as the wind speed increases, the

steady state angular speed and the produced power also

increase. However, the second grows faster and shows

a strong non-linear behavior.

The after-forward displacement of the tower strongly

depends on the gravitational loadswhen thewind speed is not
Please cite this article in press as: Gebhardt CG, et al., Non-linear
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very large, but as the wind speed increases the aerodynamic

loads become more and more relevant.

The side-to-side displacement of the tower depends on the

aerodynamic loads and the power rate of the electrical

generator.

The mean value of the flap-wise displacement mainly

depends on the aerodynamic loads. However, the amplitude

of the vibrationsmainly is governed by the gravitational loads.

The edge-wise displacement mainly depends on the grav-

itational loads and it does not change significantly when the

wind speed varies.

Although the proposed model constitutes a good starting

point to get an understanding of the aeroelastic behavior of

LHAWTs, in the future, it will be necessary to expand the

present ideas and add a very precise model of the power

generation dynamics, the dynamics of the electrical network

and/or the dynamics associated to a hydrogen production

system based on wind energy.
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